
Optimal and Heuristic
Application-Aware Oblivious Routing

Michel A. Kinsy, Myong Hyon Cho, Keun Sup Shim, Mieszko Lis,

G. Edward Suh, Member, IEEE, and Srinivas Devadas, Fellow, IEEE

Abstract—Conventional oblivious routing algorithms do not take into account resource requirements (e.g., bandwidth, latency) of

various flows in a given application. As they are not aware of flow demands that are specific to the application, network resources can

be poorly utilized and cause serious local congestion. Also, flows, or packets, may share virtual channels in an undetermined way; the

effects of head-of-line blocking may result in throughput degradation. In this paper, we present a framework for application-aware

routing that assures deadlock freedom under one or more virtual channels by forcing routes to conform to an acyclic channel

dependence graph. In addition, we present methods to statically and efficiently allocate virtual channels to flows or packets, under

oblivious routing, when there are two or more virtual channels per link. Using the application-aware routing framework, we develop and

evaluate a bandwidth-sensitive oblivious routing scheme that statically determines routes considering an application’s communication

characteristics. Given bandwidth estimates for flows, we present a mixed integer-linear programming (MILP) approach and a heuristic

approach for producing deadlock-free routes that minimize maximum channel load. Our framework can be used to produce

application-aware routes that target the minimization of latency, number of flows through a link, bandwidth, or any combination thereof.

Our results show that it is possible to achieve better performance than traditional deterministic and oblivious routing schemes on

popular synthetic benchmarks using our bandwidth-sensitive approach. We also show that, when oblivious routing is used and there

are more flows than virtual channels per link, the static assignment of virtual channels to flows can help mitigate the effects of head-of-

line blocking, which may impede packets that are dynamically competing for virtual channels. We experimentally explore the

performance tradeoffs of static and dynamic virtual channel allocation on bandwidth-sensitive and traditional oblivious routing

methods.

Index Terms—Systems-on-chip, on-chip interconnection networks, oblivious routing, virtual channel allocation

Ç

1 INTRODUCTION

ROUTERS can be generally classified into oblivious and
adaptive [23]. In oblivious routing, the path is com-

pletely determined by the source and the destination.
Deterministic routing is a subset of oblivious routing,
where the same path is always chosen between a source-
destination pair. Thanks to its distributed nature where
each node can make its routing decisions independent of
others, oblivious routing, such as dimension order routing
[7], enables simple and fast router designs and is widely
adopted in today’s on-chip interconnection networks. On
the other hand, today’s oblivious routing algorithms can
have difficulty with certain traffic patterns because many
flows can be routed through the same link and generate
heavy network congestion, even if other network resources
are not being used.

In adaptive routing, given a source and a destination
address, the path taken by a particular packet is dynamically
adjusted depending on, for instance, network congestion.

With this dynamic load balancing, adaptive routing can
potentially achieve better throughput and latency compared
to oblivious routing. However, adaptive routing methods
face a difficult challenge in balancing router complexity with
the capability to adapt. To achieve the best performance
through adaptivity, a router ideally needs global knowledge
of the current network status. However, due to router speed
and complexity, dynamically obtaining a global and in-
stantaneous view of the network is often impractical. As a
result, adaptive routing in practice relies primarily on local
knowledge, which limits its effectiveness.

In this paper, we present an application-aware oblivious
routing framework that statically determines deadlock-free
routes considering an application’s communication char-
acteristics. The framework supports a variety of algorithms
that optimize various cost functions, for example, maximum
channel load across all links when bandwidth demands of
flows are known, or latency of (a subset of) routes, or a
combination thereof. Our focus in this work is on band-
width-sensitive oblivious routing, with static virtual channel
allocation, which produces deadlock-free routes given
rough estimates of bandwidth demands of all flows obtained
through application program analysis and/or profiling.
Using these estimates, an offline algorithm determines routes
for the data transfers that maximize satisfaction of flow
demand or minimize maximum channel load, while
ensuring deadlock freedom. The network is then statically
configured prior to runtime as processing elements are
loaded with the computation code. This approach can
achieve better throughput than traditional oblivious routing
algorithms because routes are optimized based on the global

IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 1, JANUARY 2013 59

. M.A. Kinsy, M.H. Cho, K.S. Shim, M. Lis, and S. Devadas are with the
Department of Electrical Engineering and Computer Science, Massachu-
setts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139.
E-mail: {mkinsy, mhcho, ksshim, mieszko, devadas}@mit.edu.

. G.E. Suh is with the School of Electrical and Computer Engineering,
Cornell University, Frank H T Rhodes Hall, Room 338, Ithaca, NY 14853.
E-mail: suh@ece.cornell.edu.

Manuscript received 2 Sept. 2010; revised 21 Sept. 2011; accepted 28 Sept.
2011; published online 10 Nov. 2011.
Recommended for acceptance by R. Marculescu.
For information on obtaining reprints of this article, please send E-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2010-09-0490.
Digital Object Identifier no. 10.1109/TC.2011.219.

0018-9340/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

knowledge of bandwidth demands. At the same time, the
router remains simple because the routes are configured
statically and do not change at runtime. Application-aware
oblivious routing will be particularly suitable for long-
running applications with predictable communication pat-
terns. Our studies on synthetic traffic with various patterns
and the H.264 decoder application show throughput
improvements over traditional oblivious routing.

Section 2 describes a generic network architecture for
oblivious routing, and the small augmentations required to
support application-aware oblivious routing. Section 3
describes our framework for application-aware routing,
and our approach to avoiding deadlock. Various algorithms
for bandwidth-sensitive routing are the subjects of Section
4. Related work is summarized in Section 5. Section 6
compares our routing schemes to existing deterministic and
oblivious routing algorithms. Section 7 concludes the paper.

2 ROUTER ARCHITECTURE

This section discusses the impact of our oblivious routing
technique and static virtual channel allocation on the router
architecture, and compares the modified architecture with
standard routers for other oblivious routing algorithms. The
following discussion assumes a typical virtual-channel
router on a 2D mesh network as a baseline. However, we
note that the proposed routing technique is largely
independent of network topology and flow control mechan-
isms. Therefore, the same approach to routing can be
applied to other network topologies and either packet-
buffer or flit-buffer flow control.

2.1 Typical Virtual Channel Router

Fig. 1 illustrates a typical virtual-channel router architecture
and its operation [8], [19], [26]. As shown in the figure, the
data path of the router consists of buffers and a switch. The
input buffers store flits while they are waiting to be forwarded
to the next hop. There are often multiple input buffers for each
physical channel so that flits can flow as if there are multiple
“virtual” channels. When a flit is ready to move, the switch
connects an input buffer to an appropriate output channel. To
control the data path, the router also contains three major
control modules: a router, a virtual-channel (VC) allocator,
and a switch allocator. These control modules determine the
next hop, the next virtual channel, and when a switch is
available for each packet/flit.

The routing o peration takes four steps or phases,
namely, routing (RC), virtual-channel allocation (VA),
switch allocation (SA), and switch traversal (ST), which
often represent one to four pipeline stages in modern
virtual-channel routers. When a head flit (the first flit of a
packet) arrives at an input channel, the router stores the flit
in the buffer for the allocated virtual channel and
determines the next hop for the packet (RC phase). Given
the next hop, the router then allocates a virtual channel in
the next hop (VA phase). Finally, the flit competes for a
switch (SA phase) if the next hop can accept the flit, and
moves to the output port (ST phase). For existing oblivious
routing algorithms, such as Dimension Order Routing
(DOR) [7], ROMM [22], Valiant [31], and o1turn [28], the
next hop of a packet can be easily computed at each router
node based on the packet’s destination.

