
Controlled Physical Random Functions and

Applications

BLAISE GASSEND, MARTEN VAN DIJK, DWAINE CLARKE and EMINA TORLAK

Massachusetts Institute of Technology

PIM TUYLS

Philips Research

and

SRINIVAS DEVADAS

Massachusetts Institute of Technology

The cryptographic protocols that we use in everyday life rely on the secure storage of keys in
consumer devices. Protecting these keys from invasive attackers, who open a device to steal its
key is a challenging problem. We propose Controlled Physical Random Functions (CPUFs) as an

alternative to storing keys, and describe the core protocols that are needed to use CPUFs.
A Physical Random Functions (PUF) is a physical system with an input and an output. The

functional relationship between input and output looks like that of a random function. The
particular relationship is unique to a specific instance of a PUF, hence, one needs access to a
particular PUF instance to evaluate the function it embodies. The cryptographic applications of
a PUF are quite limited unless the PUF is combined with an algorithm that limits the ways in
which the PUF can be evaluated; this is a CPUF.

A major difficulty in using CPUFs is that you can only know a small set of outputs of the PUF,
the unknown outputs being unrelated to the known ones. We present protocols that get around
this difficulty and allow a chain of trust to be established between the CPUF manufacturer and
a party that wishes to interact securely with the PUF device. We also present some elementary
applications such as certified execution.

Categories and Subject Descriptors: K.6.5 [General]: Security and Protection—Physical Security

General Terms: Security, Theory

Additional Key Words and Phrases: Certified execution, physical security, physical random func-
tion, physical unclonable function, trusted computing

1. INTRODUCTION

Typically, cryptography is used to secure communication between two parties con-
nected by an untrusted network. In such communication, each party has privately
stored key information which allows it to encrypt, decrypt and authenticate the
communication. It is implicitly assumed that each party is capable of securing

Author’s address: B. Gassend, Massachusetts Institute of Technology, Room 32G-838, 32 Vassar
Street, Cambridge, MA 02139
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 1094-9224/YY/00-0001 $5.00

ACM Transactions on Information Systems and Security, Vol. V, No. N, 20YY, Pages 1–22.

2 · Blaise Gassend et al.

its private information. This assumption is reasonable when a party is a military
installation, or even a person, but breaks down completely for low cost consumer
devices. Once a secret key is compromised, eavesdropping and impersonation at-
tacks become possible. In a world where portable devices need to authenticate
credit card transactions and prevent copyright circumvention, protecting the keys
in the devices that surround us is of utmost importance.

To be successful, a key protection scheme has to protect keys from Application
Programming (API) attacks in which the device’s API is tricked into releasing
trusted information, from non-invasive attacks in which the key is deduced from
unintended signals emanating from the device, and from invasive attacks in which
the attacker opens the device to find the key. All these types of attacks have been
demonstrated in real systems [Kocher et al. 1999; Anderson and Kuhn 1996; 1997;
Gutman 1996].

Focussing on the problem of invasive attacks, it is apparent that once a device
has been opened, the large difference in state between a 0 and a 1 makes it rel-
atively easy to read out the device’s digitally stored secrets. Traditionally, such
attacks are avoided by detecting intrusion and erasing the key memory when an
intrusion is detected [Smith and Weingart 1999]. But tamper sensing environments
are expensive to make, and as long as a key is being protected, the intrusion sensors
need to be powered, further increasing costs.

Since it is the digital nature of the secret key material that makes it easy to ex-
tract invasively, we can try to use information of a continuous nature instead. For
example, by measuring a complex physical system, and performing suitable pro-
cessing, a key can be generated [Gassend 2003; Suh et al. 2005; Skoric et al. 2005].
The invasive adversary now has to study a complex physical system, measure it and
simulate it precisely enough to determine the device’s key. With careful design, the
complex physical system can be fabricated such that an invasive adversary who
wants to measure it has to destroy it in the process. Thus unless the adversary
successfully models or clones the physical system, his tampering will be noticed.

These physically obfuscated keys seem to increase the difficulty of an attack, but
they still have a single digital point of failure. When the device is in use, the single
physically obfuscated master key is present on it in digital form. If an adversary
can get that key he has totally broken the device’s security. Going one step farther,
we get to Physical Random Functions: instead of being used to generate the same
key every time, the complex physical system is parameterizable. For each input
to the physical system, a different key is produced. Thus the complexity of the
physical system is exploited to the utmost.

However, by getting rid of the single digital point of failure, we have produced
a device that has a family of secrets that are not computationally related to each
other. In public key cryptography, publishing the public key of a device is sufficient
to allow anybody to interact securely with that device. With Physical Random
Functions, if the multiplicity of generated keys is to be used, then there is no
direct equivalent to publishing a public key. Our main contribution in this paper
is to show how to build a key management infrastructure that exploits all the key
material provided by a Physical Random Function. We also present some basic
applications like certified execution. Because there is no algorithmic way to tie

ACM Transactions on Information Systems and Security, Vol. V, No. N, 20YY.

Controlled Physical Random Functions and Applications · 3

together all the keys produced by a given device, the device will have to take an
active part in protocols like certificate verification, that would not usually need any
device involvement. This limitation should be offset by a decreased vulnerability
to invasive attacks.

1.1 Physical Random Functions

We now look more closely at what exactly a Physical Random Function (PUF1) is.
As its name suggests, it is a Random Function, i.e., a function whose outputs have
been independently been drawn from some distribution. A PUF has the additional
characteristic that it can only be evaluated with the help of a physical system. In
a nutshell:

Definition 1. A Physical Random Function is a Random Function that can
only be evaluated with the help of a specific physical system. We call the inputs to
a Physical Random Function challenges, and the outputs responses.

To better understand what a PUF is, we consider a few example implementations:

Digital PUFs. are conceptually the simplest kind of PUF. A digital secret key
K is embedded in a tamper proof package along with some logic that computes
Response = RF(K, Challenge), where RF is some random function. Whenever a
Challenge is given to the device, it outputs the corresponding Response.

Such a device is a PUF. Possessing the device allows one to easily get responses
from challenges, but the tamper proof package prevents attackers from getting K

and forging responses. However, it is not a compelling PUF as it relies on the
secrecy of the digital secret K, which is precisely what we would like to avoid by
using PUFs.

Optical PUFs. were originally proposed by Ravikanth [Ravikanth et al. 2002;
Pappu 2001]. They are made up of a transparent optical medium containing bub-
bles. Shining a laser beam through the medium produces a speckle pattern (the
response) behind the medium that depends on the exact position and direction of
the incoming beam (the challenge). A study has also been made of the information
content of an optical PUF [Tuyls et al. 2005].

Silicon PUFs. which we have studied [Gassend et al. 2002b; Gassend et al. 2004;
Lee et al. 2004; Lim et al. 2005; Gassend 2003]. In this case, the response is
related to the time it takes for signals to propagate through a complex circuit. The
challenge is an input to the circuit that reconfigures the path that signals follow
through the circuit.

