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ABSTRACT
We address the problem of using an untrusted server with only a
trusted timestamping device (TTD) to provide trusted storage for a
large number of clients, where each client may own and use sev-
eral different devices that may be offline at different times and
may not be able to communicate with each other except through
the untrusted server (over an untrusted network). We show how a
TTD can be implemented using currently available Trusted Plat-
form Module TPM 1.2 technology without having to assume trust
in the BIOS, CPU, or OS of the TPM’s server. We show how
the TTD can be used to implement tamper-evident storage where
clients are guaranteed toimmediatelydetect illegitimate modifi-
cations to their data (including replay attacks and forking attacks)
whenever they wish to perform a critical operation that relies on the
freshness and validity of the data. In particular, we introduce and
analyze a log-based scheme in which the TTD is used to securely
implement a large number ofvirtual monotonic counters, which
can then be used to time-stamp data and provide tamper-evident
storage. We present performance results of an actual implementa-
tion using PlanetLab and a PC with a TPM 1.2 chip.

Categories and Subject Descriptors:
C.3 [Special-Purpose and Application-based Systems]: Smartcards
D.4.3 [File Systems Management]: Distributed File Systems

General Terms: Security

Keywords: virtual monotonic counters, untrusted storage, fresh-
ness, validity, replay attack, forking attack, integrity checking, TPM

1. INTRODUCTION
We address the problem of using an untrusted server with only a

trusted timestamping device (TTD) to provide trusted storage for a
large number of directories, where the files in each directory may
be accessed and updated by several different devices that may be
offline at different times and may not be able to communicate with
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each other except through the untrusted server (over an untrusted
network). This functionality is highly relevant today as computing
becomes increasingly mobile and pervasive. More and more users
today, for example, regularly use several independent computing
devices – such as a desktop at home, a laptop while traveling, a
mobile phone, and another desktop at work – each of which may
be offline or disconnected from the other devices at different times.

1.1 Problem Statement
Any trusted storage system using untrusted servers needs to ad-

dress at least three security issues: privacy (i.e., a client’s data must
not be understandable by an adversary), authenticity (i.e., a client
must be able to verify that the client’s data originated from the
client), andfreshness(i.e., a client must be able to verify that the
storage system is returning the most recent version of the client’s
data). Of these, freshness is the most challenging problem.

The privacy of a client’s data can easily be achieved through
encryption, while its authenticity can be accomplished by using
digital signatures or message authentication codes (MACs). Nei-
ther of these techniques, however, can guarantee freshness. This
is because even if the client encrypts the data and uses a signature
or MAC, this does not prevent an adversary who can access and
manipulate the memory, disk space, or software of the untrusted
server, or who can intercept and manipulate messages transmitted
over the untrusted network, from performing areplay attack. That
is, in response to a read request, the adversary can replace the most
recent signed and encrypted version of the desired data with an
older but likewise signed and encrypted version. The client can
verify the signature on the data it receives, but cannot tell that it is
not the most recent version available.

1.2 Existing Solutions
The traditional defense against replay attacks is to use times-

tamping [3, 9]. This technique assumes that the client is somehow
able to maintain a trusted dedicated counter whose current (most
recent) value is available to all the client’s devices whenever they
need it. Figure 1(a) shows one way to implement time-stamping
assuming such a counter. Here, a client, Alice, first creates her own
unique private-public key pair(SKA, PKA), and stores it in each
of her many devices. Then, whenever one of her devices wishes to
write or update her data, the device first increments the dedicated
counter and then stores, in the storage server, a file record contain-
ing the updated data together with a timestamp, which consists of
the dedicated counter’s ID, value, and a signature (using Alice’s
private key,SKA) of the hash of the client’s data, and the counter’s
ID and value, that is,

SignSKA
(H(dataA)‖ctrIDA‖ctrValA).



When a device wishes to retrieve the data from the storage server,
the storage server returns the file record with the timestamp, and the
client device then verifies the corresponding signature and checks
whether the signed counter value in the timestamp corresponds to
the current counter value. If the values do not match, then the client
device knows that the storage server has given it an older version
of the file record – i.e., that the server is attempting a replay attack.

The dedicated counter required by this traditional approach can
be maintained if one of the clients is known and guaranteed to be
online all the time, or if at each moment at least a majority of the
client’s devices are online and reachable by any client device who
needs access to the counter value. However, in the general case
where the client’s different devices may beoffline at any possible
time, it is impossible for the client’s devices to reliably and securely
maintain and agree on the current value of the dedicated counter.

