Controlled Physical Random Functions'

Blaise Gassend, Dwaine Clarke, Marten van Dijkt and Srinivas Devadas
Massachusetts | nstitute of Technology
Laboratory for Computer Science
Cambridge, MA 02139, USA
{gassend,declarke,marten,devadas} @mit.edu

Abstract

A Physical Random Function (PUF) is a random func-
tion that can only be evaluated with the help of a complex
physical system. Weintroduce Controlled Physical Random
Functions (CPUFs) which are PUFs that can only be ac-
cessed via an algorithmthat is physically bound to the PUF
in an inseparabl e way.

CPUFs can be used to establish a shared secret between
a physical device and a remote user. We present protocols
that make this possiblein a secure and flexible way, even in
the case of multiple mutually mistrusting parties.

Once established, the shared secret can be used to en-
able a wide range of applications. e describe certified ex-
ecution, where a certificate is produced that proves that a
specific computation was carried out on a specific proces-
sor. Certified execution has many benefits, including pro-
tection against malicious nodes in distributed computation
networks. We al so briefly discuss a softwarelicensing appli-
cation.

1. Introduction

A Physical Random Function (PUF) isarandom function
that can only be evaluated with the help of acomplex phys-
ica system. PUFs can be implemented in different ways
and can be used in authenticated identification applications
[GCvDD02, Rav01]. In this paper, we introduce Controlled
Physical Random Functions (CPUFs) which are PUFs that
can only be accessed via an algorithm that is physicaly
bound to the PUF in an inseparabl e way.

PUFs and controlled PUFs enable a host of applications,
including smartcard identification, certified execution and

*This work was funded by Acer Inc., Delta Electronics Inc., HP Corp.,
NTT Inc., Nokia Research Center, and Philips Research under the MIT
Project Oxygen partnership.

tVisiting researcher from Philips Research, Prof Holstlaan 4, Eind-
hoven, The Netherlands.

software licensing. In current smartcards, it is possible for
someone who is in possession of a smartcard to produce a
clone of it, by extracting its digital key information through
one of many well documented attacks [And01]. With a
uniquePUF onthesmartcard that can be used to authenticate
the chip, adigita key is not required: the smartcard hard-
ware isitself the secret key. Thiskey cannot be duplicated,
S0 a person can lose control of it, retrieve it, and continue
usingit.

Certified execution produces a certificate which proves
that a specific computationwas carried out on aspecific pro-
cessor chip, and that the computation produced a given re-
sult. The person requesting thecomputation canthenrely on
the trustworthinessof the chip manufacturer who can vouch
that he produced the chip, instead of relying on the owner
of the chip, who could make up the result without actually
executing the computation.® Certified executionisvery use-
ful in grid computing (e.g., SETI@home) and other forms
of distributed computation to protect against maliciousvol-
unteers. In fact, certified execution can enable a business
mode! for anonymous computing, wherein computation can
be sold by individualsand the customer can be ensured re-
liability of service, viathe generation of certificates.

Controlled PUFs can al so beused to ensurethat a piece of
codeonly runson aprocessor chipthat hasaspecificidentity
defined by aPUF. In thisway, pirated codewouldfail to run.

In Section 2 we define PUFs and CPUFs. Thereader who
isnot interested in PUF or CPUF implementations can then
skip to Section 4. A possible implementation of PUFs and
controlled PUFs on siliconintegrated circuitsis the subject
of Section 3. Then in Section 4, we describe our model for
using controlled PUFs. Section 5 describes a man-in-the-
middleattack, and the protocol sthat protect a CPUF fromiit.
Finally, in Section 6, we describe how controlled PUFs can
be applied to authentication and certified execution prob-

IMany software methodshave been devised to get around this, but they
generdly involve performing extra computation. \We believe that these
methods are only justified until a satisfactory hardware solution becomes
widely available.

lems, and briefly describe a software licensing application.

2. Definitions

Definition 1 A Physical Random Function (PUF)? is a
functionthat maps challengesto responses, thatisembodied
by a physical device, and that verifies the following proper-
ties:

1. Easytoevaluate: Thephysical deviceiseasily capable
of evaluating the function in a short amount of time.

2. Hard to characterize: From a polynomial number of
plausible physical measurements (in particul ar, deter-
mination of chosen challenge-response pairs), an at-
tacker who no longer hasthedevice, and who can only
use a polynomial amount of resources (time, matter,
etc...) can only extract a negligible amount of infor-
mation about the response to a randomly chosen chal-
lenge.