Both Optical and Silicon PUFs generate responses from physical systems which
are difficult to characterize and analyze. They rely on the difficulty of taking a
complex physical system, extracting all necessary parameters from it, and simulat-
ing it to predict responses. A sufficiently advanced attacker should be able to break

1PUF avoids confusion with Pseudo-Random Function, and is the acronym that has been widely
published. Some authors use the term Physical Unclonable Function, but we find this term less
accurate than Physical Random Function.

ACM Transactions on Information Systems and Security, Vol. V, No. N, 20YY.

4 · Blaise Gassend et al.

the PUF, by following this path. But we expect the difficulty to be considerably
greater than the difficulty of extracting a digital secret from a device.

Another interesting point about these PUF implementations is that the PUF
arises from random manufacturing variations such as bubble position or exact wire
delays. Consequently, the PUF is even a mystery for the manufacturer of the PUF.
Also, manufacturers cannot make two identical PUFs even if they want to. We call
these PUFs manufacturer resistant. In the case of Silicon PUFs, manufacturers
make every effort to reduce manufacturing variations in order to improve yield
and performance. Despite these efforts, relative variations continue to increase as
new process technologies are introduced (Chapter 14 of [Chinnery and Keutzer
2002]). By checking that a manufacturer is using the high density processes that
are available, we can therefore be confident that manufacturer resistance holds and
will continue to hold.

Moreover, these PUF implementations are relatively inexpensive to produce. In
particular, Silicon PUFs can be realized on standard CMOS technology [Weste
and Eshraghian 1985], potentially making them more attractive than EPROM for
identification of integrated circuits. Indeed, circuits with EPROM require extra
processing steps which drive up the cost of a chip.

One difficulty with Optical and Silicon PUFs is that their output is noisy. There-
fore, error-correction which does not compromise the security is required to make
them noise-free. This problem has been considered elsewhere [Lim 2004; Suh et al.
2005], and we ignore it in the rest of this paper.

The canonical application for PUFs is to use them as keycards [Pappu 2001].
In this application, a lock is initially introduced to a PUF, and stores a database
of challenge-response pairs (CRPs) corresponding to that PUF. Later, when the
bearer of the PUF wants to open the lock, the lock selects one of the challenges it
knows and asks the PUF for the corresponding response. If the response matches
the stored response, the lock opens. In this protocol, CRPs can be used only once,
so the lock eventually runs out of CRPs. This enables a denial of service attack in
which an adversary uses up all the lock’s CRPs by repeatedly presenting it with
an incorrect PUF. Because of this limitation, the keycard application isn’t very
compelling. Nevertheless, it is all that can be done with a PUF until we make it
into a Controlled Physical Random Function.

1.2 Controlled Physical Random Functions

Definition 2. A Controlled Physical Random Function (CPUF) is a PUF that
has been bound with an algorithm in such a way that it can only be accessed through
a specific API.

As we shall see in Section 2.2, the main problem with uncontrolled PUFs is
that anybody can query the PUF for the response to any challenge. To engage in
cryptography with a PUF device, a user who knows a CRP has to use the fact that
only he and the device know the response to the user’s challenge. But to exploit
that fact, the user has to tell the device his challenge so that it can get the response.
The challenge has to be told in the clear because there is no key yet. Thus a man
in the middle can hear the challenge, get the response from the PUF device and
use it to spoof the PUF device (this attack is detailed in Section 2.2).

ACM Transactions on Information Systems and Security, Vol. V, No. N, 20YY.

Controlled Physical Random Functions and Applications · 5

Clearly the problem in this attack is that the adversary can freely query the PUF
to get the response to the user’s challenge. By using a CPUF in which access to the
PUF is restricted by a control algorithm, this attack can be prevented. The API
through which the PUF is accessed should prevent the man-in-the-middle attack
we have described without imposing unnecessary limitations on applications.

A key contribution of this paper is the description in Section 2 of a simple but
very general API for limiting access to a PUF. Some interesting properties of our
API are:

—Anybody who knows a CRP that nobody else knows, can interact with the CPUF
device to obtain an arbitrary number of other CRPs that nobody else knows.
Thus users are not limited to using a small number of digital outputs from the
PUF. Moreover, if one of these new CRPs was revealed to an adversary, trans-
actions that use the other CRPs are not compromised. This is analogous to key
management schemes that uses session keys derived from a master key.

—Anybody can use a CRP that only they know to establish a shared secret with
the PUF device. Having a shared secret with the PUF device enables a wide
variety of standard cryptographic primitives to be used.

—The control algorithm is deterministic. Since hardware random number genera-
tors are sensitive and prone to attack, being able to avoid them is advantageous.

—The only cryptographic primitive that needs to be built into the control algorithm
is a collision resistant hash function. All other cryptographic primitives can be
updated during the lifetime of the CPUF device.

By selecting an appropriate API, a CPUF device can be resistant to protocol
attacks. With careful design, Optical and Silicon PUFs can be made in such a
way that the chip containing the control logic is physically embedded within the
PUF: the chip can be embedded within the bubble-containing medium of an Optical
PUF, or the delay wires of a Silicon PUF can form a cage on the top layer of the
chip. This embedding should make probing of the control logic considerably more
difficult, as an invasive attacker will have to access the wires to be probed without
changing the response of the surrounding PUF medium. As we have illustrated
in Figure 1, the PUF and its control logic have complementary roles. The PUF
protects the control logic from invasive attacks, while the control logic protects the
PUF from protocol attacks. This synergy makes a CPUF far more secure than
either the PUF or the control logic taken independently.

Based on the examples given above, we assume in the remainder of this paper
that PUFs exist, and we focus on designing an API together with protocols that
allow a chain of trust to be established between the CPUF manufacturer and a
party that wishes to interact securely with the PUF device. Our work extends
[Gassend et al. 2002a], where we introduced CPUFs. Here, we use hashblocks in
our API design and we give more advanced application protocols.

1.3 Applications

There are many applications for which CPUFs can be used, and we describe a few
examples here. Other applications can be imagined by studying the literature on
secure coprocessors, in particular [Yee 1994]. We note that the general applications

ACM Transactions on Information Systems and Security, Vol. V, No. N, 20YY.

6 · Blaise Gassend et al.

for which this technology can be used include all the applications today in which
there is a single symmetric key on a chip.

The easiest application is in smartcards which implement authentication. Cur-
rent smartcards have hidden digital keys that can be extracted using various attacks
[Anderson 2001]. With a unique PUF on the smartcard that can be used to au-
thenticate the chip, a digital key is not required: the smartcard hardware is itself
the secret key. This key cannot be duplicated, so a person can lose control of a
smartcard, retrieve it, and continue using it. With today’s cards, the card should
be canceled and a new one made because somebody might have cloned the card
while it was out of its owner’s control.