2.2 Router Architecture for Application-Aware
Oblivious Routing

The router architecture to enable application-aware obliv-
ious routing, or static virtual channel allocation, is almost
identical to the typical virtual-channel router architecture.
The router uses the exact data path that is described above.
The main change in our routing architecture is in its routing
module, where route selection is table based, as opposed to
combinational logic.

For simple oblivious routing algorithms such as DOR,
the baseline architecture implements the algorithm with
fixed logic and dynamically allocates virtual channels to a
packet. To support our routing scheme with any algorithm
variant, our routing module needs table-based routing so
that routes can be configured for each application. This
single change is sufficient because our routing algorithms
ensure that there is no cyclic dependence in routes either
through route selection (cf. Section 3.1) or through static
channel allocation (cf. Section 3.2). We next discuss the
details of the modification.

The router must be programmable so that the routes for
each flow can be configured depending on the application,
and be flexible enough to support arbitrary routing paths. In
order to provide programmability and flexibility, our router
uses table-based routing where the path between a pair of
nodes is stored in a routing table. Unlike cases where a
simple routing algorithm is hardwired with fixed logic
(algorithmic routing), the routing table can be simply
reprogrammed with new routes before an execution of a
new application in order to update the routing. The table-
based approach also allows our routing algorithm to select
almost any path from a source to a destination as long as the
route can fit into the table.

Table-based routing can be realized in two different
ways: source routing and node-table routing, and our
routing technique can also be implemented in both styles. In
the source routing approach, each node has a routing table
that contains a route from itself to each destination node in
the network. The routes are precomputed by our routing
algorithms and programmed into the tables before the
execution of an application. When sending a packet, the
node prepends this routing information to the packet.
Routers along the path can determine the output port
simply by looking up the routing flits. Fig. 2a illustrates

60 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 1, JANUARY 2013

Fig. 1. Typical virtual-channel router architecture. The dark blue
indicates that the modules and routing step may be modified for our
approach.

source routing where a packet is routed through nodes A, B,
and C. The route corresponds to East, North, and North,
which is reflected in the routing flits in the packet. Thanks
to its speed and simplicity, source routing has been widely
used in many router designs including the IBM SP1 [29] and
the Avici TSR [6], although it leads to longer packets
containing routing flits as compared to the case where the
route is computed for each hop.

With node-table routing, the routing module of a node
contains a routing table that has the output port for each
flow that is routed through the node. To determine which
table entry corresponds to each packet, the packet carries an
index field for the current node and the routing table
provides the new index for the next hop. Upon receiving a
packet, a router reads its routing table to determine the
proper output port and forwards the packet with the new
index field from the table. Fig. 2b shows an example of node-
table routing when a packet is routed through the same path
with the source routing example. As shown in the figure, the
incoming packet to node A contains the table index of 1. To
route this packet to B (East), the entry (1) in A’s routing table
is set as (East, 2), indicating that the packet should be routed
to East with the new index of 2. In the same way, the packet
looks up the second entry in node B for routing.

Both routing methods, namely source routing and node-
table routing, are widely known and have been implemen-
ted in multiple routers [29], [6], [11]. In other words, the
proposed routing approach can be realized with standard
routing hardware without new specialized mechanisms.
Also, our routing approach will not have noticeable impact
on the latency or the organization of the router pipeline.

2.3 Router Architecture for Static Virtual Channel
Allocation

Statically allocating a VC to each flow simplifies the VC
allocation step of the baseline router. A previous study
shows that the latency of a pipelined virtual-channel router
is dominated by virtual-channel allocation, when done
dynamically, which incurs 15-20 FO4 delay [26]. In our
scheme, VCs at each link are allocated per flow by the
routing algorithm, rather than being dynamically allocated
using arbiters. The router then assigns the next-hop VC in
the same way as it obtains the route: with source routing,
each packet carries its VC number for each hop along with
its route, while in node-table routing, an entry in the routing
table is augmented with the VC number for the flow. Since
the router can thus obtain both the output port and the next
VC number in the RC step, the primary complexity in the

VA step lies in the arbitration among packets: two or more
packets may be assigned the same VC simultaneously, and
arbitration is needed to determine which packet will be sent
first. This requires a P � V to 1 arbitration for each VC,
where packets from P physical channels with V VCs each
vie for the same VC, and is simpler than the P � V to V
arbitration required by dynamic routing. Peh and Dally,
indicate that P � V to 1 arbitration is about 20 percent faster
than P � V to V arbitration (11.0 FO4 versus 13.3 FO4 with
eight VCs) [26]. Static VC allocation requires additional bits
in the routing table to specify the VC for each flow. For
example, for eight VCs, three extra bits are required for each
entry; if each routing table has 256 entries, this results in an
increase of 96 bytes, still keeping the routing table accessible
in a single cycle.

3 DEADLOCK-FREE OBLIVIOUS ROUTING

Application-aware oblivious routing exploits application
knowledge, under a given topology, to provide deadlock
freedom and efficient network resource (e.g., bandwidth,
virtual channel) allocation crucial to the performance of the
routing algorithm. In this section, we present the frame-
work and introduce two deadlock avoidance techniques,
namely, acyclic channel dependency routing and static
virtual channel allocation.

3.1 Channel Dependency-Based Deadlock
Avoidance

3.1.1 Definitions and Framework

We first give standard definitions of flow networks and
channel dependence graphs (CDG).

Definition 1. Given a flow graph GðV ;EÞ, where an edge
ðu; vÞ 2 E has capacity cðu; vÞ, the capacities cðu; vÞ are the
available bandwidths on the edge. There is a set of k data
transfers or flows K ¼ fK1; K2; . . . ; Kkg. Ki ¼ ðsi; ti; diÞ,
where si and ti are the source and sink, respectively, for
connection i, and di is the demand. We assume si 6¼ ti. We
may have multiple flows with the same source and destination
pairs. The flow variable i along edge ðu; vÞ is fiðu; vÞ. A route
is a path pi from si to ti for a flow i. Edges along this path will
have fiðu; vÞ > 0, other edges will have fiðu; vÞ ¼ 0.

If fiðu; vÞ > 0, then route pi will use both bandwidth and
buffer space on the edge ðu; vÞ. The value of fiðu; vÞ
indicates how much of the edge’s bandwidth is being used
by flow i. We will assume flit-buffer flow control in this
paper, though our framework can be applied to other flow
control schemes as well.

Definition 2. A channel dependence graph DðV 0; E0Þ is derived
from the flow network G as follows: each vertex in V 0 is an
edge in G. There is an edge from v1 2 V 0 to v2 2 V 0 if a packet
can flow from the edge in G associated with v1 into the edge
associated with v2, without traversing any other edges. That is,
the edges are consecutive in G.

Fig. 3 shows a bidirectional 3� 3 mesh and its associated
CDG. BC and CB are edges in opposite directions from B to
C and C to B, respectively. They correspond to separate
vertices in the CDG. Note that the CDG has cycles.

KINSY ET AL.: OPTIMAL AND HEURISTIC APPLICATION-AWARE OBLIVIOUS ROUTING 61

Fig. 2. The table-based routing architecture. (a) Source routing. (b) Node-
table routing.

Application-aware oblivious routing follows the frame-
work of Fig. 4. We need to ensure that the routes selected
are deadlock free, and this is done by creating an acyclic
CDG DA (Step 1), deriving a flow network GA (Step 2) and
generating routes by selecting paths on GA (Step 3). We can
explore different acyclic CDG’s by deleting different edges
from the cyclic CDG to create different DA’s (Step 4). The
best set of routes according to our cost function is chosen
(Step 5).