Note in particular that other general-purpose, multi-user network
file systems that use untrusted storage servers have been proposed,
such as SUNDR [14, 11] and Plutus [10]. These provide privacy
and authenticity, but can only provide limited guarantees for fresh-
ness because they do not utilize any trusted third parties. SUNDR,
for example, offers protection againstforking attacks, a form of
attack where a server uses a replay attack to give different users
a different view of the current state of the system. However, it
does not immediately detect forking attacks. Instead, it offersfork
consistency, which essentially ensures that the system server either
behaves correctly, or that its failure or malicious behavior will be
detected at a later moment when users are able to communicate
with each other (for example, once a day during night time).

1.3 Our Solution
If we want to immediatelydetect forking attacks and replay at-

tacks whenever a critical operation needs to be performed, then one
solution is to use a trusted third party that is always online, and that
can be trusted to correctly maintain the clients’ dedicated counters.
However, if we do not want to, or cannot, assume any trusted third
parties, then this solution is not possible.

A solution is possible, however, if we assume an untrusted third
party with a trusted module, such as a TPM. We present such a so-
lution in this paper. As shown in Fig. 1(b), our scheme implements
a virtual counter manager (VCM)using a small trusted comput-
ing base (TCB) in the form of a singletrusted timestamping device
(TTD) installed in an online untrusted third party machine. Using
a log-basedscheme that keeps track of the increment operations of
this single TTD, we can securely implement an unlimited number
of dedicatedvirtual monotonic counters, which can each in turn
be used by multiple clients to allow forking and replay attacks on
their data to be immediately detected.1

Note that although more efficient solutions are possible by as-
suming more complex trusted hardware, our minimal scheme is
significant because it allows implementation using a wider class
of trusted hardware components, including components which are
already in many existing machines available to the general public.
Specifically, our scheme is implementable using the current version
of the Trusted Platform Module (TPM 1.2) [25], an inexpensive se-
cure coprocessor that is currently becoming a standard component
in new commodity PCs and laptops today (and potentially mobile
devices in the future as well [23]). Moreover, its security depends
solely on the TPM itself, and remains secure even if the BIOS,
CPU, OS, and administrators of the third party server that contains

1In earlier work [19], we presented a simpler version of our log-
based scheme. In this paper, we extend this scheme, develop a fully
functional virtual counter manager around it, and present results on
experiments involving hundreds of clients.

the TPM are compromised or malicious, or contain security bugs.
This means that unlike other schemes that use the TPM to imple-
ment virtual monotonic counters [16, 24], our schemes are imple-
mentable today, using existing machines and existing off-the-shelf
operating systems. Additionally, our scheme can also be imple-
mented using smartcards and other secure devices that can imple-
ment the simple functionality of a TTD.

1.4 Outline
Our paper is arranged as follows: We begin in Sect. 2 by present-

ing our model of a trusted timestamping device, and then giving an
overview of our log-based scheme for using such a device to im-
plement a VCM. In Sect. 3, we present our solution in detail, de-
scribing the different protocols for reading and incrementing virtual
monotonic counters. We then present our proof-of-concept imple-
mentation of these protocols using PlanetLab and a VCM imple-
mented by using a PC with a TPM 1.2 chip in Sect. 4, and present a
summary of some experimental results which show that acceptable
performance can be achieved with such minimal trusted hardware.
In Sect. 5, we discuss and address the issues of efficiency, reliabil-
ity, replication, and physical security. We discuss related work in
Sect. 6, and conclude in Sect. 7.

2. SOLUTION OVERVIEW

2.1 Trusted Timestamping Device (TTD)
Abstractly, a trusted timestamping device (TTD) is a device with

the following key properties:

• It has an arithmetic monotonic counter, which is a variablet

whose value can be made to go up (by 1) using “increment”
operations, but which cannot be made to revert to an older
value — even by the owner of the timestamping device.

• It has a unique private signing key (SK), which can be used
in special timestamping operations to produce unforgeable
signatures that can only be produced using the device itself
(and which cannot be used to sign arbitrary data). This pri-
vate signing key has a corresponding unique public verifica-
tion key (PK), which is certified by a trusted certificate au-
thority (using a traditional certificate), and which can be used
by any third party to verify the signatures produced with the
signing key.