In the above definition, the terms short and polynomial
are relative to the size of the device, which is the security
parameter. In particular, short means linear or low degree
polynomia. The term plausible is relative to the current
state of the art in measurement techniques and is likely to
change as improved methods are devised.

In previous literature [Rav0l] PUFs were referred to
as Physica One Way Functions, and realized using 3-
dimensiona micro-structures and coherent radiation. We
believe this terminology to be confusing because PUFs
do not match the standard meaning of one way functions
[MvOV96].

Definition 2 A PUF is said to be Controlled if it can only
be accessed via an algorithmthat is physically linked to the
PUF in an inseparableway (i.e., any attempt to circumvent
the algorithm will lead to the destruction of the PUF). In
particular thisalgorithmcan restrict the challengesthat are
presented to the PUF and can limit theinformationabout re-
sponsesthat is given to the outside world.

Thedefinition of control isquitestrong. Inpractice, link-
ing the PUF to the algorithm in an inseparable way is far
formtrivial. However, webdlievethat itismuch easier todo
than to link a conventional secret key to an algorithmin an
inseparable way, which iswhat current smartcards attempt.

Control turns out to be the fundamental ideathat allows
PUFs to go beyond simple authenticated identification ap-
plications. How thisisdone isthe main focus of this paper.

2PUF actually stands for Physical Unclonable Function. It has the ad-
vantageof being easier to pronounce, and it avoids confusion with Pseudo-
Random Functions.

Definition 3 A type of PUF is said to be Manufacturer Re-
sistant if it is technically impossible to produce two identi-
cal PUFs of thistype given only a polynomial amount of re-
SOUICES.

Manufacturer resistant PUFs are the most interesting
form of PUF as they can be used to make unclonable sys-
tems.

3. Implementing a Controlled Physical Ran-
dom Function

In this section, we describe ways in which PUFs and
CPUFscould beimplemented. In each case, asiliconICen-
forces the control on the PUF,

3.1. Digital PUF

It is possible to produce a PUF with classical crypto-
graphic primitives provided a key can be kept secret. If an
IC is equipped with a secret key k, and a pseudo-random
hash function A, and tamper resistant technology is used to
make k impossibleto extract from the I C, then the function

z — h(k,z)

isaPUF. If control logicisembedded on thetamper resistant
IC dong with the PUF, then we have effectively created a
CPUF.

However, this kind of CPUF is not very satisfactory.
First, it requires high quality tamper-proofing. There are
systems available to provide such tamper-resistance. For
example, IBM’s PCI Cryptographic Coprocessor, encap-
sulates a 486-class processing subsystem within a tamper-
sensing and tamper-responding environment where one can
run security-sensitive processes [SW99]. Smart cards aso
incorporate barriers to protect the hidden key(s), many of
which have been broken [And01]. In general, however, ef-
fective tamper resistant packages are expensive and bulky.

Secondly, the digital PUF is not manufacturer resistant.
The PUF manufacturer is free to produce multiple ICs with
the same secret key, or someone who manages to violatethe
IC’'s tamper-resistant packaging and extract the secret key
can easily produce a clone of the PUF.

Because of these two weaknesses, a digita PUF does
not offer any security advantage over conventiona crypto-
graphic primitives, and it istherefore better to use aconven-
tional crypto-system.

3.2. Silicon PUF

3.2.1. Statistical Variation of Delay

By exploiting statistical variationsin the delays of devices
(gates and wires) within the IC, we can create a manufac-

turer resistant PUF [GCvDDO02]. Manufactured IC’s, from
either the same lot or wafer have inherent delay variations.
There arerandom variationsin diesacross awafer, and from
wafer to wafer dueto, for instance, process temperature and
pressure variations, during the various manufacturing steps.
The magnitude of delay variation due to this random com-
ponent can be 5% or more.