Assuming a single virtual channel per link, if packets
follow routes that conform to an acyclic channel depen-
dence graph, then network deadlock will not occur [7]. This
is also a necessary condition, provided false resource
dependences do not exist [27]. Therefore, we have to
restrict routing by breaking all the cycles in the CDG D
associated with the network. This can be done in many
ways; the turn model [13] provides a few systematic ways.
Fig. 5 shows two different turn models that can be used in a
2D mesh. While the turn model was developed to enable
adaptive routing, we use it to choose routes in an offline
fashion for oblivious routing. For example, for the 3� 3
mesh, using the North-Last model to break cycles implies
removing the dotted edges in Fig. 3b, and produces the
acyclic CDG of Fig. 6a. Cycles can also be broken in an
ad hoc or random fashion as shown in Fig. 6b. Typically, a
larger number of dependences need to be removed to
obtain an acyclic CDG, but after route selection under this
type of CDG, we may obtain a better result. We can use any
acyclic CDG to drive an application-aware oblivious
routing algorithm. Given that different CDG’s may result
in different qualities of routes, we can perform route
selection under many different CDG’s and select the best
result. To generate deadlock-free routes that conform to a
given acyclic CDG, a flow network is derived from the
CDG, as described next.

3.1.2 Deriving a Flow Graph from an Acyclic CDG

Given source and destination network nodes si and ti,
respectively, for each flow i, we derive a flow graph or

network GA from an acyclic CDG DA. We can then run our

route selection algorithm on GA, to find the “best” routes for

the flows (cf. Section 4). This will have the effect of running

route selection on the original flow network G correspond-

ing to the interconnection network, but with the route

conforming to DA. If the routes for all flows conform to DA,

deadlock freedom is assured. GA is derived from DA as

follows: DA is copied over to GA. We add “dummy”

vertices to GA corresponding to si and ti, for each i. We add

edges from si to all vertices in GA that have si as the source

node of the corresponding link. For example, if si is

network node A in the 3� 3 mesh shown in Fig. 3a, then

edges are added from si to AB and AF . For each vertex in

GA that has ti as the destination node of the corresponding

link, we add an edge from the vertex to ti. For example, if ti
is network node I in the 3� 3 mesh shown in Fig. 3a, then

edges are added from FL to ti and from HL to ti. These

dummy vertices are primarily for convenience and are not

necessary. They avoid having to find the best route from

multiple vertices in GA to one of several possible destina-

tion vertices. In our example, say that we want to find the

best route in GA starting with either AB or AF and ending

at either FL or HL. Fig. 6c shows a flow network derived

from the acyclic CDG of Fig. 6b, given source-destination

pairs A, L and E, G.

3.2 Virtual Channel Allocation-Based Deadlock
Avoidance

3.2.1 Flow-Based Virtual Channel Allocation

When the routing algorithm generates routes that do not

conform to a particular acyclic CDG or turn model, they

may not be deadlock free. However, if the number of

available virtual channels is two or more, and routes are

minimal, we can ensure deadlock freedom via static virtual

channel assignment by partitioning the flows across

available virtual channels.

62 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 1, JANUARY 2013

Fig. 3. (a) 3� 3 mesh. (b) Channel dependence graph without 180 degree turns.

Fig. 4. Offline application-aware oblivious routing framework.

Fig. 5. (a) Turns allowed (solid) and disallowed (dotted) under the West-
First turn model. (b) Turns allowed and disallowed under the North-Last
turn model.

Theorem 1. Given a router with �2 VCs, and an arbitrary set of
minimal routes over an n� n mesh, it is possible to statically
allocate VCs to each flow to ensure deadlock freedom.

Proof. Consider, without loss of generality, the case of two
VCs. Fig. 7a shows the eight possible minimal routes
with two types of turns each (two-turn-type routes).
Given the constraint of minimality, minimal routes can
only have two types of turns, even though they may have
many more turns. Minimal routes that have one type of
turn or no turns can be ignored as special cases of two-
turn-type routes for the subsequent analysis. Looking at
Fig. 7a, it is easy to see that minimal routes 3, 4, 5, and 8
conform to the West-First turn model (but violate the
North-Last model as shown by the boxes over the
violating turns), while minimal routes 1, 2, 6, and 7
conform to the North-Last turn model (but violate the
West-First turn model as indicated by the circles over the
illegal turns). Therefore, we can partition an arbitrary set
of routes into two sets: the first conforming to the West-
First turn model, and the second to the North-Last
model. Note that the four single-turn-type minimal
routes shown in Fig. 7b, and routes with no turns, can
be placed in either set; the four other single-turn-type
routes (not shown) will be forced to one of the sets. If we
assign VC 1 to the first set and VC 0 to the second, no
deadlock can occur. tu
The proof of Theorem 1 suggests a static VC allocation

strategy. Given an application and a collection of minimal
routes, we create three sets of flows:

1. Flows with two-turn-type and single-turn-type
routes that conform to the West-First turn model.

2. Flows with two-turn-type and single-turn-type
routes that conform to the North-Last turn model.

3. Flows with single-turn-type or zero-turn-type routes
that conform to both.

Before moving on to static VC allocation, we assign the
flows in the third set to either of the first two sets,
appropriately balancing the bandwidths and number of
flows. Each flow in the third set is assigned to the set that
has fewer flows than share links with the flow, or, if the
number of shared flows is the same for both sets, to the set
with fewer flows. After only two sets remain, we have local
flexibility in determining the ratio of VCs across the two
sets. The number of flows for the first set and that for the
second set can be different for each link, so we must assign
VCs to the two sets on a per-link basis. We follow a simple
principle: at each link, split available VCs evenly into two
groups associated with the two flow sets and, if unused VCs
remain in exactly one group, shift the unused VCs to the
other group. For example, if the number of flows in the first
set is two and that for the second set is six, the VCs are
divided into two groups of size (1,1), (2,2), and (2,6) for
#VC=2, #VC=4, and #VC=8, respectively. Notice that for the
#VC=8 case, we do not allocate four channels to the first set
since it only has two flows. This localized division reduces
wasted VCs, and the route is now deadlock free since the
two sets of flows are assigned to disjoint groups of
channels. Finally, at each link, we assign a given flow to
either set, with the VC allocation within the set the same as
in DOR.

3.2.2 Packet-Based Virtual Channel Allocation

The primary feature of the flow-based VC allocation
approach is also its limitation, since we need prior knowl-
edge of the flows in the application. The packet-based
approach is another technique to solve the deadlock
problem in oblivious routing algorithms without knowl-
edge of flows or flow demands. In this scheme, each packet

KINSY ET AL.: OPTIMAL AND HEURISTIC APPLICATION-AWARE OBLIVIOUS ROUTING 63

Fig. 7. (a) The eight different two-turn minimal routes on a 2D mesh.
(b) The four (out of a possible eight) different one-turn routes on a 2D
mesh that conform to both the West-First and North-Last turn model.