A bank could use certified execution to authenticate messages from PUF smart-
cards. This guarantees that the message the bank receives originated from the
smartcard. It does not, however authenticate the bearer of the smartcard. Some
other means such as a PIN number or biometrics must be used by the smartcard
to determine if its bearer is allowed to use it. If the privacy of the smartcard’s
message is a requirement, then the message can also be encrypted.

A second application is for computers that implement private storage [Carroll
et al. 2002; Alves and Felton 2004; Microsoft ; Trusted Computing Group 2004; Lie
et al. 2000; Lie 2003; Suh et al. 2003]. A program wishing to store encrypted data
in untrusted memory uses an encryption key which depends uniquely on the PUF
and its program hash. This requires a CPUF in order to accomplish the unique
dependency. This idea is implemented in the AEGIS processor [Suh et al. 2003;
Suh et al. 2005].

These computers can be used in grid computation, where the spare computation
of thousands of machines on the Internet is pooled to solve computationally chal-
lenging problems [SETI@Home ; Distributed.Net]. One issue in grid computation
is ensuring that the computation has been correctly carried out by the computers
on the grid. This is especially important if people are paid for the computing power
they put on the grid, as there is pressure to provide fake results in order to increase
revenue.

In Section 4 we show how programs can generate common secret keys which no
user or other program can retrieve. This concept has applications in Digital Rights
Management and Software Licensing. It can also be used to create shared private
memory.

1.4 Organization

So far we have seen what a CPUF is, without detailing what API should be used
to access the PUF. This API is described in Section 2, where we present a general
purpose CPUF device, how it is programmed, and how it can access the PUF. Then
in Section 3 we attack the problem of CRP management: how does a user who wants
to use a CPUF device get a CRP that he trusts for that device? Finally, Section 4
shows some basic protocols that can be used by applications which interact with a
CPUF device.

2. CPUF PRIMITIVES

In the introduction section, we saw that a PUF can be used as a keycard. This
application was proposed in [Pappu 2001], and it is the only application for a PUF

ACM Transactions on Information Systems and Security, Vol. V, No. N, 20YY.

Controlled Physical Random Functions and Applications · 7

without control. In this section we see why other applications fail, and show how
control can be used to make them work.

2.1 The execution environment

Without loss of generality, we model a PUF device as a general purpose processing
element that has access to a PUF (see Figure 1). The device is willing to run any
program that is given to it by the outside world. Initially, we consider that the
processing element has unrestricted access to the PUF, but in Section 2.2 we shall
see that some restrictions need to be applied. This model does not imply that all
PUF devices must actually be general computing devices. In practice, one might
want to implement only a limited set of functions on the device, and hard-wire
them.

Code
Data PUF

General
Purpose

Processor Control
Logic

Fig. 1. We model a PUF device as a general purpose processing element with possibly restricted
access to a PUF. The processing element protects the PUF from protocol attacks, while the PUF
protects the processing element from invasive attacks.

We make the assumption that programs running on the PUF device execute in a
private and authentic way. That is, their internal data is inaccessible to an attacker,
and nobody can cause the program to execute incorrectly. This assumption is not
trivial. We can partially justify it by the fact that the CPUF should be designed so
that the logic functionality of the device is embedded within the physical system of
the PUF, and many kinds of invasive attacks will destroy the PUF before giving the
adversary access to the logic. In [Gassend 2003] we have additionally considered
the “open-once” model in which the adversary can gain access to a single snapshot
of internal variables, while breaking the PUF.

We now give a brief description of the execution environment that we use. The
reader may want to refer back to this description later in the paper.

Programs will be described using a syntax close to C. A few notable changes are:

—We will often be identifying a piece of code by its hash. In the code, we indicate
what region the hash should cover by using the hashblock keyword. During
execution, whenever a hash block is reached, a hash is computed over its argu-
ments and stored in a special system register PHashReg that cannot be directly
modified by the program. More precisely, each hash block has two sets of argu-
ments: variable arguments and code arguments. PHashReg is a hash of all the
arguments of the hash block concatenated together, with program blocks in the
code section replaced by their hash. We assume that all the hashing is done

ACM Transactions on Information Systems and Security, Vol. V, No. N, 20YY.

8 · Blaise Gassend et al.

using a cryptographically strong hash function. Moreover, concatenation is done
in a way that ensures that a different sequence of arguments will always produce
a different string to hash. Any code arguments to the hashblock that are exe-
cutable are then executed. When execution leaves the hash block, the previous
value of PHashReg is restored (popped off an authentically stored stack). The
need for hashblocks will become apparent in Section 2.3. The elaborate way in
which the hashes are constructed will be fully used in Section 4.2.

—We declare variables using the keyword my as in the Perl language. We do this to
avoid worrying about types, while still specifying where the variable is declared.
Variables declared within a hash block are automatically cleared on exit from the
hash block. This way, data in variables that are declared in a hash block cannot
be accessed once the block’s execution has completed.

An example illustrates the use of hashblock and my. Note that we have given
each hash block a name (A or B). This name will be used to designate the code and
variables of a particular hash block when explaining how programs work. We have
also prefixed lines within a hashblock with the name of the hashblock to clarify the
extent of the hashblock.

1 Foo(Bar)

2 {

3 // PHashReg has value inherited from caller.

4 A hashblock(Bar)(// Start of hashblock A

5 A {

6 A // PHashReg is Hash(Bar; Hash(code in lines 6 to 14), Dummy).

7 A my FooBar = Bar / 2;

8 A B hashblock()(// Start of hashblock B

9 A B {

10 A B // PHashReg is Hash(; Hash(code in lines 10 to 11)).

11 A B my BarFoo = FooBar + 3;

12 A B });

13 A // PHashReg is Hash(Bar; Hash(code in lines 6 to 14), Dummy).

14 A // The value of BarFoo has been purged from memory.

15 A }, Dummy);

16 // PHashReg has value inherited from caller.

17 // The value of FooBar has been purged from memory.

18 }

A number of cryptographic primitives will be used in what follows. They are:

—MAC(message, key) produces a Message Authentication Code (MAC) of mes-

sage with key.

—EncryptAndMAC(message, key) is used to encrypt and MAC message with key.

—PublicEncrypt(message, key) is used to encrypt message with the public key
key.

—Decrypt(message, key) is used to decrypt message that was encrypted with
key.

ACM Transactions on Information Systems and Security, Vol. V, No. N, 20YY.