On-chip measurement of delays can be carried out with
very high accuracy, and therefore the signal-to-noise ratio
when delays of corresponding wiresacrosstwo or morelC’s
are compared is quite high. The delays of the set of devices
inacircuit isunigue across multiple |C’'simplementing the
same circuit with very high probability, if the set of devices
islarge[GCvDDO02]. These delayscorrespondto animplicit
hidden key, as opposed to the explicitly hidden key in adig-
ital PUF. Whileenvironmental variations can cause changes
inthe delays of devices, relative measurement of delays, es-
sentially using delay ratios, provides robustness against en-
vironmenta variations, such as varying ambient tempera-
ture, and power supply variations.

3.2.2. Challenge-Response Pairs

Given a PUF, challenge-response pairs can be generated,
where the challenge can be adigital input stimulus, and the
response depends on the transient behavior of the PUF. For
instance, we can combine anumber of challenge dependent
delay measures into a digital response. The number of po-
tential challenges grows exponentially with the number of
inputsto the IC. Therefore, while two IC’smay have ahigh
probability of having the same response to a particul ar chal-
lenge, if we apply enough challenges, we can distinguishbe-
tweenthetwo IC's.

3.2.3. Attackson Silicon PUFs

There are many possible attacks on manufacturer resistant
PUF s — duplication, model building using direct measure-
ment, and model building using adaptively-chosen chal-
lengegeneration. Webriefly discusstheseand show that sig-
nificant barriers exist for each of these attacks. A more de-
tailed description can be found in [GCvDDO02].

The adversary can attempt to duplicate a PUF by fabri-
cating a counterfeit | C containing the PUF. However, dueto
dtatistical variation, unless the PUF is very simple, the ad-
versary will haveto fabricate ahuge number of 1C’ sand pre-
cisely characterize each one, in order to create and discover
acounterfeit.

Assume that the adversary has unrestricted access to the
| C containingthe PUF. The adversary can attempt to create a
mode! of the |C by measuring or otherwisedetermining very
precisely the delays of each device and wire within the IC.
Direct measurement of device delaysrequiresthe adversary
to open the package of the IC, and remove severd layers,

such asfield oxideand metal. One can also create apackage
which has a significant effect on the delays of each device
withinthe IC, and the removal of the package will immedi-
ately destroy the PUF, since the delays will change appre-
ciably.

The adversary could try to build a modd of the PUF by
measuring the response of the PUF to a polynomia num-
ber of adaptively-chosen challenges.® We believe thisto be
the most plausible form of attack. However, thereisasig-
nificant barrier to thisform of attack as well because creat-
ing timing models of a circuit accurate to within measure-
ment error isavery difficult problem that has received alot
of attention from the simulation community. Manageable-
sized timing models can be produced which are within 10%
of thereal delays, but not within the measurement accuracy
of ~ 0.1%.

In addition to attacking the PUF directly, the adversary
can attempt to violate a CPUF's control. Thisincludestry-
ing to get direct access to the PUF, or trying to violate the
control agorithm (which includes the private and authenti-
cated execution environment that we will be discussing in
Section 5). The best way we have found to prevent this at-
tack isfor theagorithm (i.e., thedigita part of thelC) to be
embedded within the physical system that defines the PUF.
In the Silicon PUF casg, this can be accomplished by over-
laying PUF delay wires over any digital circuitry that needs
to be protected. Damaging any one of those wires would
change the PUF, rendering the adversary’s attack useless.
This strategy obviates the need for active intrusion sensors
that are present in conventional secure devices to destroy
key materia inthe event that an invasive attack occurs. For
non invasive attacks such as irradiating the IC or making it
undergo voltagespikesand clock glitches, conventional pre-
vention methods must be used.

3.3. Improving a PUF Using Control

Using control, it is possible to make a silicon PUF more
robust and reliable. Figure1 summarizesthecontrol that can
be placed around the PUF to improveit. The full details of
these improvements can be found in [GCvDDO02)].

A random hash function placed before the PUF prevents
the adversary from performing achosen challengeattack on
the PUF. Thisprevents amodel -building adversary from se-
lecting challengesthat allow himto extract parameters more
easily. AnError Correcting Code (ECC) can be used to take
noisy physica measurements and turn them into consistent
responses. Finaly, an output random hash function decore-
lates the response from actual physical measurements, thus
making a model-building adversary’s task even harder.