Fig. 6. (a) North-Last routing CDG without 180 degree turns: 32 edges removed. (b) Ad hoc CDG without 180 degree turns: 36 edges removed.
(c) Flow network from acyclic CDG of (b) with source-destination pairs A;L and E;G.

is routed independently of others, even if they share the

same source-destination. For a class of routing algorithms,

when routes are minimal, we propose a static virtual

channel allocation scheme called Direction-Aware Virtual

Channel Allocation (DAVCA) Fig. 8. (We note that this

paper does not provide results on DAVCA.)
Direction-aware virtual channel allocation. Given an

N-by-M mesh network, we assign a unique pair of

coordinates (iu; ju) to each node u, representing the

position of u in X and Y dimensions on the mesh, with

0 � iu < N and 0 � ju < M. In DAVCA, the static virtual

channel assignment depends on the relative position of the

source node S and destination node T. The allocation is

done in the following manner:
The key advantage of DAVCA is that it guarantees

deadlock freedom for any k-phase minimal routing with

only two VCs for a 2D mesh network. For example, one can

readily use DAVCA on conventional k-phase ROMM

routing using two virtual channels to provide deadlock

freedom, when the original algorithm calls for k VCs [22].

Fig. 9 illustrates the allocation of m virtual channels

between iS < iT and iS > iT traffic under DAVCA.

Theorem 2. DAVCA is deadlock free.

Proof. To show that DAVCA is deadlock free, we invoke

the turn model [13]. Fig. 5 shows two different turn

models that can be used in a 2D mesh: each model

disallows two of the eight possible turns, and, when all

traffic in a network obeys the turn model, deadlock

freedom is guaranteed. The key observation, which we

made in Section 3.2.1, is that minimal-path traffic always

obeys one of those two turn models: eastbound packets

never turn westward, westbound packets never turn

eastward, and packets between nodes on the same row

or column never turn at all. Thus, westbound and

eastbound routes always obey the restrictions of Figs. 5a

and 5b, respectively, and placing them on different

virtual networks ensures deadlock freedom. Traffic over

horizontal links and traffic between nodes on the same

column simultaneously conform to both models, and

may use both virtual networks. Note that the correct

virtual channel allocation for a packet can be determined

locally at each switch, given only the packet’s destination

(encoded in its flow ID), and which ingress and virtual

channel the packet arrived at. tu

4 BANDWIDTH-SENSITIVE OBLIVIOUS ROUTING

(BSOR) ALGORITHMS

For given application characteristics, our application-aware

methodology achieves higher throughput by efficiently

load-balancing the network. For instance, when estimated

bandwidths are available, we can route data traffic in a

bandwidth-sensitive manner to avoid premature network

saturation. It is widely known that a linear programming

formulation can determine a lower bound on the maximum

channel load [8], [30]. However, the routes given by linear

programming may not be realizable on standard routers

since a packet flow may need to be split across multiple

paths to achieve the maximum throughput. Further, these

routes may result in deadlock under a single virtual

channel. A routing in which each commodity flows along

a single path is called an unsplittable flow. Unfortunately, the

unsplittable flow problem is NP-hard even for single

sources [17], requiring the use of approximation algorithms

or heuristics for large problems. Mixed integer-linear

programming (MILP) can produce an optimal result either

minimizing maximum channel load, or maximizing

throughput, for problems of small size (cf. Section 4.1).

We will use Dijkstra’s weighted shortest-path algorithm [5]

in Step 3 of Fig. 4 to heuristically select good routes for large

problems (cf. Section 4.2).

4.1 Mixed Integer-Linear Programming

The capacity of an edge in GA is the capacity of the link/
vertex that the edge is incident on. For example, the edge
from si to AB will be assigned the capacity of link/vertex
AB. An edge from AB to BC will be assigned the capacity
associated with link/vertex BC. Edges into destination
nodes ti have infinite capacity.

Definition 3. Assume the specification of Definition 1. Find an

assignment of flow in GAðV ;EÞ, i.e., 8i; 8ðu; vÞ 2 E fiðu;
vÞ � 0, which satisfies the constraints:

Capacity:

8v 6¼ si; ti hðvÞ ¼
Xk
i¼1

X
ðu;vÞ2E

fiðu; vÞ � cðvÞ:

Flow conservation:

8i; 8u 6¼ si; ti
X
ðw;uÞ2E

fiðw; uÞ ¼
X
ðu;wÞ2E

fiðu;wÞ;

64 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 1, JANUARY 2013

Fig. 8. Deadlock-free direction-aware virtual channel allocation
(DAVCA).

Fig. 9. Virtual channel assignment under DAVCA.

8i
X
ðsi;wÞ2E

fiðsi; wÞ ¼
X
ðw;tiÞ2E

fiðw; tiÞ ¼ gi:

Unsplittable flow:

8i; 8ðu; vÞ 2 E fiðu; vÞ � biðu; vÞ � di;

8i; 8u
X
ðu;vÞ2E

biðu; vÞ � 1:

Hop Count:

8i
X
ðu;vÞ2E

biðu; vÞ � hopi;

and maximizes the total throughput, given as

maximize S ¼
Xk
i¼1

gi; ð1Þ

or maximizes the minimal fraction of the flow of each
commodity to its demand

maximize T ¼ min
1�i�k

gi
di
; ð2Þ

or minimizes the maximum channel load

minimize U ¼ max
v2V

hðvÞ: ð3Þ

The variables biðu; vÞ are Boolean variables, i.e., they can
take on values of 0 or 1 only. They enforce the restriction
that a flow i can only take a single path from source si to
destination ti. They also enforce path length restrictions.
hopi is a specified constant that can be set to be equal to or
greater than the minimal path length between si and ti. The
fiðu; vÞ variables can take on any positive value less than or
equal to the demand di.

There are several interesting cost functions. If the flows
are uncorrelated as in synthetic benchmarks, we can
maximize total throughput given by

Pk
i¼1 gi. In most

applications, flows are correlated, i.e., throttling one flow
will affect the throughput demand of another. In this case,
one possibility is to maximize the minimum fraction of flow
demand satisfaction min1�i�k

gi
di

as in (2). We focus on
finding the minimum maximum channel load (MCL) as in
(3) because this can be done regardless of network capacity,
and only knowing the relative demands of flows. The
capacity constraints are dropped; instead, we set gi ¼ di, for
all flows i. The MILP is run once for each acyclic CDG.

We note that our MILP formulation is over the CDG GA

rather than the original network G. This ensures deadlock
freedom with a single virtual channel unlike schemes that
formulate linear programs over G (e.g., [20]).

4.2 Weighted Shortest-Path-Based Algorithm

For problems of large size, in terms of network size or
number of flows in the application, we select a set of routes
that heuristically minimizes the number of congested links
using Dijkstra’s weighted shortest-path algorithm, as an
alternative to the MILP formulation. The flows are ordered
in terms of decreasing bandwidth demand. We run Dijkstra
on a weighted version of GA, deriving the weights from the
residual capacities of each link/vertex. Consider a link e in

the original network G (e.g., AB) which is a vertex in GA.
This link has a capacity cðeÞ. We create a variable for each
link ~cðeÞ which is the current residual capacity of link e.
Initially, it is equal to the capacity cðeÞ, and is set to be a
constant C. If a flow i is routed through this link e, we will
subtract the demand di from the residual capacity. Residual
capacity is always checked to see whether it is enough to
supply the demand for the flow during routing. If there is
not enough capacity, then the algorithm never chooses the
link, as described below. Therefore, the residual capacity
~cðeÞ will never be negative.

For the weighting function, we use the reciprocal of the
link residual capacity which is similar to the Constraint
Shortest Path First (CSPF) metric described by Walkowiak
[32]. The weighting functionwðeÞ ¼ 1

~cðeÞ�di , except if ~cðeÞ � di,
thenwðeÞ ¼ 1, and the algorithm never chooses the link. The
constant C is set to be the smallest number that can provide
us with routes for all flows without using 1-weight links.
The maximum channel load (MCL) from XY or YX routing
gives us an upper bound for C, but in most cases, we can set
C lower and still find a solution. The MILP gives us a lower
bound for C. A lower C makes the algorithm more
aggressively avoid congested links due to their higher
weight.