• It supports the following timestamping operations:

ReadSign(rec), which outputs aread certificateof the
form
(X = (“Read”, t, rec), Sign(X)), and

IncSign(rec), which atomically incrementst, and outputs
an increment certificateof the form
(X = (“Inc” , tnew, rec), Sign(X)),

whererec is a record containing arbitrary data, andSign(...)
indicates an unforgeable and verifiable signature produced
by the device using its unique signing key.

• It is secure — i.e., there must not be any commands or at-
tacks that would allow an adversary (even one that owns
and can give arbitrary commands to the device) to success-
fully rewind the value oft, or produce validReadSign and
IncSign outputs without actually invoking theReadSign
andIncSign commands themselves.



Device A1 Device A2 Device A3

(SK
A
,PK

A
) (SK

A
,PK

A
) (SK

A
,PK

A
) (SK

B
,PK

B
) (SK

B
,PK

B
)

Device B1 Device B2

Alice: … dataA … ctrIDA ctrValA SignSKA(…)

Bob: … dataB … ctrIDB ctrValB SignSKB(…)

Charlie: … dataC … ctrIDC ctrValC SignSKC(…)…

timestamp

CounterA

maintained by 

Alice’s trusted 

device(s)

CounterA

maintained by 

Alice’s trusted 

device(s)

Device A1 Device A2 Device A3

(SK
A
,PK

A
) (SK

A
,PK

A
) (SK

A
,PK

A
)

Storage Server(s)Storage Server(s)

monotonic

counter

AIK
(SK

AIK
,PK

AIK
)

CounterA: ctrValA

CounterB: ctrValB…

…
…

Logs

CounterB

maintained by Bob’s 

trusted device(s)

CounterB

maintained by Bob’s 

trusted device(s)

(a) (b)

confirmA

confirmB

…

PK
AIK

Figure 1: Trusted Storage on Untrusted Servers with Timestamping. (a) Traditional approach: assume a dedicated counter main-
tained by the client’s devices (requires online communication between the client’s devices). (b) Our approach: use an untrusted
virtual counter manager with a trusted TPM chip (no trusted BIOS, OS, or CPU required). Note: the virtual counter manager and
the storage server may or may not be the same machine.

2.2 Log-Based Scheme Overview
In order to implement an arbitrary number of dedicated virtual

monotonic counters using only a single TTD, we first define the
value of a specific virtual counter as the value of the TTD’s (global)
countert at the last time the virtual counter’s increment protocol
was successfully invoked. Note that this somewhat unorthodox
definition results innon-deterministic monotonic virtual counters.
That is, the value of a particular virtual counterC is guaranteed to
always increase, but can increase by unpredictable amounts, since
operations on other virtual counters can cause the global counter
to increment in between increment requests forC. This is not a
problem, however, since for detecting forking and replay attacks as
described in Sect. 1, a client needs only to be able to check that the
value of the virtual counter for a file has not changed since the file
record was timestamped.

Defining our virtual monotonic counters in this way allows us to
implement a secure virtual counter manager (VCM) by using the
TTD to timestamp the increment requests submitted by a client for
each virtual counter, and keeping a log of such timestamps (i.e.,
increment certificates). Given such a scheme, a client can then read
and check the freshness of a virtual counterC ’s value by asking the
virtual counter manager to present alog of increment certificates
produced by the TTD since the most recent increment request for
C, and checking that there were indeed no other increment requests
for C since the supposedly most recent request. Note that even if
the VCM machine is running malicious software or using malicious
hardware, it cannot fool the client into accepting an older value for
a virtual counter since doing so would require forging increment
certificates, which is infeasible if the TTD itself is secure.

2.3 Protocols Overview
Our solution provides four protocols: slower read and increment

protocols which return proofs of validity (described below), as well
as faster read and increment protocols which do not return proofs
of validity. A client can use the slower protocols whenever it needs
to perform a critical operation that depends onimmediately verify-
ing the freshness of the counter. If the client is performing a non-
critical operation (i.e., one which can be reversed, aborted, and/or
retried before a critical operation at a later time), then it can use the
faster protocols instead.