3Clearly, amodel can be built by exhaustively enumerating all possible
challenges, but this isintractable.

Improved PUF

Challenge Random Random

Personality Hesh PUF —=|ECC Hash

Response

R(adunde\m)>L Information

Figure 1. Using control to improve a PUF.

3.3.1. Giving a PUF Multiple Personalities

A possible concern with the use of PUFs is in the area of
privacy. Indeed, past experience shows that users feel un-
comfortablewith processorsthat have uniqueidentifiers, be-
cause they fed that they can be tracked. Users could have
the same type of concern with the use of PUFs, given that
PUFs are aform of unique identifier.

This problem can be solved by providing a PUF with
multiple personalities. The owner of the PUF has a param-
eter that she can control that allows her to show different
facets of her PUF to different applications. To do this, we
hash the challenge with a user-sel ected personality number,
and use that hash as the input to the rest of the PUF.

In this way, the owner effectively has many different
PUFsat her disposal, so third partiesto which she has shown
different personalities cannot determine if they interacted
with the same PUF.

Section 5.4 goes into the detail s of the protocolsthat use
multiple personalities.

4. Models
4.1 Application Model

Figure2illustratesthe basic model for applicationsusing
the PUF.

e Theuser isthe principal that wants to make use of the
computing capabilities of a chip.

e Theuser and the chip are connected to one another by
an untrusted public communication channel.

¢ Theinterface between the chip and the untrusted com-
munication channel is a PUF.

¢ Givenachallenge aPUF can compute a corresponding
response.

e Theuser isin the possession of her own privatelist of
CRPs originaly generated by the PUF. Thelist is pri-
vate because only the user and the PUF know the re-
sponses to each of the challenges in the list. We as-

sume that the user’s challenges can be public, and that
the user has established several CRPswith the PUF.

untrusted
— ¢t -
- | communication\ " 5

channel

Figure 2. Model for Applications

The responses are only known to the user and the PUF.
To establish this property we need a secure way of manag-
ing the CRPs as described in section 4.2. CPUFscontrol the
access to CRPsby a gorithmswhich enabl e secure manage-
ment. Specia attention will be given to protection against
man-in-the-middl e-attacks while managing CRPs. To pre-
vent man-in-the-middleattacks, we prevent a user from ask-
ing for the response to a specific challenge, during the CRP
management protocols. Thisisa concern in the CRP man-
agement protocols, as, in these protocols, the chip sends re-
sponses to the user. In the application protocols, the re-
sponses are used to generate MACS, and are never sent to
the user.

4.2. CRP Management Models

In our models for challenge-response pair management,
the user does not have CRPs for the CPUF yet, and would
liketo establish itsown private list of CRPs. For challenge-
response pair management, we introduce the following 3
new principals:

e manufacturer: the manufacturer is the principal that
made the chip with the CPUF. When the manufacturer
had the chip, and wasin physical contact with the chip,
it established its own private list of CRPs. We assume
that, in the specia situation when the manufacturer is
in physical contact with the CPUF chip, the communi-
cation channel between the manufacturer and the chip
isauthentic and private. Though the manufacturer was
originalyin physical contact with the chip, we assume
that it does not have the chip now.

e owner: theowner istheprincipal that control saccessto
the CPUF. The owner hasitsown privatelist of CRPs.
The owner can be considered to be the principa that
bought the CPUF chip from the manufacturer.

o certifier: the certifier hasits own private list of CRPs
for the CPUF, and is trusted by the user. The manu-
facturer of the CPUF chip can act as a certifier to other
users. After the user has established itsown privatelist
of CRPs, it may act as a certifier to another user, if the

second user truststhefirst user. For example, if theuser
trusts the owner of the chip, the owner of the chip can
also act as a certifier.