Controlled Physical Random Functions and Applications · 9

—PHash(HB) is the value of PHashReg in the hash block denoted by HB. For ex-
ample, A represents (Bar; Hash(code from lines 6 to 14), Dummy). In this
sequence, the comma (,) and the semicolon (;) represent different concatena-
tions so that variable and code arguments can be distinguished. While the code
from lines 6 to 14 is executing, PHashReg contains PHash(A).
Of these primitives, only PHash has to be permanently built into the CPUF de-
vice, as it participates in the generation of program hashes. All the other prim-
itives can be updated. The only requirement is that the code of the primitives
participates in the generation of program hashes. In an actual implementation
PHash would therefore incorporate a hash of the primitives. Likewise, real pro-
grams will make use of libraries which will also need to be incorporated into the
program hash. For the rest of this paper we ignore this issue and assume that all
the primitives are hard coded. The problem of authenticating libraries is a com-
mon problem for code attestation, and has been studied in detail by the trusted
computing initiative [Trusted Computing Group 2004].

2.2 The man-in-the-middle attack

Suppose that Alice wants to perform a computation on a device containing a PUF.
She knows a set of CRPs for the PUF, and would like to know the result of the
computation. Unfortunately, she is communicating with the device over an un-
trusted channel to which Oscar has access. Oscar would like Alice to accept an
incorrect result as coming from the device. This example, as we shall see, captures
the limitations of uncontrolled PUFs.

Alice attempts the following method:

(1) She picks one of her CRPs (Chal, Response) at random.

(2) She executes GetAuthenticBroken(Chal) on the PUF device (it is sent in the
clear and without authentication).
GetAuthenticBroken(Chal)

{

my Resp = PUF(Chal);

... Do some computation, produce Result ...

return (Result, MAC(Result, Resp));

}

(3) Alice uses the MAC and Response to check that the data she receives is au-
thentic.

Unfortunately, this protocol does not work as Oscar can carry out a man-in-the-
middle attack:

(1) He intercepts the message in which Alice sends GetAuthenticBroken to the
PUF and extracts Chal from it.

(2) He executes StealResponse(Chal) on the PUF device.

StealResponse(Chal)

{

return PUF(Chal);

}

ACM Transactions on Information Systems and Security, Vol. V, No. N, 20YY.

10 · Blaise Gassend et al.

(3) Now that he knows the Response, he sends Alice the message MAC(FakeResult,
Response).

(4) Since the MAC was computed with the correct response, Alice accepts Fake-

Result as valid.

The problem here is that as soon as Alice releases her challenge, Oscar can simply
ask the PUF for the corresponding response, and can then impersonate the PUF.
As long as the PUF is willing to freely give out the response to challenges this
problem will persist.

2.3 The GetSecret primitive

To solve this problem, we will move from a PUF that is wide open to one that
is severely restricted. Suppose that we will only allow access to the PUF via a
primitive called GetSecret, defined by:

GetSecret(Chal)=Hash(PHashReg, PUF(Chal)).

This primitive is designed so that the CPUF device will not reveal a response to
anybody. Instead it will reveal a combination of the response and the program that
is being executed, that can’t be used to recover the response because we assume
that Hash is a one-way function.

Alice changes her GetAuthenticBroken program in the following way:

GetAuthentic(Chal)

{

HB hashblock()(// Start of hashblock HB

HB {

HB my Result;

HB hashblock ()(

HB {

HB ... Do some computation, produce Result ...

HB });

HB my Secret = GetSecret(Chal);

HB return (Result, MAC(Result, Secret));

HB });

}

Alice computes Secret from Response by computing Hash(PHash(HB), Re-

sponse), which allows her to check the MAC. Oscar, on the other hand is now
stuck. He has no way of getting Secret. If he sends a program of his own and
calls GetSecret, he will get a different secret from the one Alice’s program got.
Also, GetAuthentic is well written; it does not leak Secret to the outside world
(the inner hash block prevents the computation from producing/revealing Secret).
Thus, Alice is now certain when the MAC check passes that she is looking at the
result that is computed by the PUF device.

2.4 The GetCRP primitive

Unfortunately for Alice, the latest version of the CPUF device is too restrictive. If
Alice has a CRP then she can indeed interact securely with the device, but there is

ACM Transactions on Information Systems and Security, Vol. V, No. N, 20YY.

Controlled Physical Random Functions and Applications · 11

no way for her to get that CRP in the first place, since the device will never reveal
a Response.

To solve this problem, we slightly lighten the restrictions that are placed on access
to the PUF. For example, we could add a primitive called GetCRP. This primitive
would pick a random challenge, compute its response, and return the newly found
CRP to the caller. In this way, anybody would have access to an arbitrary number
of CRPs, but as long as the space of challenges is large enough, the probability that
the same CRP will be given to two different people is extremely small.

2.5 The GetResponse primitive

In theory, a secure system could be built from GetCRP. In practice, however, random
number generators are often vulnerable to attack. Since the scheme relies heavily
on the strength of the random number generator, it would be nice to see if an
alternative solution exists that is deterministic.

That solution does indeed exist. We replace GetCRP by GetResponse, which is
defined by

GetResponse()=PUF(PHashReg). (1)

This way, anybody can generate a CRP (PHashReg, GetResponse()), but be-
cause of the hash function with which PHashReg is computed, nobody can choose
to generate a specific CRP. The code of the hash block contributes to PHashReg so
that the CRP that is generated is program dependent.

The challenge that is generated in GetResponse is equal to PHashReg. It depends
on the code contained within the hashblock, as well as on the variables that are
arguments to the hashblock. Often one of these variables will simply be a nonce,
that we call pre-challenge because it is used to determine the challenge.

Figure 2 summarizes the possible ways of going between pre-challenges, chal-
lenges, responses and secrets. In this diagram, moving down is easy. You just have
to calculate a few hashes. Moving up is hard because it involves inverting one-way
hashes. Going from left to right is easy for the program whose hash is used in
the GetResponse or GetSecret primitives, and hard for all other programs. Going
from right to left is hard because the PUF is hard to invert.

The man-in-the-middle attack is prevented by each user having her own list of
CRPs, where the challenges can be public, but the responses have to be private.
From Figure 2, we see that to get his hands on a secret produced by some hashblock
GSH, an adversary has three options: he can be told the secret, he can use GetSecret
from within GSH or he can hash an appropriate response. If the user does not tell
the secret to the adversary and GSH does not leak the secret, then only the third
option is possible. So the adversary has to get his hands on the response. There
are only two ways for him to do so: he can be told the response, or he can use
GetResponse from within the hashblock GRH in which it was created. If the user
does not tell the adversary the response and if GRH doesn’t leak the response then
the adversary is out of options. In Section 3, we will see how GRH can be designed
to use encryption to get the response to the legitimate user without leaking it to
the adversary.

With the two primitives GetSecret and GetResponse that we have introduced,
anybody can generate CRPs and use them to generate a secret value that is known

ACM Transactions on Information Systems and Security, Vol. V, No. N, 20YY.

12 · Blaise Gassend et al.