The algorithm as described above assumes weights on the
edges in GA; however, the links of G which have capacities
become vertices inGA. As with the capacity, the weight of an
edge in GA is merely the weight of the link/vertex that the
edge is incident on. The edges incident on ti are always
assigned a weight of 0 (they had infinite capacities in the
MILP). Fig. 6c showed a flow network derived from the
acyclic CDG of Fig. 6b. Weights are assigned to the edges
(not shown), and we run Dijkstra’s algorithm on the
weighted GA to find a minimum-weight path from A to L,
or in general from an si to a ti. Then, the weights are
updated, and a new source-destination pair is selected to be
routed. This continues until all flows are routed.

We run the same procedure for all acyclic CDGs. For
each CDG, we reduce C from the XY routing MCL to the
MILP MCL or until we cannot obtain a set of routes, storing
the routes obtained for each value of C. We pick the set of
routes with lowest MCL among all the computed routes,
across all CDGs. We also compute the overall congestion
level of the network by taking the product of the average
excess bandwidth demand over all links multiplied by the
average number of flows competing for each link. We use
this congestion level as a tiebreaker when two sets of routes
have the same MCL.

4.3 Bandwidth-Sensitive Oblivious Routing with
Minimal Routes (BSORM)

We now describe a variation of the BSOR algorithm that
targets only minimal routes and can be made deadlock free
through static VC allocation as described in Section 3.2.1,
when we have two or more virtual channels. Given rough
estimates of bandwidths of data transfers or flows, BSORM
selects routes to minimize the maximum channel load, i.e., the
maximum bandwidth demand on any link in the network.
This method works directly on the flow graph GðV ;EÞ
corresponding to the network, and not on the acyclic channel
dependence graph. For each flow, we select a minimal route
that heuristically minimizes the maximum channel load
using Dijkstra’s weighted shortest-path algorithm.

KINSY ET AL.: OPTIMAL AND HEURISTIC APPLICATION-AWARE OBLIVIOUS ROUTING 65

We start with a weighted version of G, deriving the
weights from the residual capacities of each link. We run
Dijkstra’s algorithm on the weighted G to find a minimum-
weight path sie> ti for a chosen flow i. The algorithm we use
also keeps track of the number of hops, and finds the
minimum-weight path with minimum hop count. While
our weight function allows the smallest weight path to be
nonminimal, the algorithm will not generate such a path.
After the path is found, we check to see whether it can be
replaced by one of the XY/YX routes of Fig. 7b, while
keeping the same minimum weight; if so, this replacement
is made, which minimizes the number of turns in the
selected routes and allows greater freedom for the static VC
allocation step (cf. Theorem 1). Finally, the weights are
updated, and the algorithm continues on to the next flow,
until all flows are routed. The resulting set of minimal
routes minimizes the maximum channel load and the number
of turns in selected paths.

4.4 Static Virtual Channel Allocation for
Bandwidth-Sensitive Oblivious Routing

Conventional virtual channel (VC) routers dynamically
allocate VCs to packets or head/control flits based on
channel availability and/or packet/flit waiting time. Typi-
cally, any flit can compete for any VC at a link [8], and the
associated arbitration is often the highest latency step [26].
Statically allocating VCs to flows can simplify the VC
allocation step. Judicious separation of flows during static
allocation may also reduce or eliminate head-of-line
blocking and, therefore, enhance throughput, although it
may result in lower utilization of available VCs because
dynamic behavior is not considered.

Static allocation of virtual channels is done in a way that is
decoupled from bandwidth allocation. This decoupling
allows active flows to use network bandwidth more
efficiently. The bandwidth allocation can be done using
any flow-based oblivious routing algorithm (e.g., BSOR,
BSORM, DOR). When the routing scheme guarantees dead-
lock freedom by means of acyclic channel dependency, like
in BSOR and DOR, flows are statically assigned to virtual
channels using the Least Sharing Virtual Channel Allocation
(LSVCA) algorithm with no VC set distinction. In the case of
VC set-based deadlock-free routing, e.g., BSORM, LSVCA is
applied to each set. LSVCA consists of the steps outlined in
Fig. 10.

To understand LSVCA we define the notion of entangle-
ment of flows. A pair of flows is said to be entangled if the
flows share at least one VC across all the links used by both
flows. Prior to channel assignment, no pairs of flows are
entangled, and, if the number of flows for a given link is
smaller then the number of VCs, we can avoid entangle-
ment by assigning one channel per flow. Otherwise, in
order to mitigate the effects of head-of-line blocking, we
allocate VCs so as to reduce the number of distinct
entangled flow pairs as described in Fig. 10.

5 RELATED WORK

A basic deterministic routing method is dimension order
routing [7], which becomes XY routing in a 2D mesh.
Necessary and sufficient conditions for deadlock-free

deterministic routing were given in [7], assuming no false
resource dependences. We use this condition to determine if
a set of routes is deadlock free in our oblivious routing
scheme.

ROMM [22] and Valiant [31] are classic oblivious routing
algorithms, which are randomized in order to achieve better
load distribution. In o1turn [28], Seo et al., show that simply
balancing traffic between XY and YX routing can guarantee
provable worst-case throughput. A weighted ordered
toggle (WOT) algorithm that assumes two or more virtual
channels [12] assigns XY and YX routes to source-destina-
tion pairs in a way that reduces the maximum network load
for a given traffic pattern. The previous oblivious routing
algorithms are either indifferent to the traffic pattern (DOR,
ROMM, Valiant, o1turn) or limited to simple minimal paths
(WOT). Here, we are concerned with optimizing through-
put for specific applications utilizing both minimal and
nonminimal paths. We compare our scheme to several
oblivious algorithms in Section 6.

Classic adaptive routing schemes include the turn
routing methods [13] and odd even routing [2]. In [15], a
scheme that switches between deterministic and adaptive
modes depending on the application is presented, where
local FIFO information is used to adapt routes. Duato (e.g.,
[9], [10]) gives necessary and sufficient conditions for
deadlock-free adaptive routing in wormhole networks.
While our algorithms are not adaptive, as described in
Section 4, we use the turn model to derive an acyclic
channel dependence graph that drives our oblivious routing
scheme. However, our scheme additionally allows ad hoc
derivation of acyclic dependence graphs.

There has been significant effort in designing and
utilizing Network-on-Chip (NoC) interconnect; see [1] for
a recent survey. Many works on mapping of applications
onto NoC architectures have considered the routing
problem during the NoC design phase (e.g., [14], [21]).
Our framework is significantly different from these works
in its iterative use of shortest path algorithms on channel
dependence graphs as opposed to the original network to
avoid deadlock, and its applicability to standard router
architectures. The NoC networks are designed and built for
specific applications.

66 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 1, JANUARY 2013

Fig. 10. Least sharing virtual channel allocation (LSVCA) for deadlock-
free routes.