These protocols are initiated by a client, and assume that each
client has his own unique public-private key pair stored in each
of his devices. The client’s devices use the client’s private key to
sign increment requests, create timestamps, and createconfirma-
tion certificates. Confirmation certificates are produced and given
to the virtual counter manager whenever a client’s device succes-
fully performs a read or increment with validation. It provides a
trustworthy proof (trusted by the client’s devices) of the valid value
of the client’s virtual counter at the time of the certificate’s creation.

On the manager’s side, the virtual counter manager has a TTD,
and software which keeps track of:

1. an array of themost recentconfirmation certificates for each
virtual counter and

2. an array of each of the increment certificates which were gen-
erated since the generation of theoldestamongst the most
recent confirmation certificates.

Using these, together with the TTD operations described earlier, the
virtual counter manager implements four protocols for operating on
individual virtual counters:



1. Increment-without-validation (Fast-Increment), in which a
client’s device requests to increment one of the client’s vir-
tual counters and which results in an increment certificate,

2. Read-without-validation (Fast-Read), in which the VCM re-
turns the current value of a virtual counter,

3. Read-with-validation (Full-Read), in which not only the cur-
rent value of a virtual counter but also a proof of the validity
of this virtual counter is returned, and

4. Increment-with-validation (Full-Increment), which is the
increment-without-validation and read-with-validation pro-
tocols combined into a single protocol.

The read and increment protocols with validation produce ava-
lidity proof , which is composed of:

1. the most recent confirmation certificate of the corresponding
virtual counter, together with

2. a list (or log) of each of the increment certificates which were
generated since the creation of this most recent confirmation
certificate and

3. a new read or increment certificate.

As detailed in Sect. 3.3 and Fig. 5, a validity proof enables a
client to determine thevalidity of the output of the read or incre-
ment protocol, and to detect any malicious or erroneous behavior
by the VCM in the past. That is, for each of the past increments
by any of a client’s devices, the client can check whether the in-
crement was based on a retrieved counter value (received from the
virtual counter manager during one of its protocols) that is equal
to the current counter value just prior to the increment. (See [6]
for a similar definition of valid storage). This check is made pos-
sible by having an increment certificate also certify the value on
which the corresponding increment is based. This check is neces-
sary for critical operations, since such operations rely on whether
past increments were based on retrieved counters that were fresh
and valid.

3. SOLUTION DETAILS
The description in Sect. 2 describes the general intuition behind

our ideas. In this section, we present the actual protocols in more
detail and we explain practical extensions to the protocols.

3.1 Increment-without-Validation
Figure 3 summarizes the increment-without-validation protocol

in which Alice wants to increment a virtual monotonic counter of
her choice without verifying whether the increment is valid but with
the knowledge that she is able to check its validity by contacting
the VCM at any given moment in the future by using the read-
with-validation protocol. In case Alice wishes to perform a criti-
cal operation that depends on the virtual monotonic counter, then
the increment-with-validation protocol of Sect. 3.4 can be used to
immediately verify validity and freshness such that any form of re-
play attacks areimmediately detected. The relationships between
the different data values in the increment protocols are depicted in
Fig. 2(a).

Suppose that Alice retrieves data from the untrusted storage server
together with a corresponding timestamp which is based on a vir-
tual monotonic counter with identityctrID, valuectrVal (at the

RandomNonce,
ctrID, ctrVal, …

Increment
Request

SignctrSK

IncSignVCM for

counter globClk

Increment
certificate ReadSignVCM for

counter globClk

RandomNonce, ctrID

Read certificate
for TTD’s current 
global clock value

(a) (b)

globClk, 

ctrID, ctrVal, …

Confirmation
certificate SignctrSK

Figure 2: Relationships between the data values used in (a) the
increment-without-validation protocol and (b) the read-with-
validation protocol. Arrows represent containment (i.e., the
lower data structures are contained in the upper ones). Ovals
represent operations on the data in the rectangles, which pro-
duce a tuple containing the data and a signature.

moment of timestamping), and public and secret key pair(ctrPK,

ctrSK);

timestamp = (stamp‖SignctrSK(stamp)), where

stamp = (Hash(data)‖ctrID‖ctrVal).

We assume that Alice knows the counter’s secret key, which give
her the authority to modify and update the timestamped data.

In order to create a new timestamp with which Alice can sign
an updated version of the retrieved data, Alice needs to increment
the virtual counter with identityctrID. Alice selects a random
anti-replay nonceantiReplay and concatenates the anti-replay
nonce,ctrID, and the current valuectrVal of this counter ac-
cording to Alice’s knowledge (from the retrieved timestamp). Alice
computes theincrement requestIncReq as shown in step 1 of the
protocol.