Hard
Easy only for the right program

Hash

E
as

y

H
ar

d

PUF Evaluation

GetResponse

GetSecret

Challenge Shared−Secret

Response
GRH

GRH GRH, GSH

PHash

GRH
Pre−Challenge

PHash(GSH)

Fig. 2. This diagram shows the ways of moving between pre-challenges, challenges, responses
and secrets. Rectangles show elementary operations that can be performed. Ellipses represent
operations that are made by composing elementary operations. The dotted arrow indicates that
because the PUF is controlled, nobody can actually evaluate it directly. GRH and GSH are the
hash blocks that call GetResponse and GetSecret, respectively. If GRH or GSH appears below a
value then that value depends on one of these hash blocks.

only to them and to a program running on the PUF device. This choice of primitives
is not unique, but we believe that this combination is particularly satisfying. Indeed,
they make no assumptions on what use will be made of the secret value once
it is generated. Moreover, in addition to the PUF itself, the only cryptographic
primitive that needs to be built into the device is a hash function, for GetSecret

and GetResponse to be implemented. Figure 3 shows all the key elements of our
generic CPUF device.

3. CHALLENGE-RESPONSE PAIR MANAGEMENT

In Section 2, we saw that access to the PUF had to be limited in order to prevent
man-in-the-middle attacks. We proposed to make the PUF accessible only by the
two primitives GetResponse and GetSecret. This places just the right amount of
restriction on access to the PUF. The man-in-the-middle attack is thwarted, while
anybody can get access to a CRP and interact securely with the PUF.

In this section, we go into the details of how a flexible trust infrastructure can be
built in this model. It allows a chain of trust to be built from the manufacturer of a
CPUF device to the end user, via an arbitrary sequence of certification authorities
(that we shall call certifiers). First, just after the CPUF device is manufactured,
the manufacturer uses Bootstrap in a secure factory environment to get a CRP
for the device. The manufacturer can then use Introduction to provide CRPs to
certification authorities, who in turn can provide them to end users. Anybody who
has a CRP can use Renew to generate more CRPs. This is analogous to using keys
derived from a master key. An attacker who manages to obtain a small number of
CRPs (or derived keys) is unable to completely break the security of the device.

ACM Transactions on Information Systems and Security, Vol. V, No. N, 20YY.

Controlled Physical Random Functions and Applications · 13

��������

��	���
����
��	����	

����������	
������
���
������������
�����
���
��������������
�

 !" #$��%���
����

&��'������(��'������� !$$��)���
&������������*�������+�'�������
&������������*�������+�'�������
� ��%,	������+�����+�,	���
&� ,") �������*����,")+�������
&����,")��������*��,")+�������
-��*�����,")��

.��
.

����������	
������
���
������������
�����
���
��������������
�
 !" #$��%���
����
&��'������(��'������� !$$��)���
&������������*�������+�'�������
&������������*�������+�'�������
� ��%,	������+�����+�,	���
&� ,") �������*����,")+�������
&����,")��������*��,")+�������
-��*�����,")��

.��
.

����������

����������

�����	������
��	���	���
�����	����

����������	

��	���
���� �
�������������

��	����	 �
������������� �����!��"��

�������� �
������#�	�����
�	����������"�����
�������$"��%

Fig. 3. Summary of our CPUF device model. Anybody can give the device a program to run.
Programs that run can access the device’s PUF via the GetSecret and GetResponse primitives,
which will take into account the PHashReg of the current program.

3.1 Bootstrapping

Bootstrapping is the most straightforward way to obtain a CRP. It is illustrated in
Figure 4. No encryption or authentication is built into the protocol, as it is designed
for users who are in physical possession of the device, and who can therefore directly
hold a secure communication with the device. A CPUF device manufacturer would
use bootstrapping to get CRPs for devices that have just been produced, so that
their origin can later be verified.

Manufacturer CPUF chip

Fig. 4. Model for Bootstrapping

(1) The user who wishes to get a CRP picks a pre-challenge PreChal at random.

(2) The user executes Bootstrap(PreChal) on the CPUF device.
Bootstrap(PreChal)

{

HB hashblock (PreChal)(// Start of hashblock HB

HB {

HB return GetResponse();

HB });

}

(3) The user gets the challenge of his newly created CRP by calculating PHash(HB),
the response is the output of the program.

If an adversary gets to know PreChal, he can replay the bootstrapping pro-
gram with PreChal as input to obtain the corresponding CRP. Therefore, the user

ACM Transactions on Information Systems and Security, Vol. V, No. N, 20YY.

14 · Blaise Gassend et al.

should discard PreChal after use. If PreChal is not known, then the security of the
bootstrapping program relies on the one-wayness of the hash function with which
PHashReg=PHash(HB) is computed.

3.2 Renewal

Renewal is a process by which a user who has a CRP for a CPUF can generate more
CRPs over an untrusted network. It is illustrated in Figure 5. In this protocol, the
user uses his CRP to create a secure channel from the CPUF device to himself, and
the CPUF sends the new response over that channel.

untrusted
communication

channel
CPUF chipUser

Fig. 5. Model for Renewal

(1) The user who wishes to generate a new CRP picks a pre-challenge PreChal at
random.

(2) The user executes Renew(OldChal, PreChal) on the CPUF device, where
OldChal is the challenge of the CRP that the user already knows.
Renew(OldChal, PreChal)

{

HB hashblock (OldChal, PreChal)(// Start of hashblock HB

HB {

HB my NewResponse = GetResponse();

HB my Secret = GetSecret(OldChal);

HB return EncryptAndMAC(NewResponse, Secret);

HB });

}

(3) The user computes Hash(PHash(HB), OldResponse) to calculate Secret, and
uses it to check the MAC and retrieve NewResponse. The new challenge is
computed by PHash(HB).

Note that PreChal is included in the hash block so that it participates in the
generation of Secret, and therefore in the MAC. Thus if any tampering occurs
with PreChal it will be detected in step 3.

Also, OldChal is included in the hash block so that it participates in the genera-
tion of NewResponse. Thus an adversary cannot retrieve NewResponse by replaying
the renew program with inputs PreChal and an old challenge different from OldChal

for which he knows the corresponding response.
The security of renewal relies on whether the response corresponding to OldChal

is only known to the user. Note that the use of PreChal allows the user to derive
multiple new CRPs by using renewal with the same OldChal. The corresponding
responses are only known to the user if the response to OldChal is not compromised.

ACM Transactions on Information Systems and Security, Vol. V, No. N, 20YY.

Controlled Physical Random Functions and Applications · 15

In [Torlak et al. 2006], we encoded the renewal protocol in the Alloy modeling
language [Jackson 2002] and checked its security using the Alloy Analyzer [Jackson
2000]. The protocol was found to be secure against replay and parallel session
attacks for an unbounded number of sessions.

