
Judicious Thread Migration When Accessing
Distributed Shared Caches

Keun Sup Shim, Mieszko Lis, Omer Khan and Srinivas Devadas
Massachusetts Institute of Technology

Abstract—Chip-multiprocessors (CMPs) have become the
mainstream chip design in recent years; for scalability reasons,
designs with high core counts tend towards tiled CMPs with
physically distributed shared caches. This naturally leads to a
Non-Uniform Cache Architecture (NUCA) design, where on-
chip access latencies depend on the physical distances between
requesting cores and home cores where the data is cached.
Improving data locality is thus key to performance, and several
studies have addressed this problem using data replication and
data migration.

In this paper, we consider another mechanism, hardware-
level thread migration. This approach, we argue, can better
exploit shared data locality for NUCA designs by effectively
replacing multiple round-trip remote cache accesses with a
smaller number of migrations. High migration costs, however,
make it crucial to use thread migrations judiciously; we therefore
propose a novel, on-line prediction scheme which decides whether
to perform a remote access (as in traditional NUCA designs) or
to perform a thread migration at the instruction level. For a set
of parallel benchmarks, our thread migration predictor improves
the performance by 18% on average and at best by 2.3X over
the standard NUCA design that only uses remote accesses.

I. BACKGROUND

In the recent years, transistor density has continued to
grow [13] and Chip Multiprocessors (CMPs) with four or more
cores on a single chip have become common in the commodity
and server-class general-purpose processor markets [25]. To
further improve performance and use the available transistors
more efficiently, architects are resorting to medium and large-
scale multicores both in academia (e.g., Raw [31], TRIPS [26])
and industry (e.g., Tilera [12], [4], Intel TeraFLOPS [29]), and
industry pundits are predicting 1000 or more cores in a few
years [5].

With this trend towards massive multicore chips, a tiled
architecture where each core has a slice of the last-level on-
chip cache has become a popular design, and these physically
distributed per-core cache slices are unified into one large,
logically shared cache, known as the Non-Uniform Cache
Architecture (NUCA) [18]. In the pure form of NUCA, only
one copy of a given cache line is kept on chip, maximizing the
effective on-chip cache capacity and reducing off-chip access
rates. In addition, because only one copy is ever present on-
chip, no two caches can disagree about the value at a given
address and cache coherence is trivially ensured. A private per-
core cache organization, in comparison, would need to rely
on a complex coherence mechanism (e.g., a directory-based
coherence protocol); these mechanisms not only pay large area
costs but also also incur performance costs because repeated

cache invalidations are required for shared data with frequent
writes. NUCA obviates the need for such coherence overhead.

The downside of NUCA designs, however, is high on-
chip access latency, since every access to an address cached
remotely must cross the physical distances between the re-
questing core and the home core where the data can be cached.
Therefore, various NUCA and hybrid designs have been
proposed to improve data locality, leveraging data migration
and replication techniques previously explored in the NUMA
context (e.g., [30]). These techniques move private data to
its owner core and replicate read-only shared data among the
sharers at OS level [11], [15], [1] or aided by hardware [33],
[8], [28]. While these schemes improve performance on some
kinds of data, they still do not take full advantage of spatio-
temporal locality and rely on remote cache accesses with two-
message round trips to access read/write shared data cached
on a remote core.

To address this limitation and take advantage of available
data locality in a memory organization where there is only one
copy of data, we consider another mechanism, fine-grained
hardware-level thread migration [19], [20]: when an access is
made to data cached at a remote core, the executing thread is
simply migrated to that core, and execution continues there.
When several consecutive accesses are made to data assigned
to a given core, migrating the thread context allows the thread
to make a sequence of local accesses on the destination core
rather than pay the performance penalty of the corresponding
remote accesses, potentially better exploiting data locality. Due
to the high cost of thread migration, however, it is crucial to
judiciously decide whether to perform remote accesses (as in
traditional NUCA designs) or thread migrations, a question
which has not been thoroughly explored.

In this paper, we explore the tradeoff between the two
different memory access mechanisms and answer the question
of when to migrate threads instead of performing NUCA-
style remote accesses. We propose a novel, on-line prediction
scheme which detects the first instruction of each memory
instruction sequence in which every instruction accesses the
same home core and decides to migrate depending on the
length of this sequence. This decision is done at instruction
granularity. With a good migration predictor, thread migration
can be considered as a new means for memory access in
NUCA designs, that is complementary to remote access.

In the remainder of this paper,
• we first describe two memory access mechanisms –

remote cache access and thread migration – and explain

the tradeoffs between the two;
• we present a novel, PC-based migration prediction

scheme which decides at instruction granularity whether
to perform a remote access or a thread migration;

• through simulations of a set of parallel benchmarks, we
show that thread migrations with our migration predictor
result in a performance improvement of 18% on average
and at best by 2.3X compared to the baseline NUCA
design which only uses remote accesses.