We have 5 scenarios:

o bootstrapping: the manufacturer of the CPUF getsthe
initial CRP from the CPUF.

introduction: a user, who does not have any CRPs for
the CPUF, securely obtainsa CRP from a certifier.

privaterenewal: after obtaininga CRPfrom acertifier,
the user can use this CRP to generate his own private
list of CRPs.

renewal: after generating hisown privatelist of CRPs,
the user can use one of these to generate more private
CRPs.

e anonymous introduction: in anonymous introduction,
a user, who does not have any CRPs for the CPUF,
securely obtains a certified, anonymous, CRP for the
CPUF. The user is given a CRP that is certified by
the certifier. However, in anonymous introduction, the
owner of the CPUF does not want to reveal to the user
which CPUF theuser isbeing givena CRPto. Thus, at
the end of the protocol, the user knowsthat he has been
givenaCRPthatiscertified by thecertifier, and can use
this CRP to generate other CRPs with the CPUF and
run applications using the CPUF. However, if the user
colludes with the certifier, or other users with certified,
anonymous CRPs to the CPUF, he will not be able to
use the CRPs to determine that he is communicating
with the same CPUF as them.

4.2.1. Bootstrapping

Figure 3 illustrates the model for bootstrapping. When a
CPUF hasjust been produced, the manufacturer generates a
CRPfor it. We assume that, when the manufacturer gener-
atesthisCRP, itisin physical contact with thechip, and thus,
the communication channel is private and authentic. None
of the other protocols make this assumption.

-
s+ Corans

Figure 3. Model for Bootstrapping

4.2.2. Introduction

Figure4 illustratesthe model for CPUF introduction. Inin-
troduction, thecertifier givesa CRPfor the CPUF to theuser
over achannel that isauthentic and private.

Asthe certifier knowsthe CRPthe user is given, the cer-
tifier can read al of the messages the user exchanges with
the CPUF using this CRP. The user, thus, needs to use the
private renewal protocol to generate his own private list of
CRPs.

Furthermore, as, in this scheme, the CPUF honors mes-
sages that are MAC’ ed with a key generated from the re-
sponse of the CRPthe certifier has givento the user, the user
and the certifier can collude to determine that they are com-
muni cating with the same CPUF. They, and other users who
use the same certifier, may then be able to use this infor-
mation to track and monitor the CPUF's transactions. The
CPUF sowner can introducethe CPUF to the user using the
anonymous introduction protocol to deal with this problem.

Comfin D =y U D
-~

Figure 4. Model for Introduction

4.2.3. Private Renewal

Figure 5 illustrates the model for private renewal. The user
is assumed to aready have a certified CRP. However, he
wants to generate a private list of CRPs. In this modd, the
communication channel between the user and the CPUF is
untrusted.

untrusted
— ¢t -
-« | communication\ — 5

channel

Figure 5. Model for Private Renewal

4.2.4. Renewal

The modd for renewal is the same as that for private re-
newal. The user isassumed to have already generated apri-
vate list of CRPs, and would like to generate more private
CRPs with the CPUF. He may need more CRPs for his ap-
plications, say.

4.2.5. Anonymous I ntroduction

Figure 6 illustrates the model for anonymous introduction.
Again, the user is the principa which does not have CRPs
for the CPUF yet, and would like to establish its own pri-
vatelist of CRPs. The communication channel sbetween the
certifier, owner and user are secure (private and authentic).

The communi cation channel s between each of these princi-
pals and the CPUF is untrusted. In our version of the pro-
tocol, the certifier and owner communicate with each other,
the owner and user communicate with each other, and the
owner communicates with the CPUF. The certifier and user
can potentialy colludeto determineif their CRPsare for the
same CPUF.

untrusted
communication
channel

44
~ \
\

Figure 6. Model for Anonymous Introduction

5. Protocols

We will now describe the protocols that are necessary
in order to use PUFs. These protocols must be designed
to make it impossible to get the response to a chosen chal-
lenge. Indeed, if that were possible, then we would be vul-
nerable to a man-in-the-middl e attack that breaks nearly all
applications. The strategy that we describe isdesigned to be
deterministic and state-free to make it as widely applicable
as possible. Slightly simpler protocols are possibleif these
constraints are relaxed.

5.1. Man-in-the-Middle Attack

Before looking at the protocols, let us have a closer look
at man-in-the-middle attack that we must defend against.
The ability to prevent this man-in-the-middle attack is the
fundamental difference between controlledand uncontrolled
PUFs.