3.3 Introduction

Introduction is an operation that allows a user who has a CRP for a CPUF to
provide a CRP to another user, assuming that there is a trusted channel between
the users (established using public key cryptography, for example), but that com-
munication with the PUF device is untrusted. It is illustrated in Figure 6. This
operation could be used, for example, by a user who wants to be sure that he is
getting a CRP to a genuine CPUF device.

certifier

untrusted
communication

channeluser CPUF chip

Fig. 6. Model for Introduction

In a real world deployment, a chain of trust would be built from the manufacturer
to the end user of the CPUF device. The manufacturer would collect CRPs on the
production line using bootstrapping, and use them to introduce the PUF to various
competing certifiers. The end user would then ask a certifier of his choosing to
introduce him to the device.

Many variants of introduction are possible depending on how much trust the user
is willing to place in the certifier. Here we present our strongest version, which uses
public key cryptography and protects against passive attacks (i.e., attacks in which
the certifier gives the user a valid CRP, but keeps a copy of it to eavesdrop on the
user). We do not, however, protect against active attacks in which the certifier
simply gives the user an incorrect CRP, and makes him think he is talking to a
PUF when in fact he is not. This is the minimum amount of trust that the user
must place in the certifier in order to make introduction possible.

With this protocol, the user can also get introduced to the same CPUF device
by many different certifiers, they would all have to actively attack him in a con-
sistent way for the attack to succeed. In this protocol, the user needs to have a
public key PubKey that gets used to encrypt the new response. The user would run
Introduction multiple times with the same PubKey and PreChal, but a different
OldChal for each certifier.

(1) The certification authority picks (OldChal, OldResponse) from one of its
CRPs and computes Secret as Hash(PHash(HB), OldResponse), where HB

is the hash block in the introduction program given in step 2. The certification
authority gives (OldChal,Secret) to the user.

(2) The user picks a pre-challenge PreChal at random. Next, the user executes
Introduction(OldChal, PubKey, PreChal).

ACM Transactions on Information Systems and Security, Vol. V, No. N, 20YY.

16 · Blaise Gassend et al.

Introduction(OldChal, PubKey, PreChal)

{

HB hashblock (PubKey, PreChal)(// Start of hashblock HB

HB {

HB my NewResponse = GetResponse();

HB my Message = PublicEncrypt(NewResponse, PubKey);

HB my Secret = GetSecret(OldChal);

HB return (Message, MAC(Message, Secret));

HB });

}

(3) The user uses Secret to check the MAC. Notice that the user and the Introduction
program agree on the value of Secret, because in each case it is computed from
Hash(PHash(HB), OldResponse). The user decrypts Message with his private
key to get the response, and computes PHash(HB) to get the challenge.

In the protocol the certification authority does not communicate with the PUF.
We prefer for the user to communicate with the PUF because he will often be the
one who has a channel open to the PUF.

Since NewResponse is encrypted with PubKey, an adversary cannot directly use
it to get NewResponse. Moreover, PubKey is included in the hash block so that it
participates in the generation of NewResponse. Thus, an adversary cannot retrieve
NewResponse by replaying the introduction program with his own public key, as
changing the public key changes the secret that is produced. Even the certifier,
who knows (OldChal, OldResponse), cannot retrieve NewResponse.

There are other ways of doing introduction, for example, a slightly different proto-
col was used in [Gassend 2003; Gassend et al. 2002a]. In that protocol, the certifier
gives OldResponse to the user, who can then compute Secret himself. The user
then has to perform a private renewal that uses public key cryptography, to prevent
passive attacks from the certification authority. In this case, the certifier cannot
use the CRP (OldChal, OldResponse) a second time. For devices with very lim-
ited computation resources, it may be necessary to forgo public key cryptography
altogether. In this case the certifier introduce the user to the device by giving him
a CRP. However, the user cannot then prevent passive attacks from the certifier.

4. APPLICATION PROTOCOLS

In certified execution, a certificate is produced that guarantees to the user that the
program was run without being tampered with on a processor. We first discuss how
a certificate is produced that can only be verified by the user of the processor. It
relies on a shared secret between the user and the processor with the PUF. Next,
we discuss how a certificate can be produced that can be verified by any third party.
We call such a certificate a proof of execution. It relies on the ability to share a
secret between different programs.

4.1 Certified Execution

It is possible for a certificate to be produced that proves to the user of a specific
CPUF that a specific computation was carried out on this CPUF, and that the
computation produced a given result. The person requesting the computation can

ACM Transactions on Information Systems and Security, Vol. V, No. N, 20YY.

Controlled Physical Random Functions and Applications · 17

then rely on the trustworthiness of the CPUF manufacturer who can vouch that
he produced the CPUF, instead of relying on the owner of the CPUF. We call this
certified execution. It is essentially the same as GetAuthentic, which was presented
in Section 2.3 (in fact, Renewal and Introduction are also special cases of certified
execution).

(1) The user who wishes to run a program with program code Prog on a spe-
cific CPUF picks one of the CRPs (Challenge, Response) he knows for that
CPUF.

(2) The user executes CertifiedExecution(Challenge, Prog) on the CPUF de-
vice.

CertifiedExecution(Challenge, Prog)

{

HB hashblock (Prog)(// Start of hashblock HB

HB {

HB my Result;

HB HA hashblock ()(// Start of hashblock HA

HB HA {

HB HA Result = RunProg(Prog);

HB HA });

HB my Secret = GetSecret(Challenge);

HB my Certificate = (Result, MAC(Result, Secret));

HB Return Certificate;

HB });

}

(3) The user computes Hash(PHash(HB), Response) to calculate Secret, and uses
it to check the MAC in Certificate and to accept the returned Result as
authentic.

Notice that Secret depends on Prog. This means that tampering with Prog

will be detected so that if the returned Result is authentic then it is equal to the
output of Prog.

In this application, the user is trusting that the CPUF performs the computation
correctly. This is easier to ensure if all the resources used to perform the compu-
tation (memory, CPU, etc.) are on the same CPUF device, and included in the
PUF characterization. In [Suh et al. 2003; Suh et al. 2005] a more sophisticated
architecture is discussed in which a chip can securely utilize off-chip resources. It
uses ideas from [Lie et al. 2000] and it uses a memory integrity scheme that can be
implemented in a hardware processor [Gassend et al. 2003].

It is also possible for a CPUF to use the capabilities of other networked CPUF
devices. In that case, the CPUF has CRPs for each of the other CPUF devices it
is using, and performs computations using protocols similar to the one described
in this section.

4.2 Joint Secret Key Generation

So far we have only considered sharing a secret between a user and a specific
program. In some cases it can be desirable to have a secret shared between two

ACM Transactions on Information Systems and Security, Vol. V, No. N, 20YY.

18 · Blaise Gassend et al.

programs. The hashblock mechanism makes this possible as illustrated in the
following example:

Prog1()

{

hashblock()(

{

my Secret = GetResponse();

... Do something with Secret here ...

}, Prog2Hash);

}

Prog2()

{

hashblock()(Prog1Hash,

{

my Secret = GetResponse();

... Do something with Secret here ...