II. MEMORY ACCESS FRAMEWORK

NUCA architectures eschew capacity-eroding replication
and obviate the need for a coherence mechanism entirely by
combining the per-core caches into one large logically shared
cache [18]. The address space is divided among the cores in
such a way that each address is assigned to a unique home core
where the data corresponding to the address can be cached;
this necessitates a memory access mechanism when a thread
wishes to access an address not assigned to the core it is
running on. The NUCA architectures proposed so far use a
remote access mechanism, where a request is sent to the home
core and the data (for loads) or acknowledgement (for writes)
is sent back to the requesting core.

In what follows, we first describe the remote access mech-
anism used by traditional NUCA designs. We also describe
another mechanism, hardware-level thread migration, which
has the potential to better exploit data locality by moving the
thread context to the home core. Then, we explore the tradeoff
between the two and present a memory access framework for
NUCA architectures which combines the two mechanisms.

A. Remote Cache Access

Since on-chip access latencies are highly sensitive to the
physical distances between requesting cores and home cores,
effective data placement is critical for NUCA to deliver high
performance. In standard NUCA architectures, the operating
system controls memory-to-core mapping via the existing
virtual memory mechanism: when a virtual address is first
mapped to a physical page, the OS chooses where the relevant
page should be cached by mapping the virtual page to a
physical address range assigned to a specific core. Since the
OS knows which thread causes a page fault, more sophisticated
heuristics can be used: for example, in a first-touch-style
scheme, the OS can map the page to the core where the
thread is running, taking advantage of data access locality. For
maximum data placement flexibility, each core might include
a Core Assignment Table (CAT), which stores the home core
for each page in the memory space. Akin to a TLB, the per-
core CAT serves as a cache for a larger structure stored in
main memory. In such a system, the page-to-core assignment
might be made when the OS is handling the page fault caused
by the first access to the page; the CAT cache at each core is
then filled as needed1.
1Core Assignment Table (CAT) is not an additional requirement for our
framework. Our memory access framework can be integrated with any data
placement scheme.

Under the remote-access framework, all non-local memory
accesses cause a request to be transmitted over the interconnect
network, the access to be performed in the remote core, and
the data (for loads) or acknowledgement (for writes) to be sent
back to the requesting core: when a core C executes a memory
access for address A, it must

1) compute the home core H for A (e.g., by consulting the
CAT or masking the appropriate bits);

2) if H =C (a core hit),
a) forward the request for A to the cache hierarchy

(possibly resulting in a DRAM or next-level cache
access);

3) if H 6=C (a core miss),
a) send a remote access request for address A to core

H;
b) when the request arrives at H, forward it to H’s

cache hierarchy (possibly resulting in a DRAM
access);

c) when the cache access completes, send a response
back to C;

d) once the response arrives at C, continue execution.
Accessing data cached on a remote core requires a poten-

tially expensive two-message round-trip: unlike a private cache
organization where a coherence protocol (e.g., directory-based
protocol) would take advantage of spatial and temporal locality
by making a copy of the block containing the data in the local
cache, a traditional NUCA design must repeat the round-trip
for every remote access. Optimally, to reduce remote cache
access costs, data private to a thread should be assigned to the
core the thread is executing on or to a nearby core; threads that
share data should be allocated to nearby cores and the shared
data assigned to geographically central cores that minimize
the average remote access delays. In some cases, efficiency
considerations might dictate that critical portions of shared
read-only data be replicated in several per-core caches to
reduce overall access costs. For shared read/write data cached
on a remote core (which are not, in general, candidates for
replication), a thread still needs to perform remote accesses.

B. Thread Migration

In addition to the remote access mechanism, fine-grained,
hardware-level thread migration has been proposed to exploit
data locality for NUCA architectures [19], [20]. A thread
migration mechanism brings the thread to the locus of the data
instead of the other way around: when a thread needs access
to an address cached on another core, the hardware efficiently
migrates the thread’s execution context to the core where
the memory is (or is allowed to be) cached and continues
execution there.

If a thread is already executing at the destination core, it
must be evicted and migrated to a core where it can continue
running. To reduce the necessity for evictions and amortize the
latency of migrations, cores duplicate the architectural context
(register file, etc.) and allow a core to multiplex execution
among two (or more) concurrent threads. To prevent deadlock,

Access memory & Migrate another
continue execution

Migrate # threads

thread back to
its native core

yes

Mi tyes

Memory Address

thread to
home core

threads
exceeded?

A &

Migratey

D i i
y

access
in core C

cacheable
in core C?

Access memory &
continue execution

Send remote

no
no

Decision
Procedure

request to
home core

Access memoryRemote
Access

Return data (read)Return data (read)
or ack (write) to

the requesting core C
Continue execution

Core originating Core where address
b h d

Network
memory access can be cached

Fig. 1. In NUCA architectures, memory accesses to addresses not assigned to the local core result in remote data accesses. Here, we add another mechanism
for accessing remote memory – migrating a thread to the home core where the data is cached. In this paper, we propose an on-line decision scheme which
efficiently decides between a remote access and a thread migration for every memory access.

one context is marked as the native context and the other is
the guest context: a core’s native context may only hold the
thread that started execution on that core (called the thread’s
native core), and evicted threads must migrate to their native
cores to guarantee deadlock freedom [10].