The scenario is the following. Alice wants to use a
challenge-response pair (CRP) that shehastointeract witha
CPUF in acontrolled way (we are assuming that the CRPis
the only shared secret between Alice and the CPUF). Oscar,
the adversary, has access to the PUF, and has a method that
allows him to extract from it the response to a challenge of
his choosing. He wantsto impersonate the CPUF that Alice
wants to interact with.

At some point, in her interaction with the CPUF, Alice
will haveto givethe CPUF the challengefor her CRP so that
the CPUF can cdculate the response that it isto share with
her. Oscar can read this challenge because up to this point
in the protocol Alice and the CPUF do not share any secret.
Oscar can now get the response to Alice's challenge from

the CPUF, since he has a method of doing so. Once Oscar
has the response, he can impersonate the CPUF because he
knowseverything Alice knows about the PUF. Thisisnot at
al what Aliceintended.

We should take note that in the above scenario, there is
onethingthat Oscar has provento Alice. He has proven that
he has access to the CPUF. In some applications, such as
the key cards from [Rav01], proving that someone has ac-
cess to the CPUF is probably good enough. However, for
more powerful examples such as certified execution that we
will cover in section 6.2, where we are trying to protect Al-
icefromthevery owner of the CPUF, free access to the PUF
isno longer sufficient.

More subtleforms of the man-in-the-middleattack exist.
Suppose that Alice wants to use the CPUF to do what we
will refer toin section 6.2 as certified execution. Essentialy,
Aliceis sending the CPUF a program to execute. This pro-
gram executes on the CPUF, and uses the shared secret that
the CPUF calculates to interact with Alice in a secure way.
Here, Oscar can replace Alice sprogram by aprogram of his
own choosing, and get his program to execute on the CPUF.
Oscar’s program then uses the shared secret to produce mes-
sagesthat look likethe messages that Aliceisexpecting, but
that areinfact forgeries.

5.2. Defeating the Man-in-the-Middle Attack

5.2.1. Basic CPUF Access Primitives

In the rest of this section, we will assume that the CPUF is
able to execute some form of program in a private (nobody
can see what the program is doing) and authentic (nobody
can modify what the programisdoing) way.* Insome CPUF
implementationswhere we do not need the ability to execute
arbitrary agorithms, the program’s actions might in fact be
implemented in hardware or by some other means —the ex-
act implementation detail smake no differenceto thefollow-
ing discussion.

In this paper we will write programs in pseudo-code in
which afew basic functions are used:

e Qut put (argl, .) isused to send results out of
the CPUF. Anythingthat is sent out of the CPUF is po-
tentially visibleto thewholeworld, except during boot-
strapping, where the manufacturer is in physical pos-
session of the CPUF.

e Encrypt AndMAC(message, key) isusedtoen-
crypt and MAC nessage withkey.

e Publ i cEncrypt (nmessage, key) isusedtoen-
crypt message with key, the public key.

4Infact the privacy requirement can be substantially reduced. Only the
key material that is being manipulated needsto remain hidden.

e MAC(ressage, key) MACsnessage withkey.

The CPUF scontrol isdesigned so that the PUF can only
be accessed by programs, and only by using two primitive
functions: Get Response and GetSecret. If f isthe PUF,
and h is a publicly available random hash function (or in
practi ce some pseudo-random function) then the primitives
are defined as:

GetResponse(PreChallenge) =
f(h(h(Program), PreChallenge))

GetSecret(Challenge) =
h(h(Program), f (Challenge))

In these primitives, Program isthe program that is be-
ing run in an authentic way. Just before starting the pro-
gram, the CPUF calculates h(Program), and later uses
thisvaluewhen Get Response and Get Secret areinvoked.
We shall show in the next section that these two primitives
are sufficient to implement the CRP management scenar-
ios that were detailed in section 4. We shall also see that
Get Response isessentially used for CRP generation while
GetSecret is used by applications that want to produce a
shared secret from a CRP.

Figure 7 summari zes the possi bleways of going between
pre-challenges, challenges, responses and shared secrets. In
this diagram moving down is easy. You just have to cal-
culate a few hashes. Moving up is hard because it would
involve reversing those hashes, which happen to be one-
way hashes. Going from left to right is easy for the pro-
gramwhosehashisusedinthe Get Response or GetSecret
primitives, and hard for al other programs. Going from
right to left is hard if we assume that the PUF can't invert
aone-way function. We will not use thisfact as the adver-
sary’stask wouldn't be easier if it was easy.