By verifying the signature inIncReq the VCM checks the au-
thenticity of Alice’s request. (This signature is also used in the
read-with-validation protocol in order to prove to another autho-
rized device or user Bob that the increment certificate forctrID
originated from an authentic request and not a fake increment.) Be-
sides verifying the nonce’s signature, the VCM checks whether the
current counter’s value is equal toctrVal. If not, then the VCM
should notify Alice about her out-of-date knowledge. IfctrVal
does match the current counter value, then the VCM uses the TTD
to compute the increment certificateIncCert of step 2. Notice
that Alice’s prior knowledge of the current counter valuectrVal
is signed by the increment certificate. For this reason, as we will see
in Sect. 3.3, the validity ofctrID can be verified in the read-with-
validation protocol even in the presence of a malicious VCM (who
may purposely not notify Alice about out-of-date knowledge), as
long as the VCM has a trusted TTD .

By using the PK of the VCM’s TTD, Alice verifies the incre-
ment certificate. Since the anti-replay nonce inIncReq is chosen
at random, replay attacks of previously generated increment certifi-
cates (by, for example, a malicious VCM or a man-in-the-middle)
will be detected by Alice. We do not protect against denial of ser-
vice; if the increment certificate does not arrive within a certain
time interval, then the client’s device should retransmit its request
with the same nonce. As soon as an increment certificate is veri-



Alice: Virtual Counter Manager (VCM):

conc = (antiReplay‖ctrID‖ctrVal),
IncReq = (conc‖SignctrSK(conc))

(1) IncReq
−−−−−−−−−−−−−−−−−−−−−−−−−→ Verify IncReq,

IncCert = IncSignVCM(IncReq)

Verify IncCert,
(2) IncCert

←−−−−−−−−−−−−−−−−−−−−−−−−−
ExtractglobClk
(the new counter value to be used as timestamp)

Figure 3: Increment-without-Validation protocol. Notice that IncCert contains the current global clock counterglobClk of the
TTD. This value will be the new counter value of the virtual counter with ID ctrID.

Bob: Virtual Counter Manager (VCM):

ReadReq = (antiReplay‖ctrID)
(1) ReadReq

−−−−−−−−−−−−−−−−−−−−−−−−−→ ReadCert = ReadSignVCM(ReadReq),
constructValProof as the
concatenation of a confirmation certificate,
log of increment certificates, andReadCertVerify ValProof,

(2) ValProof
←−−−−−−−−−−−−−−−−−−−−−−−−−

conc = (ctrID‖ctrVal‖globClk),
confCer = (conc‖SignctrSK(conc))

(3) confCer
−−−−−−−−−−−−−−−−−−−−−−−−−→ Verify and storeconfCer

Figure 4: Read-with-Validation protocol.

fied, we say the increment has beensuccessfuland Alice may use
the new counter value to timestamp data. The new counter value of
ctrID is the global clock valueglobClk that the TTD used to
create the increment certificate. As noted in Sect. 2, the signature of
the increment certificate serves to unforgeably link the certificate to
VCM’s particular TTD, and a particular point in time on that TTD.
(Note, however, that verifying the increment certificate is not the
same as verifying thevalidity of the increment, which is explained
in Sect. 3.3.)

3.2 Read-without-Validation
In the read-without-validation protocol, a client’s device asks for

the most recent value of a specific virtual counter. The VCM simply
signs and returns the most recent counter value without making use
of the TTD.

3.3 Read-with-Validation
Figures 4 and 5 depict and explain the read-with-validation pro-

tocol, which includes transmitting a validity proof. The relation-
ships between the different data values are depicted in Fig. 2(b).

Suppose that Bob wishes to verify the freshness of a timestamp
that corresponds to data from an untrusted storage server and which
is based on a virtual counter with identityctrID=D. In order to
read and obtain a validity proof of the valuectrVal of D, Bob
initiates the read-with-validation protocol with the VCM. Bob se-
lects a random anti-replay nonceantiReplay and computes the
read requestreadReq as shown in step 1 of the protocol in Fig. 4.