Briefly, when a core C running thread T executes a memory
access for address A, it must

1) compute the home core H for A (e.g., by consulting the
CAT or masking the appropriate bits);

2) if H =C (a core hit),
a) forward the request for A to the cache hierarchy

(possibly resulting in a DRAM access);
3) if H 6=C (a core miss),

a) interrupt the execution of the thread on C (as for
a precise exception),

b) migrate the microarchitectural state to H via the
on-chip interconnect:
i) if H is the native core for T , place it in the

native context slot;
ii) otherwise:

A) if the guest slot on H contains another
thread T ′, evict T ′ and migrate it to its
native core N′

B) move T into the guest slot for H;
c) resume execution of T on H, requesting A from its

cache hierarchy (and potentially accessing backing
DRAM or the next-level cache).

Although the migration framework requires hardware
changes to the baseline NUCA system (since the core itself
must be designed to support efficient migration), it migrates
threads directly over the interconnect network to achieve the
shortest possible migration latencies, which is faster than other
thread migration approaches (such as OS-level migration or
Thread Motion [24], which uses special cache entries to store
thread contexts and leverages the existing cache coherence

protocol to migrate threads). In terms of a thread context size
that needs to be migrated, the relevant architectural state in
a 64-bit x86 processor amounts to about 3.1Kbits (16 64-bit
general-purpose registers, 16 128-bit floating-point registers
and special purpose registers, e.g., rflags, rip and mxcsr),
which is the context size we are assuming in this paper. The
thread context size may vary depending on the architecture;
in the Tilera TILEPro64 [4], for example, it amounts to about
2.2Kbits (64 32-bit registers and a few special registers).

C. Hybrid Framework

We propose a hybrid memory access framework for NUCA
architectures by combining the two mechanisms described:
each core-miss memory access may either perform the access
via a remote access as in Section II-A or migrate the current
execution thread as in Section II-B. The hybrid architecture is
illustrated in Figure 1. For each access to memory cached on
a remote core, a decision algorithm determines whether the
access should migrate to the target core or execute a remote
access.

As discussed earlier, the approach of migrating the thread
context can potentially better take advantage of spatiotemporal
locality: where a remote access mechanism would have to
make repeated round-trips to the same remote core to access its
memory, thread migration makes a one-way trip to the core
where the memory can be cached and continues execution
there; unless every other word accessed resides at a different
core, it will make far fewer network trips.

At the same time, we need to consider the cost of thread mi-
gration: given a large thread context size, the thread migration
cost is much larger than the cost required by remote-access-
only NUCA designs. Therefore, when a thread is migrated to
another core, it needs to make several local memory accesses
to make the migration “worth it.” While some of this can be
addressed via intelligent data layout [27] and memory access
reordering at the compiler level, occasional “one-off” accesses

seem inevitable and migrating threads for these accesses will
result in expensive back-and-forth context transfers. If such
an access can be predicted, however, we can adopt a hybrid
approach where “one-off” accesses are executed under the
remote access protocol, and migrations handle sequences of
accesses to the same core. The next section discusses how we
address this decision problem.

III. THREAD MIGRATION PREDICTION

As described in Section II, it is crucial for the hybrid
memory access architecture (remote access + thread migration)
to make a careful decision whether to follow the remote
access protocol or the thread migration protocol. Furthermore,
because this decision must be taken on every access, it must
be implementable as efficient hardware. Since thread migration
has an advantage over the remote access protocol for multiple
contiguous memory accesses to the same location but not
for “one-off” accesses, our migration predictor focuses on
detecting such memory sequences that are worth migrating.

A. Detection of Migratory Instructions

Our migration predictor is based on the observation that
sequences of consecutive memory accesses to the same home
core are highly correlated with the program (instruction) flow,
and moreover, these patterns are fairly consistent and repetitive
across the entire program execution. At a high level, the
predictor operates as follows:

1) when a program first starts execution, it basically runs
as on a standard NUCA organization which only uses
remote accesses;

2) as it continues execution, it keeps monitoring the home
core information for each memory access, and

3) remembers each first instruction of every sequence of
multiple successive accesses to the same home core;

4) depending on the length of the sequence, marks the
instruction either as a migratory instruction or a remote-
access instruction;

5) the next time a thread executes the instruction, it mi-
grates to the home core if it is a migratory instruction,
and performs a remote access if it is a remote-access
instruction.