Given an application, a heuristic method to improve
initial routes obtained using dimension order routing is
presented in [33]. This method maintains deadlock freedom
by checking to see if rerouting introduces cycles. Palesi et al.
[24], [25] provide a framework and algorithms for applica-
tion-specific bandwidth-aware deadlock-free adaptive rout-
ing. Given a set of source-destination pairs, cycles are
broken in the CDG to minimize the impact on the average
degree of adaptiveness. Bandwidth requirements are taken
into account to spread traffic uniformly through the net-
work. Towles et al. [30] give a multicommodity flow linear
programming formulation for router algorithm design.
When the linear program is optimized, deterministic
algorithms that are worst-case, or average-case optimal, fall
out as solutions. The routes generated can correspond to
split flows. In our oblivious routing schemes, given any
application, we break cycles in many different ways using
the turn model or using ad hoc schemes, perform band-
width-sensitive route selection on modified acyclic CDGs,
and select the routes (and associated acyclic CDG) that best
satisfy bandwidth constraints. Cho et al., describe band-
width-aware routing for diastolic arrays [3] and avoid
deadlock by assuming that each flow has its own private
channel. Our approach is more general in that it can be used
even in the case of a single virtual channel.

6 RESULTS AND COMPARISONS

This section evaluates the performance of our heuristic
bandwidth-sensitive oblivious routing algorithms and static
virtual channel allocation using synthetic and nonsynthetic
traffic. Through simulation experiments, we compare BSOR
and BSORM with DOR, ROMM [22], and Valiant [31]; and
the performance of static VC allocation with dynamic
allocation across various benchmarks.

6.1 Benchmarks

We use a set of standard synthetic traffic patterns, namely
transpose, bit-complement, and shuffle, in our experiments,
as well as an application benchmark corresponding to H.264
decoding, which has significantly different bandwidth
demands for flows. The synthetic patterns provide basic
comparisons between our routing scheme and other obliv-
ious algorithms as they are widely used to evaluate routing
algorithms. In the synthetic benchmarks, all flows have the
same average bandwidth demands. H.264 is a set of flows
that correspond to the traffic pattern of an H.264 decoder,
with the bandwidths of the flows derived through profiling.

6.2 Results for Maximum Channel Load

We first present results on the maximum channel loads
(MCL’s) of various routes in Table 1. The � sign indicates
that the MCL value produced by BSOR or BSORM is
minimal and equal to the MILP MCL on GA. For BSOR, we
used flow networks GA’s corresponding to 12 different
acyclic CDGs DA’s; there are three different turn models,
North-Last, West-First, and Negative-First, each with four
rotations. We disallow 180 degree turns. In the case of
BSORM, we had four runs, one for each rotation of the route
set of Fig. 7b. For each benchmark, for both BSOR and
BSORM, a single route corresponding to the lowest MCL
shown in Table 1 was chosen and simulated. The network
link capacity is set to 500 MB/second across all benchmarks.

6.3 Simulator Details

We use HORNET [18], a highly configurable, cycle-accurate
network-on-chip simulator, to estimate the throughput and
latency of each flow in the application for various oblivious
routing algorithms. HORNET uses the ORION 2.0 [16]
framework for its power estimation. The simulator models
the router microarchitecture from Section 2.1. As discussed
in Section 2, our routing scheme only requires minor
changes in the router microarchitecture. Therefore, we
assume an identical clock frequency for all routing algo-
rithms. We use an 8� 8 2D mesh network with one, two,
four, or eight virtual channels per port. The simulator is
configured to have a per-hop latency of one cycle, flit buffer
size per VC of 16 flits, and link capacity of 1 flit/cycle. For
each simulation, the network was warmed up for 20,000
cycles and then simulated for 100,000 cycles to collect
statistics, which was enough for convergence.

6.4 Single Virtual Channel

Fig. 11 compares the BSOR Dijkstra algorithm to XY and YX
for the four benchmarks. Varying the injection rate implies
that the bandwidth demands change in absolute terms, but
not in relative terms. Our algorithm outperforms existing
oblivious routing algorithms in the transpose and shuffle
benchmarks. XY and YX routes are ideal for the perfect
symmetry in the bit-complement benchmark; BSOR con-
verges to the same routes as in YX routing. In H.264, the
BSOR algorithm performs better than DOR routes under
moderate traffic load. Its load-balancing properties help to
prevent bandwidth demands, assigned to a link, from
reaching link capacity prematurely while large portions of
the network remain unused or underutilized. However,
when the network gets congested, throughput becomes
unstable and drops. This is primarily due to unfair
arbitration of flows at the physical link, where one flow
blocks other flows on its path. This head-of-line blocking
(HOL) is mitigated by using LSVCA on multiple virtual
channels, as shown in Fig. 12a.

Fig. 12b shows how performance varies when the
bandwidth demands change both in absolute and relative
terms. For the example transpose, for the same set of routes
as those used in Fig. 11a, we show results when the
bandwidth of each individual flow changes by �10% and
�50% in a random fashion. Thus, one bandwidth demand
could be halved from the value that was used to compute
the route, while another could increase by 1:5X. BSOR
continues to outperform the other algorithms since it
spreads the load across the network better.

Figs. 13a and 13b show the packet latencies for the
transpose and H.264 benchmarks for different injection
rates. We define the latency of a packet to be the total
amount of cycles spent in the network, from the emission of

KINSY ET AL.: OPTIMAL AND HEURISTIC APPLICATION-AWARE OBLIVIOUS ROUTING 67

TABLE 1
Comparison of Maximum Channel Load (MCL) in

MB/Second Presented by Various Routing Algorithms

its header flit at the source, to the reception of its tail flit at
its destination. The latency of a flow is simply the average
latency of its packets. Fig. 13c illustrates the impact of
VC configuration on packet latency. Throughout our
experiments, the latency numbers follow the performance
measured by the throughput.

Power estimation in HORNET is done through ORION
2.0, a power-performance simulator capable of providing
both static and dynamic power characteristics for on-chip

networks. The key takeaways from the power results are:
1) BSOR power consumption is comparable to DOR, as
shown in Fig. 14, 2) For this class of oblivious routing
algorithms, static link power has minimal impact on the
overall system power consumption, and 3) the VC config-
uration of the router, which also dictates the crossbar size
and arbitration scheme, is the dominant power factor, in
terms of both static and dynamic power, as shown in
Fig. 15.

68 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 1, JANUARY 2013

Fig. 11. Load-throughput graphs for benchmarks on a router with one virtual channel. Each graph shows the saturation throughput for various
oblivious routing algorithms. (a) Transpose. (b) Bit-complement. (c) Shuffle. (d) H.264.

Fig. 12. (a) Load-throughput graphs for the H.264 benchmark using static VC allocation (with eight virtual channels). (b) Load-throughput graphs for
the transpose benchmark (one virtual channel) when bandwidths change by �10% and �50% after route computation.

6.5 Multiple Virtual Channels with Dynamic
Allocation

We compare BSOR and BSORM with XY, YX, ROMM, and

Valiant under dynamic virtual channel allocation with two

virtual channels in Fig. 16. Note that ROMM and Valiant

need to switch virtual channels in order to ensure deadlock

freedom. BSORM performs better than BSOR for the

transpose, shuffle, and H.264 benchmarks. For these bench-

marks, BSORM provides better communication locality.

Overall, across the various benchmarks, BSOR and BSORM

show better performance than other oblivious routing

algorithms. Further, their performance improvement over

the other algorithms remains relatively consistent for virtual

channels greater than two (not shown).

6.6 Multiple Virtual Channels with Static Allocation

For all these algorithms and across these benchmarks, static

allocation performs as well or better than dynamic alloca-

tion for high injection rates by more effectively reducing

head-of-line blocking effects. Figs. 17 and 18 compare static
VC and dynamic VC allocations under various scenarios.
Fig. 17 shows the performance of XY and YX routing with
two VCs using static and dynamic VC allocation for the
transpose and bit-complement benchmarks. Fig. 18 shows
the performance of BSORM and XY under static and
dynamic allocation for four VCs. LSVCA is used for all
static VC allocations.