In step 2, the VCM constructs a validity proof as shown in Fig. 5.
Bob verifies the confirmation certificate by using the counter’s pub-
lic key ctrPK. This tells him that, when TTD’s global clock value
was equal toT , the virtual counter had the valuet0. By using the
public key of the VCM’s TTD, Bob verifies the log of increment
certificates together with the read certificate. The read certificate
records the TTD’s current global clock counter valuetnow. Bob
then checks that no increment certificate betweent0 and tnow is
missing. Afterwards, he extracts those increment certificates that
signed a request withctrID=D. He usesctrPK to verify the au-
thenticity of these requests. Finally, as depicted in Figure 5, Bob
verifies whether each of the extracted increment certificates records
the previous counter value. The most recent extracted increment

certificate contains the current counter valuectrVal = tn which
is signed by the confirmation certificate in step 3.

3.4 Increment-with-Validation
The increment-with-validation protocol first executes the incre-

ment-without-validation protocol. Then, the resulting increment
certificate, which already has a signature over the value of the cur-
rent global clock value as the incremented virtual counter value, is
used in place of the read certificate in the read-with-validation pro-
tocol to produce a validity proof that proves the new value of the
counter as well as the fact that the previous value of the counter was
valid before the increment (and thus that the new value is valid).

3.5 Improvements
Here, we explain two techniques that can be used to improve the

performance of the log-based scheme.

Sharing. One performance bottleneck is the fact that read and in-
crement operations typically take a few seconds to execute on ex-
isting TPM 1.2 chips. Thus, as we will show in Sect. 4, if we only
allow one virtual counter to be incremented for each increment of
the global counter, then a single TPM can only handle a few vir-
tual counters before the overall performance becomes unacceptably
slow.

A solution to this problem is to allow multiple increment pro-
tocols of independent virtual counters to be executed at the same
time, sharing a single TTD primitive. The general idea here is to
collect the individualIncReq’s for each virtual counter to con-
struct a single shared request (e.g. by using an authenticated search
tree [5, 4]) which can then be used as an input to a single shared
IncSign primitive. This increments all the corresponding virtual
counter values to the same global clock value. Note that the same
idea can also be used to share theReadSign primitive.

Time-Multiplexing. The log-based scheme has another significant
drawback: if a virtual counterv is not incremented while other
counters are incremented many times, then the validity proof for
v would need to include the log of all increments of all counters
(not justv) since the last increment ofv. The length of this log can
easily grow very large.
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Figure 5: Validity proof for D containing a confirmation cer-
tificate, a log of each of the increment certificates which were
generated since the creation of this confirmation certificate,
and a read certificate (ReadCert in Fig. 4) with TTD’s current
global clock counter. After receiving the validity proof, Bob
checks the signatures on all the increment certificates, extracts
the certificates with increments for D, and verifies that each
increment was done with the correct knowledge of the previ-
ous value of the virtual counter. If this validation succeeds, the
client produces a new confirmation certificate.

A solution to this problem is to time-multiplex the global clock.
That is, instead of allowing increments at each possible global clock
value for each client, each client associates with each of his virtual
counters a fixed schedule of global clock values that are allowed to
be virtual counter values. The main advantage of time-multiplexing
is that the log of increment certificates in a validity proof of a vir-
tual counter can be reduced to those for which the corresponding
verification algorithm retrieves a value which is allowed according
to the schedule of the virtual counter. The disadvantage of time-
multiplexing is a possible increase in the latency between the re-
quest and finish of an increment or read protocol. In an extended
report [27], we introduce the idea of anadaptive schedulethat
allows the virtual counter’s schedule to change (now increment-
without-validation is not allowed, and increment and confirmation
certificates should include the current version of the schedule at the
time of their generation).

4. IMPLEMENTATION AND RESULTS
As a proof-of-concept, we have implemented our protocols and

tested them using PlanetLab and a PC with a TPM 1.2 chip.

4.1 TPM 1.2 Implementation of TTD
We implemented the TTD described in Sect. 2 by: (1) using the

TPM’s built-in monotonic counter as the arithmetic monotonic
counter, (2) using anattestation identity key (AIK)as the unique
private signing key, and (3) implementing theReadSign(rec)
andIncSign(rec) operations by using the TPM’sTPM Read-
Counter andTPM Increment Counter command (respec-

tively) inside anexclusive and logged transport session, using the
AIK as the signing key, and the hash ofrec as the input nonce.
We used TPM/J [18], a cross-platform Java-based API for the TPM
which provides support for using transport sessions and monotonic
counters on TPM 1.2 chips. On the STMicro TPM 1.2 chip that we
used, we found that aReadSign(rec) or IncSign(rec) opera-
tion costs about 1.3 seconds total, and that the TPM throttles the
monotonic counter increment operations such that we could only
execute at most oneIncSign every 2.15 seconds.