The detection of migratory instructions which trigger thread
migrations can be easily done by tracking how many con-
secutive accesses to the same remote core have been made,
and if this count exceeds a threshold, marking the instruction
to trigger migration. If it does not exceed the threshold, the
instruction is marked as a remote-access instruction, which is
the default state. This requires very little hardware resources:
each thread tracks (1) Home, which maintains the home
location (core ID) for the current requested memory address,
(2) Depth, which indicates how many times so far a thread
has contiguously accessed the current home location (i.e., the
Home field), and (3) Start PC, which keeps record of the PC
of the very first instruction among memory sequences that
accessed the home location that is stored in the Home field.
We separately define the depth threshold θ, which indicates

the depth at which we determine the instruction as migratory.
With a 64-bit PC, 64 cores (i.e., 6 bits to store the home
core ID) and a depth threshold of 8 (3 bits for the depth
field), it requires a total of 73 bits; even with a larger core
count and a larger threshold, fewer than 100 bits are sufficient
to maintain this data structure. When a thread migrates, this
data structure needs to be transferred together with its 3.1Kbit
context (cf. II-B), resulting in 3.2Kbits in total. In addition,
we add one bit to each instruction in the instruction cache (see
details in Section III-B) indicating whether the instruction has
been marked as a migratory instruction or not, a negligible
overhead.

The detection mechanism is as follows: when a thread T
executes a memory instruction for address A whose PC = P,
it must

1) compute the home core H for A (e.g., by consulting the
CAT or masking the appropriate bits);

2) if Home = H (i.e., memory access to the same home
core as that of the previous memory access),

a) if Depth < θ,
i) increment Depth by one, then if Depth = θ,

StartPC is marked as a migratory instruction.
3) if Home 6= H (i.e., a new sequence starts with a new

home core),
a) if Depth < θ,

i) StartPC is marked as a remote-access instruc-
tion2;

b) reset the entry (i.e., Home = H, PC = P, Depth =
1).

Figure 2 shows an example of the detection mechanism
when θ = 2. Suppose a thread executes a sequence of memory
instructions, I1 ∼ I8. Non-memory instuctions are ignored
because they do not change the entry content nor affect the
mechanism. The PC of each instruction from I1 to I8 is PC1,
PC2, ... PC8, respectively, and the home core for the memory
address that each instruction accesses is specified next to each
PC. When I1 is first executed, the entry {Home, Depth, Start
PC} will hold the value of {A, 1, PC1}. Then, when I2 is
executed, since the home core of I2 (B) is different from Home
which maintains the home core of the previous instruction
I1 (A), the entry is reset with the information of I2. Since
the Depth to core A has not reached the depth threshold,
PC1 is marked as a remote-access instruction (default). The
same thing happens for I3, setting PC2 as a remote-access
instruction. Now when I4 is executed, it accesses the same
home core C and thus only the Depth field needs to be updated
(incremented by one). After the Depth field is updated, it
needs to be checked to see if it has reached the threshold
θ. Since we assumed θ = 2, the depth to the home core
C now has reached the threshold and therefore, PC3 in the
Start PC field, which represents the first instruction (I3) that

2Since all instructions are initially considered as remote-accesses, marking
the instruction as a remote-access instruction will have no effect if it has not
been classified as a migratory instruction. If the instruction was migratory,
however, it reverts back to the remote-access mode.

accessed this home core C, is now classified as a migratory
instruction. For I5 and I6 which keep accessing the same
home core C, we need not update the entry because the first,
migration-triggering instruction has already been detected for
this sequence. Executing I7 resets the entry and starts a new
memory sequence for the home core A, and similarly, I7 is
detected as a migratory instruction when I8 is executed. Once
a specific instruction (or PC) is classified as a migratory
instruction and is again encountered, a thread will directly
migrate instead of sending a remote request and waiting for a
reply.

Memory Instruction Sequence

PCA 1

Start PCHome Depth

Memory Instruction Sequence
In : {PCn , Home core for In}

execute I1 : {PC1 , A} PC1A 1

PC2B 1

execute I2 : {PC2 , B}

1 { 1 }

PC2B 1

PC3C 1

execute I3 : {PC3 , C}

Set PC3 for
migration

PC3C 2

execute I4 : {PC4 , C}

migration

PC3C 2

execute I5 : {PC5 , C}

t I {PC C}

PC3C 2

execute I6 : {PC6 , C}

execute I7 : {PC7 A}

PC7A 1

execute I7 : {PC7 , A}

execute I8 : {PC8 , A}

PC7A 2
Set PC7 for
migration

8 { 8 }

Fig. 2. An example how instructions (or PC’s) which are followed by
consecutive accesses to the same home location, i.e., migratory instructions
are detected in the case of the depth threshold θ = 2. Setting θ = 2 means
that a thread will perform remote accesses for “one-off” accesses and will
migrate for multiple accesses (≥ 2) to the same home core.

Figure 3 shows how this migration predictor actually im-
proves data locality for the example sequence we used in
Figure 2. Suppose a thread originated at core A, and thus, it
runs on core A. Under a standard, remote-access-only NUCA
where the thread will never leave its native core A, the memory
sequence will incur five round-trip remote accesses; among
eight instructions from I1 to I8, only three of them (I1, I7
and I8) are accessing core A which result in core hits. With
our migration predictor, the first execution of the sequence
will be the same as the baseline NUCA, but from the second
execution, the thread will now migrate at I3 and I7. This
generates two migrations, but since I4, I5 and I6 now turn
into core hits (i.e., local accesses) at core C, it only performs
one remote access for I2. Overall, five out of eight instructions
turn into local accesses with effective thread migration.