6.7 Discussion

BSOR and BSORM aim at finding the right tradeoff between
locality and load balance. Valiant, for example, provides
good load balancing to the network but at the expense of
locality. In our experiments, Valiant has the longest average
path length, and for applications with a large number of
concurrent communications, having longer paths creates
extra congestion which leads to a higher MCL and lower
throughput. ROMM, an alternative to Valiant, retains locality
in routing while providing some degree of load balancing.
BSOR, on the other hand, provides near-optimal load

KINSY ET AL.: OPTIMAL AND HEURISTIC APPLICATION-AWARE OBLIVIOUS ROUTING 69

Fig. 13. Effects of routing algorithms and number of virtual channels on load-latency. (a) Transpose. (b) H.264. (c) Bitcomp with different VC
configurations.

Fig. 14. Effects of routing algorithms on power using shuffle benchmark with 1 VC. (a) Average total power. (b) Static and dynamic breakdown of the
average power.

Fig. 15. Effects of number of virtual channels on power using H.264 benchmark. (a) Average total power. (b) Static and dynamic breakdown of the
average power.

balancing for a given degree of locality. Depending on the

application sensitivity to locality or load balance, different

routes are generated. Fig. 19 shows the effect of BSOR on load

distribution for the shuffle benchmark with random flow

demands, where part of the traffic going through the

bottleneck link is redirected to nearby links. Static virtual

channel allocation, when the application communication

characteristics are known, has proven to be very effective in

mitigating head-of-line blocking. This is because it helps to

prevent performance degradation associated with a single

flow consuming multiple virtual channels and blocking

other flows. Deterministic routing algorithms, like DOR, also

tend to benefit from static virtual channel allocation, because

on average, they have more sharers per link. Fig. 20 shows

sharers per link seen in BSOR and XY for the shuffle

benchmark with random flow demands.

70 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 1, JANUARY 2013

Fig. 16. Load-throughput graphs for benchmarks on a router with two virtual channels. Each graph shows the saturation throughput for various
oblivious routing algorithms. (a) Transpose. (b) Bit-complement. (c) Shuffle. (d) H.264.

Fig. 17. Throughput for dimension order routing under static and dynamic allocation with two VCs.

7 CONCLUSIONS

We have proposed an offline strategy to compute routes,
based on knowledge of the application’s data transfers, to
arrive at an application-aware oblivious routing framework
that does not require significant modification to standard
routers. We have shown that estimates of the bandwidths
demand of an application’s data transfers can help improve
application performance.

In the case of BSOR, a useful next step is a strategy for
simultaneous acyclic CDG and route selection. We at-
tempted to obtain a minimum channel load set of routes
using the BSORM algorithm, without placing any restric-
tions on turns used, but placing restrictions on the
minimality of the routes. It is worthwhile to investigate
strategies that can eliminate the restriction of minimality,
while ensuring deadlock freedom. We also examined the
effects of static virtual channel allocation for oblivious

KINSY ET AL.: OPTIMAL AND HEURISTIC APPLICATION-AWARE OBLIVIOUS ROUTING 71

Fig. 18. Throughput for BSORM and XY under static and dynamic allocation with four VCs.

Fig. 19. BSOR and XY load distribution for random demand shuffle. XY suffers more from premature saturation.

Fig. 20. BSOR and XY sharers-per-link. Static VC allocation helps both routing algorithms alleviate head-of-line blocking.

routing on the overall throughput. The main limitation of
the application-aware routing framework is that we need
some knowledge of the application. This does not have to
necessarily be bandwidth demands, though we have
focused on bandwidth in this paper. It could be knowledge
of data transfers whose latency is critical to performance.
These transfers can be forced to have minimal routes.
Alternately, we can minimize the maximum number of
flows sharing a link without knowing bandwidths. To
handle bursty flows, we have proposed bandwidth-adap-
tive networks that contain adaptive bidirectional links and
can improve the performance of conventional oblivious
routing methods [4].

ACKNOWLEDGMENTS

The authors would like to thank Derek Chiou, Joel Emer,
Li-Shiuan Peh, Pengju Ren, Marten van Dijk, and David
Wentzlaff for interesting discussions throughout the course
of this work. We would like to acknowledge the support of
Intel Corporation for providing some of the workstations
used in conducting this research. This research is partially
funded by NSF grant CCF-0905208.

REFERENCES

[1] T. Bjerregaard and S. Mahadevan, “A Survey of Research and
Practices of Network-on-Chip,” ACM Computing Surveys, vol. 38,
no. 1, article 1, 2006.

[2] G.-M. Chiu, “The Odd-Even Turn Model for Adaptive Routing,”
IEEE Trans. Parallel and Distributed Systems, vol. 11, no. 7, pp. 729-
738, July 2000.

[3] M.H. Cho, C.-C. Cheng, M. Kinsy, G.E. Suh, and S. Devadas,
“Diastolic Arrays: Throughput-Driven Reconfigurable Comput-
ing,” Proc. IEEE/ACM Int’l Conf. Computer-Aided Design
(ICCAD ’08), Nov. 2008.

[4] M.H. Cho, M. Lis, K.S. Shim, M. Kinsy, T. Wen, and S. Devadas,
“Oblivious Routing in On-Chip Bandwidth-Adaptive Networks,”
Proc. 18th Int’l Conf. Parallel Architecture and Compilation Techniques
(PACT ’09), Sept. 2009.

[5] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction
to Algorithms. MIT Press, 2001.

[6] W.J. Dally, P.P. Carvey, and L.R. Dennison, “The Avici Terabit
Switch/Router,” Proc. Sixth Symp. Hot Interconnects, pp. 41-50,
Aug. 1998.

[7] W.J. Dally and C.L. Seitz, “Deadlock-Free Message Routing in
Multiprocessor Interconnection Networks,” IEEE Trans. Compu-
ters, vol. 36, no. 5, pp. 547-553, May 1987.

[8] W.J. Dally and B. Towles, Principles and Practices of Interconnection
Networks. Morgan Kaufmann, 2003.

[9] J. Duato, “A New Theory of Deadlock-Free Adaptive Routing in
Wormhole Networks,” IEEE Trans. Parallel and Distributed Systems,
vol. 4, no. 12, pp. 1320-1331, Dec. 1993.

[10] J. Duato, “A Necessary and Sufficient Condition for Deadlock-
Free Adaptive Routing in Wormhole Networks,” IEEE Trans.
Parallel and Distributed Systems, vol. 6, no. 10, pp. 1055-1067, Oct.
1995.

[11] M. Galles, “Scalable Pipelined Interconnect for Distributed End-
point Routing: The SGI SPIDER Chip,” Proc. Symp. Hot Inter-
connects, pp. 141-146, Aug. 1996.

[12] R. Gindin, I. Cidon, and I. Keidar, “NoC-Based FPGA: Architec-
ture and Routing,” Proc. First Int’l Symp. Networks-on-Chips
(NOCS), pp. 253-264, 2007.

[13] C.J. Glass and L.M. Ni, “The Turn Model for Adaptive Routing,”
J. ACM, vol. 41, no. 5, pp. 874-902, Sept. 1994.

[14] J. Hu and R. Marculescu, “Exploiting the Routing Flexibility
for Energy/Performance Aware Mapping of Regular NoC
Architectures,” Proc. Design, Automation and Test in Europe
Conf., 2003.

[15] J. Hu and R. Marculescu, “DyAD: Smart Routing for Networks on
Chip,” Proc. Design Automation Conf., June 2004.