});

}

In these programs, Prog1Hash and Prog2Hash are the hashes of the code in the
hashblocks of Prog1 and Prog2 respectively. Thus, in both programs PHashReg=

Hash(Prog1Hash, Prog2Hash), which leads to the same Secret. No other hash
block could generate this value of PHashReg, so no other program (or user) can use
GetResponse to obtain Secret.

This example can naturally be extended to sharing between more than two pro-
grams. Also, if we wanted Secret to also be shared with a user who knows the CRP
(Challenge, Response), we could replace GetResponse()with GetSecret(Chal-

lenge).

4.3 Proof of Execution

In certified execution the user can create certificates himself since the user can
compute Secret. However, the user cannot use Certificate as a proof of execution
to third parties. It only serves as a certificate to himself. Of course a third party may
simulate the interaction of the user with the CPUF device. Then, if Prog represents
a deterministic algorithm, the third party may check the results it receives with the
results the user claimed to have received. This approach is undesirable because it
needs to rerun Prog and it needs to simulate all the interactions between the user
and Prog.

To create a proof of execution (e-proof) which is efficiently verifiable by any third
party, we use joint secret key generation as introduced in Section 4.2. An execution
program computes an e-proof containing the program output and a MAC signed
with the joint key. Anybody with a CRP can check the e-proof by running an
arbitration program on the CPUF.

(1) The user who wishes to run a program with program code Prog on a spe-
cific CPUF picks one of the CRPs (Challenge, Response) he knows for that
CPUF.

ACM Transactions on Information Systems and Security, Vol. V, No. N, 20YY.

Controlled Physical Random Functions and Applications · 19

(2) The user computes HCodeA as Hash(CodeA) where CodeA is the code repre-
senting the program code in hashblock HA of ArbitrationProgram (see below).
Next, the user executes ExecutionProgram(Prog, HCodeA) on the CPUF de-
vice.

ExecutionProgram(Prog, HCodeA)

{

my HProg = Hash(Prog);

HE hashblock (HProg)(HCodeA, // Start of hashblock HE

HE {

HE // PHashReg is Hash(Hash(Prog); Hash(CodeA), Hash(CodeE))

HE my Result;

HE HB hashblock (// Start of hashblock HB

HE HB {

HE HB Result = RunProg(Prog);

HE HB });

HE my Secret = GetResponse();

HE my EProof = (Result, MAC(Result, Secret));

HE return EProof;

HE });

}

To convince a third party (or himself) that the EProof has been generated by
running Prog on the specific CPUF device, the user performs the following protocol.

(1) The user transmits Prog and EProof to the third party.

(2) The third party computes HProg as Hash(Prog) and HCodeE as Hash(CodeE)

where CodeE is the program code in hashblock HE of ExecutionProgram (the
code for ArbitrationProgram and ExecutionProgram is public knowledge).
Next, he executes ArbitrationProgram(EProof, HCodeE, HProg) on the CPUF
device by using certified execution as introduced in Section 4.1. That is, he runs
CertifiedExecution(Challenge, ArbitrationProgram(...)).

ArbitrationProgram(EProof, HCodeE, HProg)

{

HA hashblock (HProg)(// Start of hashblock HA

HA {

HA // PHashReg is Hash(Hash(Prog); Hash(CodeA), Hash(CodeE))

HA my (Result, M) = EProof;

HA my Secret = GetResponse();

HA If M = MAC(Result, Secret) return(true); else return(false);

HA }, HCodeE);

}

(3) The third party uses the certificate generated by the certified execution pro-
tocol to check whether the received value of the output, true or false is
authentic. Only if the output is true, the third party is convinced that
EProof was generated by ExecutionProgram(Prog, HCodeA) on the CPUF
device. In other words, the third party is convinced that Prog was executed in
ExecutionProgram(Prog, HCodeA) on the CPUF device.

ACM Transactions on Information Systems and Security, Vol. V, No. N, 20YY.

20 · Blaise Gassend et al.

Notice that both ExecutionProgram and the ArbitrationProgram compute the
same Secret (we are doing pure computation that cannot become stale; any day
we run the same computation it will give the same result). For this reason the
arbitration program will correctly verify the e-proof.

Since Prog is run within a separate hashblock, Prog cannot leak Secret. There-
fore, the only two programs that can compute Secret are the arbitration and execu-
tion programs. The user can only retrieve Secret by using GetResponse() within
a program that hashes to HCodeE or HCodeA. Such a program is computationally
intractable to find because of the collision resistance of Hash.

In this protocol, the program output, Result, is given to the third party along
with EProof, allowing the third party to verify that Prog has been run, and that it
output Result. For some applications, it is desirable to keep all or part of Result
hidden. In this case, only the (possibly empty) public part of Result should be
included in the EProof computation.

5. CONCLUSION

In this paper, we have presented CPUFs, which are Physical Random Functions
that can only be accessed through a restricted API. CPUFs hold the promise of
being a low cost way to increase the resistance to invasive attack of devices that
participate in cryptographic protocols.

We have presented a particular API in which the CPUF device has a general
purpose processing element that can access a PUF using two primitives called
GetResponse and GetSecret. These primitives use a hash of the program frag-
ment that is being run to identify that program fragment. GetResponse allows
anybody to get a large number of challenge-response pairs (CRPs), without letting
anybody choose a specific CRP that somebody else is already using. GetSecret

allows the bearer of a CRP to generate a secret value that is known only to himself
and his program running on the CPUF device.

Using this API, we have shown how the identity of a CPUF device can be verified
by its end user, using a few simple protocols. First the manufacturer uses Bootstrap
to get a CRP from the PUF as it is sitting in the secure environment where it was
made. Then the Renew and Introduce protocols can be used to generate more
CRPs and to give a CRP to another person, respectively. Renew and Introduce

leverage the existing CRP to establish a secure channel between the CPUF device
and the person interacting with it, relieving the need for the device to be in a secure
environment after the initial Bootstrap. Using these protocols, the identity of the
device can be passed from the device manufacturer to the end users via an arbitrary
number of certification authorities.

Finally, we have presented a few building blocks that can be useful in applications.
Certified execution allows a user to run a program on a CPUF device and be sure
that the output he receives was indeed generated on a specific device. Proof of
execution goes one step farther, allowing the user to prove to a third party that a
program has been executed on a specific device. In proof of execution, we show how
two programs running on the same CPUF device at different times can communicate
securely together.

Throughout this paper, we have informally argued that the presented protocols

ACM Transactions on Information Systems and Security, Vol. V, No. N, 20YY.

Controlled Physical Random Functions and Applications · 21

are secure. A formal proof of certified execution, which is at the core of all the other
protocols we have presented, can be found in [Torlak et al. 2006]. We encoded the
protocol in the Alloy modeling language [Jackson 2002] and checked its security
using the Alloy Analyzer [Jackson 2000]. The protocol was found to be secure
against replay and parallel session attacks for an unbounded number of sessions.