4.2 PlanetLab Simulation of VCM
To develop an intuition for the practical limits of a trusted stor-

age application built around a TPM, we implemented a VCM on
a PC with TPM 1.2 chip. We used the PlanetLab network [22] to
simulate increment and read requests for different numbers of vir-
tual monotonic counters. From this network, 150 machines were
selected to act as simulation nodes. Each virtual counter was as-
signed to a single simulation node, and we evenly distributed the
different counters across the simulation nodes. All communica-
tions were done using Java RMI.

Each simulation node performed the read-with-validation and
increment-without-validation protocols with the VCM for its own
assigned virtual counters. The read and increment requests were
scheduled according to probabilistically determined intervals by
using a Poisson distribution with a frequency of one request per
virtual monotonic counter every 15, 30, or 60 seconds.

To determine when the system saturates, we use the idea ofoper-
ational efficiencydefined as the ratio of the number of operations
actually completed to the expected number of operation requests,
in an experiment. If the operational efficiency gets less than 1,
then incomplete outstanding requests are being queued up. This
means that thelatency, defined as the time from when an operation
was requested to the time of its completion (this includes transmis-
sion and verification of proofs and certificates), grows impractically
large for increasing simulation times. If the operational efficiency
is ≈ 1, then the system is not saturated since all request can be
handled in time.

Experimental results show that as expected, without sharing, only
a few virtual monotonic counters can be maintained by the VCM.
(For brevity, these results are not shown here.) Figure 6 shows
experimental results withboth sharing and time multiplexing. As
shown, several hundred virtual monotonic counters can be managed
before saturation. Before saturation, the latency of a read opera-
tion is around 10 seconds and the latency of an increment operaion
scales with 2-3 seconds times the time multiplexing period. In gen-
eral, as shown, the maximal number of virtual monotonic counters
before saturation decreases with an increase in the frequency of
requests and increases with an increase in the time multiplexing
period. In practice, we believe the performance achieved here is
practical if we assume that one virtual monotonic counter repre-
sents a set of files of one client (e.g., a directory).

5. DISCUSSION
Our results demonstrate the potential for actually implementing

a VCM using a commodity TPM-enabled server available today
(without requiring any changes to the TPM). A number of issues,
however, arise when considering the use of our technique.

Efficiency. As shown, using sharing and multiplexing improves
efficiency. Another technique that can also be used to improve la-
tency is to have each client adopt the policy that at least one of
its devices, or a third party that it trusts (but which does not have
to be global and does not have to be online at the same time as



(b) Multiplexing with period 8

(c) Multiplexing with period 16

(a) No multiplexing

Figure 6: Performance Measurements at varying rates of re-
quest and multiplexing.

the client’s devices) periodically performs the read-with-validation
protocol, and produces a confirmation certificate. This removes the
need to present increment certificates from times before the con-
firmation certificate, and thus reduces the log size and delay for
read-with-validation and increment-with-validation operations per-
formed by the client’s devices.

Reliability. So far, our schemes providetamper-evidenttrusted
storage. That is, they guarantee that any incorrect behaviors by
the storage server, virtual counter manager, or network – whether
caused by random faults or malicious attacks – are guaranteed to
at least be detected by the client’s devices. Our schemes so far,
however, do not by themselves actually prevent such incorrect be-
havior. That is, because we assume that the servers and the network
are completely untrusted, it is always possible for these to simply
fail or refuse to work correctly. In short, our schemes so far do not
protect against simpledenial-of-serviceattacks.

To tolerate such random failures and malicious attacks we can
employ areplicationscheme on top of our tamper-evident scheme.
That is, for each data file that we want to store, we store several
copies on separate storage servers, and use several different vir-
tual counters managed by separate virtual counter managers. Then,
if only a minority of managers is malicious and a sufficient num-
ber of managers can be connected, the correct data can still be re-
trieved from the replicated storage, and its freshness can be checked
through the multiple virtual counter managers. In this way, we can
build a tamper-toleranttrusted storage system over our tamper-
evident one.