B. Storing and Lookup of Migratory Instructions
Once a migratory instruction is detected, a mechanism to

store the detection is necessary because a thread needs to

Local Access Remote Access Thread Migration

3 times 2 times

A B
1 time

A B
1 time

A B A B

4 times 1 time
1 time

1 time

C C
3 times

Remote Access Only Remote Access + Thread MigrationRemote-Access Only Remote-Access + Thread Migration

Fig. 3. The number of remote accesses and migrations in the baseline NUCA
with and without thread migration.

migrate when it executes this instruction again during the
program. We add one-bit called the “migratory bit” for each
instruction in the instruction cache to store this information.
Initially, these bits are all zeros; all memory instructions are
handled by remote-accesses when the program first starts exe-
cution. When a particular instruction is detected as a migratory
instruction, this migration bit is set to 1. The bit is set to 0
if the instruction is marked as a remote-access instruction,
allowing migratory instructions to revert back to the remote-
access mode. In this manner, the lookup of the migratory
information for an instruction also becomes trivial because the
migratory bit can be read together with the instruction during
the instruction fetch phase with almost no overhead.

When the cache block containing a migratory instruction
gets evicted from the instruction cache, we can choose either to
store the information in memory, or to simply discard it. In the
latter case, it is true that we may lose the migratory bit for the
instruction and thus, a thread will choose to perform a remote
access for the first execution when the instruction is reloaded
in the cache from memory. We believe, however, that this
effect is negligible because miss rates for instruction caches are
extremely low and furthermore, frequently-used instructions
are rarely evicted from the on-chip cache. We assume the
migratory information is not lost in our experiments.

Another subtlety is that since the thread context transferred
during migration does not contain instruction cache entries,
the thread can potentially make different decisions depending
on which core it is currently running on, i.e., which instruction
cache it is accessing. We rarely observed prediction inaccu-
racies introduced by this, however. For multithreaded bench-
marks, all worker threads execute almost identical instructions
(although on different data), and when we actually checked
the detected migratory instructions for all threads, they were
almost identical; this effectively results in the same migration
decisions for any instruction cache. Therefore, a thread can
perform migration prediction based on the I-$ at the current
core it is running on without the overhead of having to send
the migratory information with its context. It is important to
note that even if a misprediction occurs due to either cache
eviction or thread migration (which is very rare), the memory

access will still be carried out correctly (albeit perhaps with
suboptimal performance), and the functional correctness of the
program is maintained.

IV. EVALUATION

A. Simulation Framework

We use Pin [2] and Graphite [22] to model the proposed
NUCA architecture that supports both remote-access and
thread migration. Pin enables runtime binary instrumentation
of parallel programs, including the SPLASH-2 [32] bench-
marks we use here; Graphite implements a tile-based multi-
core, memory subsystem, and network, modeling performance
and ensuring functional correctness. The default settings used
for the various system configuration parameters are summa-
rized in Table I.

Parameter Settings

Cores 64 in-order, 5-stage pipeline, single-issue
cores, 2-way fine-grain multithreading

L1/L2 cache per core 32/128KB, 2/4-way set associative
Electrical network 2D Mesh, XY routing, 3 cycles per hop,

128b flits
3.2 Kbits execution context size (cf. Sec-
tion III-A)

Context load/unload latency:
⌈

pkt size
flit size

⌉
=

26 cycles
Context pipeline insertion latency = 3
cycles

Data Placement FIRST-TOUCH, 4KB page size
Memory 30GB/s bandwidth, 75ns latency

TABLE I
SYSTEM CONFIGURATIONS USED

For data placement, we use the first-touch after initialization
policy which allocates the page to the core that first accesses it
after parallel processing has started. This allows private pages
to be mapped locally to the core that uses them, and avoids all
the pages being mapped to the same core where the main data
structure is initialized before the actual parallel region starts.

B. Application benchmarks

Our experiments used a set of Splash-2 [32] benchmarks:
fft, lu contiguous, lu non contiguous, ocean contiguous,
ocean non contiguous, radix, raytrace and water-n2, and two
in-house distributed hash table benchmarks: dht lp for linear
probing and dht sc for separate chaining. We also used a
modified set of Splash-2 benchmarks [27]: fft rep, lu rep,
ocean rep, radix rep, raytrace rep and water rep, where each
benchmark was profiled and manually modified so that the
frequently-accessed shared data are replicated permanently
(for read-only data) or temporarily (for read-write data)
among the relevant application threads. These benchmarks

Fig. 4. The fraction of memory accesses requiring accesses to another core
(i.e., core misses). The core miss rates decrease when thread migrations are
effectively used.

with careful replication3 allow us to explore the benefits of
thread migration on NUCA designs with more sophisticated
data placement and replication algorithms like R-NUCA [15].
Rather than settling on and implementing one of the many
automated schemes in the literature, we use modified Splash-
2 benchmarks which implement all beneficial replications, and
can serve as a reference placement/replication scheme.