Overall, we feel that CPUFs should allow the potential of Physical Random
Functions to be fully exploited. This should provide cheap devices with much
increased resistance to invasive physical attacks, in a world where cryptography
has become pervasive in our cell phones, PDAs and even credit cards.

REFERENCES

Alves, T. and Felton, D. 2004. Trustzone: Integrated hardware and software security. ARM
white paper.

Anderson, R. and Kuhn, M. 1996. Tamper Resistance - a Cautionary Note. In Proceedings
of the Second Usenix Workshop on Electronic Commerce. Usenix Association, Berkeley, CA,
1–11.

Anderson, R. and Kuhn, M. 1997. Low Cost Attacks on Tamper Resistant Devices. In IWSP:
International Workshop on Security Protocols, LNCS. Springer-Verlag, New-York.

Anderson, R. J. 2001. Security Engineering: A Guide to Building Dependable Distributed Sys-
tems. John Wiley and Sons, Hoboken, NJ.

Carroll, A., Juarez, M., Polk, J., and Leininger, T. 2002. Microsoft “Palladium”: A Business
Overview. In Microsoft Content Security Business Unit.

Chinnery, D. and Keutzer, K. 2002. Closing the Gap Between ASIC & Custom. Kulwer
Academic Publishers.

Distributed.Net. http://distributed.net/.

Gassend, B. 2003. Physical Random Functions. M.S. thesis, Massachusetts Institute of Technol-
ogy.

Gassend, B., Clarke, D., van Dijk, M., and Devadas, S. 2002a. Controlled Physical Random
Functions . In Proceedings of 18th Annual Computer Security Applications Conference. Applied
Computer Security Associates (ACSA), Silver Spring, MD.

Gassend, B., Clarke, D., van Dijk, M., and Devadas, S. 2002b. Silicon Physical Random
Functions . In Proceedings of the Computer and Communication Security Conference. ACM,

New-York.

Gassend, B., Lim, D., Clarke, D., van Dijk, M., and Devadas, S. 2004. Identification and
authentication of integrated circuits. Concurrency and Computation: Practice and Experi-
ence 16, 11, 1077–1098.

Gassend, B., Suh, G. E., Clarke, D., van Dijk, M., and Devadas, S. 2003. Caches and
Merkle Trees for Efficient Memory Integrity Verification. In Proceedings of Ninth International
Symposium on High Performance Computer Architecture. IEEE, New-York.

Gutman, P. 1996. Secure deletion of data from magnetic and solid-state memory. In Sixth
USENIX Security Symposium Proceedings. Usenix Association, Berkeley, CA, 77–89.

Jackson, D. 2000. Automating first-order relational logic. In Proc. ACM SIGSOFT Conf. Foun-
dations of Software Engineering / European Software Engineering Conference (FSE/ESEC
’00). ACM, New York.

Jackson, D. 2002. Alloy: a lightweight object modelling notation. ACM TOSEM 11, 2, 256–290.

Kocher, P., Jaffe, J., and Jun, B. 1999. Differential Power Analysis. Lecture Notes in Computer
Science 1666, 388–397.

Lee, J.-W., Lim, D., Gassend, B., Suh, G. E., van Dijk, M., and Devadas, S. 2004. A Technique
to Build a Secret Key in Integrated Circuits with Identification and Authentication Applica-
tions. In Proceedings of the IEEE VLSI Circuits Symposium. IEEE, New-York.

Lie, D. 2003. Architectural support for copy and tamper-resistant software. Ph.D. thesis, Stanford
University.

ACM Transactions on Information Systems and Security, Vol. V, No. N, 20YY.

22 · Blaise Gassend et al.

Lie, D., Thekkath, C., Mitchell, M., Lincoln, P., Boneh, D., Mitchell, J., and Horowitz,

M. 2000. Architectural Support for Copy and Tamper Resistant Software. In Proceedings of
the 9th Int’l Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-IX). 168–177.

Lim, D. 2004. Extracting Secret Keys from Integrated Circuits. M.S. thesis, Massachusetts
Institute of Technology.

Lim, D., Lee, J. W., Gassend, B., Suh, G. E., van Dijk, M., and Devadas, S. 2005. Extracting
secret keys from integrated circuits. IEEE Trans. VLSI Syst. 13, 10, 1200–1205.

Microsoft. Next-Generation Secure Computing Base.
http://www.microsoft.com/resources/ngscb/defaul.mspx.

Pappu, R. 2001. Physical one-way functions. Ph.D. thesis, Massachusetts Institute of Technology.

Ravikanth, P. S., Recht, B., Taylor, J., and Gershenfeld, N. 2002. Physical One-Way
Functions. Science 297, 2026–2030.

SETI@Home.

Skoric, B., Tuyls, P., and Ophey, W. 2005. Robust key extraction from physical unclonable
functions. In Proceedings of the Applied Cryptography and Network Security Conference 2005.
Lecture Notes in Computer Science, vol. 3531. Springer-Verlag, New-York, 407–422.

Smith, S. W. and Weingart, S. H. 1999. Building a High-Performance, Programmable Secure
Coprocessor. Computer Networks (Special Issue on Computer Network Security) 31, 8 (April),
831–860.

Suh, G. E., Clarke, D., Gassend, B., van Dijk, M., and Devadas, S. 2003. aegis: Archi-
tecture for Tamper-Evident and Tamper-Resistant Processing. In Proceedings of the 17th Int’l
Conference on Supercomputing (MIT-CSAIL-CSG-Memo-474 is an updated version). ACM,
New-York.

Suh, G. E., O’Donnell, C. W., Sachdev, I., and Devadas, S. 2005. Design and Implementation
of the aegis Single-Chip Secure Processor Using Physical Random Functions. In Proceedings
of the 32nd Annual International Symposium on Computer Architecture. ACM, New-York.

Torlak, E., van Dijk, M., Gassend, B., Jackson, D., and Devadas, S. 2006. Knowledge flow
analysis for security protocols. http://arxiv.org/abs/cs/0605109.

Trusted Computing Group. 2004. TCG Specification Architecture Overview Revision 1.2.
http://www.trustedcomputinggroup.com/home.

Tuyls, P., Skoric, B., Stallinga, S., Akkermans, A., and Ophey, W. 2005. Information
theoretical security analysis of physical unclonable functions. In Proceedings Conf on Financial
Cryptography and Data Security 2005. Lecture Notes in Computer Science, vol. 3570. Springer-
Verlag, New-York, 141–155.

Weste, N. and Eshraghian, K. 1985. Principles of CMOS VLSI Design: A Systems Perspective.

Addison-Wesley, Boston.

Yee, B. S. 1994. Using secure coprocessors. Ph.D. thesis, Carnegie Mellon University.

ACM Transactions on Information Systems and Security, Vol. V, No. N, 20YY.