[16] A.B. Kahng, B. Li, L.S. Peh, and K. Samadi ORION 2.0: A Fast and
Accurate NoC Power and Area Model for Early-Stage Design
Space Exploration, 2009.

[17] J.M. Kleinberg, “Approximation Algorithms for Disjoint Paths
Problems,” PhD thesis, Massachusetts Inst. of Technology,
1996.

[18] M. Lis, P. Ren, M.H. Cho, K.S. Shim, C.W. Fletcher, O. Khan, and
S. Devadas, “Scalable, Accurate Multicore Simulation in the 1000-
Core Era,” Proc. IEEE Int’l Symmp. Performance Analysis of Systems
and Software (ISPASS ’11), pp. 175-185, 2011.

[19] R.D. Mullins, A.F. West, and S.W. Moore, “Low-Latency Virtual-
Channel Routers for On-Chip Networks,” Proc. 31st Ann. Int’l
Symp. Computer Architecture (ISCA ’04), pp. 188-197, 2004.

[20] S. Murali, D. Atienz, L. Benini, and G.D. Micheli, “A Method for
Routing Packets Across Multiple Paths in NoCs with In-Order
Delivery and Fault-Tolerance Gaurantees,” VLSI Design, 2007.

[21] S. Murali and G.D. Micheli, “SUNMAP: A Tool for Automatic
Topology Selection and Generation for NoCs,” Proc. 41st Ann.
Conf. Design Automation (DAC ’04), pp. 914-919, 2004.

[22] T. Nesson and S. Lennart Johnsson, “ROMM Routing on Mesh
and Torus Networks,” Proc. Seventh Ann. ACM Symp. Parallel
Algorithms and Architectures (SPAA ’95), pp. 275-287, 1995.

[23] L.M. Ni and P.K. McKinley, “A Survey of Wormhole Routing
Techniques in Direct Networks,” Computer, vol. 26, no. 2, pp. 62-
76, Feb. 1993.

[24] M. Palesi, R. Holsmark, S. Kumar, and V. Catania, “A Methodol-
ogy for Design of Application Specific Deadlock-Free Routing
Algorithms for NoC Systems,” Proc. Fourth Int’l Conf. Hardware/
Software Codesign and System Synthesis (CODES+ISSS ’06), Oct.
2006.

[25] M. Palesi, G. Longo, S. Signorino, R. Holsmark, S. Kumar, and V.
Catania, “Design of Bandwidth Aware and Congestion Avoiding
Efficient Routing Algorithms for Networks-on-Chip Platforms,”
Proc. ACM/IEEE Int’l Symp. Networks-on-Chip (NOCS), pp. 97-106,
2008.

[26] L.-S. Peh and W.J. Dally, “A Delay Model and Speculative
Architecture for Pipelined Routers,” Proc. Int’l Symp. High-
Performance Computer Architecture (HPCA), pp. 255-266, Jan.
2001.

[27] L. Schwiebert, “Deadlock-Free Oblivious Wormhole Routing with
Cyclic Dependencies,” Proc. Ninth Ann. ACM Symp. Parallel
Algorithms and Architectures (SPAA ’97), pp. 149-158, 1997.

[28] D. Seo, A. Ali, W.-T. Lim, N. Rafique, and M. Thottethodi, “Near-
Optimal Worst-Case Throughput Routing for Two-Dimensional
Mesh Networks,” Proc. 32nd Ann. Int’l Symp. Computer Architecture
(ISCA ’05), pp. 432-443, 2005.

[29] C.B. Stunkel, D.G. Shea, D.G. Grice, P.H. Hochschild, and M. Tsao,
“The SP1 High-Performance Switch,” Proc. Scalable High Perfor-
mance Computing Conf., pp. 150-157, May 1994.

[30] B. Towles, W.J. Dally, and S. Boyd, “Throughput-Centric Routing
Algorithm Design,” Proc. 15th Ann. ACM Symp. Parallel Algorithms
and Architectures (SPAA ’03), pp. 200-209, 2003.

[31] L.G. Valiant and G.J. Brebner, “Universal Schemes for Parallel
Communication,” Proc. 13th Ann. ACM Symp. Theory of Computing
(STOC ’81), pp. 263-277, 1981.

[32] K. Walkowiak, “New Algorithms for the Unsplittable Flow
Problem,” Proc. Int’l Conf. Computational Science and Its Applications
(ICCSA), pp. 1101-1110, 2006.

[33] X. Zhong and V. Mary, “Application-Specific Deadlock Free
Wormhole Routing on Multicomputers,” Proc. Fourth Int’l PARLE
Conf. Parallel Architectures and Languages Europe (PARLE ’92),
pp. 193-208, 1992.

Michel A. Kinsy received the MS degree in
electrical engineering and computer science
from the Massachusetts Institute of Technology
(MIT), the BSE degree in computer systems
engineering, and the BS in computer science,
both from Arizona State University. He is work-
ing toward the PhD degree at MIT. His current
research interests include high-performance
distributed computing platforms: reconfigurable
many-core computer architectures, networks-

on-chip (NoCs) routing, and domain-specific multicore system design.

72 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 1, JANUARY 2013

Myong Hyon Cho received the bachelor’s
degree from Seoul National University, and the
master’s degree from Massachusetts Institute
of Technology. He is currently working toward
the PhD degree in the Department of Electrical
Engineering and Computer Science at Massa-
chusetts Institute of Technology. His current
research interests include many-core computer
architecture, memory subsystem, and on-chip
network.

Keun Sup Shim received the BS degree in
electrical engineering from KAIST, South Korea,
in 2006 and the MS degree in electrical
engineering and computer science from MIT in
2010. He is currently working toward the PhD
degree in electrical engineering and computer
science in MIT. His research interests include
high-performance computer architecture, scal-
able many-core designs, and on-chip networks.

Mieszko Lis received the bachelor’s and
master’s degrees from MIT. He is working
toward the PhD degree at the Massachusetts
Institute of Technology in computer architecture
and computational biology. He accumulated
extensive industry experience as a cofounder
of a fabless semiconductor company and a
high-level hardware synthesis startup. His cur-
rent research interests include massive-scale
multicores and the advanced coherent memory
hierarchies required to support them.

G. Edward Suh received the BS degree in
electrical engineering from Seoul National Uni-
versity in 1999, and SM and PhD degrees in
electrical engineering and computer science
from the Massachusetts Institute of Technology
(MIT) in 2001 and 2005, respectively. He is
currently an assistant professor in the School of
Electrical and Computer Engineering at Cornell
University, where he leads the Trustworthy
Systems Group in the Computer Systems

Laboratory. He is a recipient of an NSF CAREER Award, an Air Force
Office of Scientific Research (AFOSR) Young Investigator Program
Award, and an Army Research Office (ARO) Young Investigator
Program Award. His current research includes developing architectural
techniques to improve security, reliability, and correctness of future
computing systems. He is a member of the IEEE.

Srinivas Devadas is a professor of electrical
engineering and computer science at the
Massachusetts Institute of Technology (MIT),
and has been on the faculty of MIT since 1988.
He served as the associate head with respon-
sibility for computer science from 2005-2011.
He has worked in the areas of computer-aided
design, testing, formal verification, compilers for
embedded processors, computer architecture,
computer security, and computational biology

and has coauthored numerous papers and books in these areas. He
has been a fellow of the IEEE since 1998.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

KINSY ET AL.: OPTIMAL AND HEURISTIC APPLICATION-AWARE OBLIVIOUS ROUTING 73

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