Each application was run to completion using the recom-
mended input set for the number of cores used. For each
simulation run, we measured the average latency for memory
operations as a metric of the average performance of the
multicore system. We also tracked the number of memory
accesses being served by either remote accesses or thread
migrations.

C. Performance

We first compare the core miss rates for a NUCA system
without and with thread migration: the results are shown in
Figure 4. The depth threshold θ is set to 3 for our hybrid
NUCA, which basically aims to perform remote accesses for
memory sequences with one or two accesses and migrations
for those with ≥ 3 accesses to the same core. We show how
the results change with different values of θ in Section IV-D.
While 29% of total memory accesses result in core misses
for remote-access-only NUCA on average, NUCA with our
migration predictor results in a core miss rate of 18%, which
is a 38% improvement in data locality. This directly relates
to better performance for NUCA with thread migration as
shown in Figure 5. For our set of benchmarks, thread mi-
gration performance is no worse than the performance of the
baseline NUCA and is better by up to 2.3X, resulting in 18%
better performance on average (geometric mean) across all
benchmarks.

Figure 6 shows the fraction of core miss accesses handled by
remote accesses and thread migrations in our hybrid NUCA
scheme. Radix is a good example where a large fraction of
remote accesses are successfully replaced with a much smaller
number of migrations: it originally showed 43% remote access
rate under a remote-access-only NUCA (cf. Figure 4), but

3Our modifications were limited to rearranging and replicating the main
data structures to take full advantage of data locality for shared data. Our
modifications were strictly source-level, and did not alter the algorithm used.

Fig. 5. Average memory latency of our hybrid NUCA (remote-access +
thread migration) with θ = 3 normalized to the baseline remote-access-only
NUCA.

Fig. 6. The breakdown of core miss rates handled by remote accesses and
migrations

it decreases to 7.9% by introducing less than 0.01% of
migrations, resulting in 5.4X less core misses in total. Across
all benchmarks, the average migration rate is only 3% and
these small number of thread migrations results in a 38%
improvement in data locality (i.e., core miss rates) and an
18% improvement in overall performance.

D. Effects of the Depth Threshold

We change the value of the depth threshold θ = 2, 3
and 5 and explore how the fraction of core-miss accesses
being handled by remote-accesses and migrations changes. As
shown in Figure 7, the ratio of remote-accesses to migrations
increases with larger θ. The average performance improvement
over the remote-access-only NUCA is 13%, 18% and 15%
for the case of θ = 2, 3 and 5, respectively (cf. Figure 8).
The reason why θ = 2 performs worse than θ = 3 with almost
the same core miss rate is because of its higher migration
rate; due to the large thread context size, the cost of a single
thread migration is much higher than that of a single remote
access and needs, on average, a higher depth to achieve better
performance.

V. RELATED WORK

To provide faster access of large on-chip caches, the non-
uniform memory architecture (NUMA) paradigm has been
extended to single-die caches, resulting in a non-uniform
cache access (NUCA) architecture [18], [9]. Data replication
and migration, critical to the performance of NUCA designs,
were originally evaluated in the context of multiprocessor

Fig. 7. The fraction of remote-accesses and migrations for the standard
NUCA and hybrid NUCAs with the different depth thresholds (2, 3 and 5)
averaged across all the benchmarks.

Fig. 8. Average memory latency of hybrid NUCAs with the different depth
thresholds (2, 3 and 5) normalized to that of the standard NUCA averaged
across all the benchmarks.

NUMA architectures (e.g., [30]), but the differences in both
interconnect delays and memory latencies make the general
OS-level approaches studied inappropriate for today’s fast on-
chip interconnects.

NUCA architectures were applied to CMPs [3], [17] and
more recent research has explored data distribution and mi-
gration among on-chip NUCA caches with traditional and
hybrid cache coherence schemes to improve data locality. An
OS-assisted software approach is proposed in [11] to control
the data placement on distributed caches by mapping virtual
addresses to different cores at page granularity. When adding
affinity bits to TLB, pages can be remapped at runtime [15],
[11]. The CoG [1] page coloring scheme moves pages to
the “center of gravity” to improve data placement. The O2

scheduler [6], an OS-level scheme for memory allocation
and thread scheduling, improves memory performance in
distributed-memory multicores by keeping threads and the
data they use on the same core. Zhang proposed replicating
recently used cache lines [33] which requires a directory
to keep track of sharers. Reactive NUCA (R-NUCA) [15]
obviates the need for a directory mechanism for the on-chip
last-level cache by only replicating read-only data based on
the premise that shared read-write data do not benefit from
replication. Other schemes add hardware support for page
migration support [8], [28]. Although manual optimizations of
programs that take advantage of the programmer’s application-
level knowledge can replicate not only read-only data but
also read-write shared data during periods when it is not
being written [27], only read-only pages are candidates for
replication for a NUCA substrate in general automated data

placement schemes. Instead of how to allocate data to cores,
our work focuses on how to access the remote data that is not
mapped to the local core, especially when replication is not
an option. While prior NUCA designs rely on remote accesses
with two-message round trips, we consider choosing between
remote accesses and thread migrations based on our migration
predictor to more fully exploit data locality.