Tree-Based Scheme.In previous work [19, 26] we proposed, be-
sides a simplified form of the log-based scheme presented here, a
tree-based scheme for managing virtual monotonic counters. In
this tree-based scheme, we propose a mechanism for the TPM to
maintain an authentication tree with its root stored in the TPM,
and propose new TPM commands which would allow this authen-
tication tree to be used to securely implement an arbitrarily large
number of dedicated deterministic virtual monotonic counters us-
ing only a small constant amount of trusted non-volatile storage in
the TPM. Although this scheme cannot yet be implemented with
existing TPM 1.2 chips, its ability to provide dedicated anddeter-
ministic counters would enable us to greatly simplify our protocols
and reduce communication costs. It would also lead to many inter-
esting application scenarios in which virtual counters can be linked
to objects and operations [19]. We note though that even though the
communication costs are much less in the tree-based scheme than
in the log-based scheme, the load on the TPM would be more in
the tree-based scheme [26]. Thus, in high-load applications where
the same TPM is being used to serve a large number of clients at
the same time, we expect that it would be best to employ a hybrid
scheme that uses both the log-based and tree-based scheme.

Security. Note that our scheme offers strong security because it
does not rely on any other component in the VCM other than the
TTD itself. Specifically, in our case, we are able to implement a
TTD not by using the TPM’s trusted boot-related features, but by
using TPM 1.2’s built-in monotonic counter feature.

A possible problem worth noting is what happens if the power to
the VCM fails some time after theTPM Increment Counter
(in the IncSign primitive) but before the virtual counter man-
ager is able to save the increment certificate to disk. This will
lead to a gap in the log of increment certificates in proofs of va-
lidity. This problem cannot be used for a replay attack because
users will at least detect the gap during a verification of a validity
proof. However, it does make all the virtual counter values be-



fore the power failure untrustworthy (because client devices have
no proof that these counters were not incremented during the time
slot of the gap). This problem cannot easily be avoided because of
the limitations of existing TPMs. Note, however, that recovery of a
counter’s value is still possible if all the corresponding authorized
devices communicate together and agree on the last valid value of
the counter which can then be signed in a confirmation certificate.

6. RELATED WORK
In this work, we reduce the trusted computing base to only a

single TPM 1.2 chip [25, 15], which is a standard component on
machines today. This differs from many other systems that re-
quire complex secure processors [20, 1, 12, 28, 21]. The TPM
is a small inexpensive trusted chip with limited computational ca-
pabilities and a small amount of trusted volatile and non-volatile
memory. One way to use the TPM is to use it to perform atrusted
bootprocess, which enables a PC to ensure that only an unaltered
trusted OS is loaded on a it, and be able to prove to an external party
that the PC is in fact running such trusted code. Such a trusted boot
process has been used, for example, to give clients stronger security
guarantees when using web servers [13, 17], as well as to provide
more security in distributed and peer-to-peer systems [7, 2]. Using
such a trusted boot process with a TPM 1.2 chip, it is possible to
implement a virtual monotonic counter manager. One way of doing
this is briefly discussed by both TCG [24] and Microsoft [16]. The
problem with techniques that rely on trusted boot, however, is that
they require heavy and restrictive security assumptions. First, aside
from requiring a TPM, trusted boot also requires at least a trusted
BIOS component (called the Core Root-of-Trust for Measurement
or CRTM), and may require other hardware-based security features
as well [8]. Second, trusted boot is not robust against physical at-
tacks on the host PC. If, for example, the adversary can read and
modify memory directly without going through the CPU, then the
trusted OS can be compromised. Third, trusted boot cannot protect
the system from bugs in the trusted software code, and thus extreme
care must be taken to ensure that the trusted OS is really secure and
bug-free. Finally, all this requires the user to use the special trusted
OS while using the machine, and thus does not allow us to take
advantage of user machines that may not want to run this trusted
OS. Thus, using a TPM with a trusted OS is still far from being a
practical solution.

7. CONCLUSION
In this paper, we introduced, implemented, and analysed a vir-

tual storage system using untrusted servers that allows immediate
detection and prevention of forking and replay attacks, trusting only
on a TPM 1.2 chip in the untrusted server. Experiments show that it
can provide trusted storage for a large number of directories, where,
for each directory, the devices that are authorized to use it may be
offline at different times with respect to one another.
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