Migrating computation to the locus of the data is not itself
a novel idea. Hector Garcia-Molina in 1984 introduced the
idea of moving processing to data in memory bound archi-
tectures [14]. In recent years migrating execution context has
re-emerged in the context of single-chip multicores. Michaud
shows the benefits of using execution migration to improve the
overall on-chip cache capacity and utilizes this for migrating
selective sequential programs to improve performance [21].
Computation spreading [7] splits thread code into segments
and assigns cores responsible for different segments, and
execution is migrated to improve code locality. A compile-time
program transformation based migration scheme is proposed
in [16] that attempts to improve remote data access. Migration
is used to move part of the current thread to the processor
where the data resides, thus making the thread portion lo-
cal. In the design-for-power domain, rapid thread migration
among cores in different voltage/frequency domains has been
proposed to allow less demanding computation phases to
execute on slower cores to improve overall power/performance
ratios [24]. In the area of reliability, migrating threads among
cores has allowed salvaging of cores which cannot execute
some instructions because of manufacturing faults [23]. Thread
migration has also been used to provide memory coherence
among per-core caches [19], [20] using a deadlock-free fine-
grained thread migration protocol [10]. We adopt the thread
migration protocol of [10] for our hybrid memory access
framework that supports both remote accesses and thread
migrations. Although the hybrid architecture is introduced
in [19], [20], they do not answer the question of how to
effectively decide/predict which mechanism to follow for each
memory access considering the tradeoffs between the two.
This paper proposes a novel, PC-based migration predictor
that makes these decisions at runtime, and improves overall
performance.

VI. CONCLUSIONS AND FUTURE WORK

In this manuscript, we have presented an on-line, PC-based
thread migration predictor for memory access in distributed
shared caches. Our results show that migrating threads for
sequences of multiple accesses to the same core can improve
data locality in NUCA architectures, and with our predictor,
it can result in better overall performance compared to the
traditional NUCA designs which only rely on remote-accesses.

Our future research directions include improving the mi-
gration predictor to better capture the dynamically changing
behavior during program execution and to consider other
factors than access sequence depths, such as distances or
energy consumption. Furthermore, we will also explore how
to reduce single-thread migration costs (i.e., the thread context

size being transferred) by expanding the functionality of the
migration predictor to predict and send only the useful part of
the context in each migration.

REFERENCES

[1] M. Awasthi, K. Sudan, R. Balasubramonian, and J. Carter. Dynamic
hardware-assisted software-controlled page placement to manage capac-
ity allocation and sharing within large caches. In HPCA, 2009.

[2] Moshe (Maury) Bach, Mark Charney, Robert Cohn, Elena Demikhovsky,
Tevi Devor, Kim Hazelwood, Aamer Jaleel, Chi-Keung Luk, Gail Lyons,
Harish Patil, and Ady Tal. Analyzing parallel programs with pin.
Computer, 43:34–41, 2010.

[3] M. M. Beckmann and D. A. Wood. Managing wire delay in large chip-
multiprocessor caches. In MICRO, 2004.

[4] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung,
J. MacKay, M. Reif, Liewei Bao, J. Brown, M. Mattina, Chyi-Chang
Miao, C. Ramey, D. Wentzlaff, W. Anderson, E. Berger, N. Fairbanks,
D. Khan, F. Montenegro, J. Stickney, and J. Zook. TILE64 - processor:
A 64-Core SoC with mesh interconnect. In Proceedings of the IEEE
International Solid-State Circuits Conference, pages 88–598, 2008.

[5] Shekhar Borkar. Thousand core chips: a technology perspective. In
Proceedings of DAC, pages 746–749, 2007.

[6] Silas Boyd-Wickizer, Robert Morris, and M. Frans Kaashoek. Reinvent-
ing scheduling for multicore systems. In HotOS, 2009.

[7] Koushik Chakraborty, Philip M. Wells, and Gurindar S. Sohi. Computa-
tion spreading: employing hardware migration to specialize CMP cores
on-the-fly. In ASPLOS, 2006.

[8] M. Chaudhuri. PageNUCA: Selected policies for page-grain locality
management in large shared chip-multiprocessor caches. In HPCA,
2009.

[9] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Distance associativ-
ity for high-performance energy-efficient non-uniform cache architec-
tures. In Microarchitecture, 2003. MICRO-36. Proceedings. 36th Annual
IEEE/ACM International Symposium on, 2003.

[10] Myong Hyon Cho, Keun Sup Shim, Mieszko Lis, Omer Khan, and
Srinivas Devadas. Deadlock-free fine-grained thread migration. In
Proceedings of NOCS 2011, pages 33–40, 2011.

[11] Sangyeun Cho and Lei Jin. Managing Distributed, Shared L2 Caches
through OS-Level Page Allocation. In MICRO, 2006.

[12] David Wentzlaff et al. On-Chip Interconnection Architecture of the Tile
Processor. IEEE Micro, 27(5):15–31, Sept/Oct 2007.

[13] International Technology Roadmap for Semiconductors. Assembly and
Packaging, 2007.

[14] H. Garcia-Molina, R.J. Lipton, and J. Valdes. A Massive Memory
Machine. IEEE Trans. Comput., C-33:391–399, 1984.

[15] Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia Ail-
amaki. Reactive NUCA: near-optimal block placement and replication
in distributed caches. In ISCA, 2009.

[16] Wilson C. Hsieh, Paul Wang, and William E. Weihl. Computation
migration: enhancing locality for distributed-memory parallel systems.
In PPOPP, 1993.

[17] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler. A
NUCA substrate for flexible CMP cache sharing. In ICS, 2005.

[18] Changkyu Kim, Doug Burger, and Stephen W. Keckler. An Adaptive,
Non-Uniform Cache Structure for Wire-Delay Dominated On-Chip
Caches. In ASPLOS, 2002.

[19] Mieszko Lis, Keun Sup Shim, Myong Hyon Cho, Christopher W.
Fletcher, Michel Kinsy, Ilia Lebedev, Omer Khan, and Srinivas Devadas.
Brief announcement: Distributed shared memory based on computation
migration. In Proceedings of SPAA 2011, pages 253–256, 2011.

[20] Mieszko Lis, Keun Sup Shim, Myong Hyon Cho, Omer Khan, and Srini-
vas Devadas. Directoryless shared memory coherence using execution
migration. In Proceedings of the IASTED International Conference on
Parallel and Distributed Computing, 2011.

[21] P. Michaud. Exploiting the cache capacity of a single-chip multi-core
processor with execution migration. In HPCA, 2004.

[22] Jason E. Miller, Harshad Kasture, George Kurian, Charles Gruenwald,
Nathan Beckmann, Christopher Celio, Jonathan Eastep, and Anant
Agarwal. Graphite: A distributed parallel simulator for multicores. In
Proceedings of HPCA 2010, pages 1–12, 2010.

[23] Michael D. Powell, Arijit Biswas, Shantanu Gupta, and Shubhendu S.
Mukherjee. Architectural core salvaging in a multi-core processor for
hard-error tolerance. In Proceedings of ISCA 2009, pages 93–104, 2009.

[24] Krishna K. Rangan, Gu-Yeon Wei, and David Brooks. Thread motion:
Fine-grained power management for multi-core systems. In Proceedings
of ISCA 2009, pages 302–313, 2009.

[25] S. Rusu, S. Tam, H. Muljono, D. Ayers, J. Chang, R. Varada, M. Ratta,
and S. Vora. A 45nm 8-core enterprise Xeon R© processor. In Proceed-
ings of the IEEE Asian Solid-State Circuits Conference, pages 9–12,
2009.

[26] K. Sankaralingam, R. Nagarajan, H. Liu, J. Huh, C. K. Kim, D. Burger,
S. W. Keckler, and C. R. Moore. Exploiting ILP, TLP, and DLP using
polymorphism in the TRIPS architecture. In International Symposium
on Computer Architecture (ISCA), pages 422–433, June 2003.

[27] Keun Sup Shim, Mieszko Lis, Myong Hyo Cho, Omer Khan, and
Srinivas Devadas. System-level Optimizations for Memory Access in
the Execution Migration Machine (EM2). In CAOS, 2011.

[28] Kshitij Sudan, Niladrish Chatterjee, David Nellans, Manu Awasthi,
Rajeev Balasubramonian, and Al Davis. Micro-pages: increasing DRAM
efficiency with locality-aware data placement. SIGARCH Comput.
Archit. News, 38:219–230, 2010.

[29] S. R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Fi-
nan, A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts, Y. Hoskote,
N. Borkar, and S. Borkar. An 80-Tile Sub-100-W TeraFLOPS Processor
in 65-nm CMOS. IEEE J. Solid-State Circuits, 43:29–41, 2008.

[30] Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosenblum.
Operating system support for improving data locality on CC-NUMA
compute servers. SIGPLAN Not., 31:279–289, 1996.

[31] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim,
M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal.
Baring it all to Software: Raw Machines. In IEEE Computer, pages 86–
93, September 1997.

[32] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-
2 programs: characterization and methodological considerations. In
Proceedings of the 22nd Annual International Symposium on Computer
Architecture, pages 24–36, 1995.

[33] M. Zhang and K. Asanović. Victim replication: Maximizing capacity
while hiding wire delay in tiled chip multiprocessors. In ISCA, 2005.