5.2.2. Usinga CRP to Get a Shared Secret

To show that the man-in-the-middle attack has been de-
feated, we shall show that a user who has a CRP can use
it to establish a shared secret with the PUF (previoudly,
the man-in-the-middle could determine the value of what
should have been a shared secret).

Theuser sendsaprogram likethe one below tothe CPUF,
where Chal | enge isthe chalenge from the CRP that the
user already knows.

begi n program
Secret = CGet Secret (Chall enge);
/* Programthat uses Secret as *
* a shared secret with the user */
end program

Note that ~ (program) includes everything that is con-
tained between begi n programand end program
That includes the actual value of Chal | enge. The same
code with a different value for Chal | enge would have a
different program hash.

The user can determine Secr et because he knows
the response to Chal | enge, and so he can calculate
h (h (program) ,response). Now we must show that a
man-in-the-middle cannot determine Secr et .

By looking at the program that is being sent to the CPUF,
theadversary can determinethe challenge fromthe CRPthat
isbeing used. Thisisthe only starting point he has to try to
find the shared secret. Unfortunately for him, the adversary
cannot get anything useful from the challenge. Because the
challenge is deduced from the pre-challenge via a random
function, theadversary cannot get the pre-challengedirectly.
Getting the Response directly isimpossiblebecause theonly
way to get aresponse out of the CPUF isstarting with apre-
challenge. Therefore, the adversary must get the shared se-
cret directly from the challenge.

However, only aprogram that hashestothe samevaueas
the user’s program can get from the challenge to the secret
directly by using GetSecret (any other program would get
adifferent secret that can’t be used to find out the response
or thesought after secret because it isthe output of arandom
function). Since the hash function that we are using is colli-
sion resistant, the only program that the attacker can use to
get the shared secret isthe user’s program. If the user pro-
gram iswritten in such away that it does not leak the secret
to the adversary, then the man-in-the middl e attack fails. Of
coursg, it is perfectly possiblethat the user’s program could
leak the shared secret if itisbadly written. But thisisaprob-
lem with any secure program, and is not specific to PUFs.
Our god isn't to prevent aprogram from giving away itsse-
cret but to makeit possiblefor awell written programto pro-
duce a shared secret.

5.3. Challenge Response Pair Management Proto-
cols

Now we shall see how Get Response and GetSecret
can be used to implement the key management primitives
that were described in section 4.5 It isworth noting that the
CPUF need not preserve any state between program execu-
tions.

5The implementationsthat are presented contain the minimum amount
to encryption to ensure security. A practical implementation would proba-
bly want to include noncesto ensure message freshness, and would encrypt
and MAC asmuchinformation aspossible. In particular, it is not necessary
in our model to encrypt the pre-challengesthat are used to produce CRPs.
Nevertheless hiding the pre-challenge (and therefore the challenge) would
make it harder for an adversary to mount an attack in which he managesto
forcibly extract the responseto a specific challenge from the CPUF.

Easy only for the right program

Hard
Pre—Challenge (1) GRP calls GetResponse Response
_/ don - - >\GRP
=l h(GRP pva® h(GSP
£ i SDr(eCha? ® P UEE &éspon)se)
Challgnge\\ (2) GSP calls GetSecret m—Secret
GRP GRP, GSP

Figure 7. This diagram shows the different ways of moving between Pre-Challenges, Challenges,
Responses and Shared-Secrets. The dotted arrow indicates what the PUF does, but since the PUF
is controlled, nobody can go along the arrow directly. GRP and GSP are the programs that call
GetResponse and GetSecret respectively. The challenge and the response depend on the GRP that
created them, and the shared secret depends on the GSP.

5.3.1. Bootstrapping

The manufacturer makes the CPUF run the following pro-
gram, where Pr eChal | isset to some arbitrary vaue.

begi n program
Response = Get Response(PreChall);
Qut put (Response) ;

end program

The user gets the chalenge for his newly created CRP
by caculating h(h(program), Pr eChal |), theresponseis
the output of the program.

5.3.2. Renewal

The user sends the following program to the CPUF, where
PreChal | isset to somearbitrary value, and O dChal |
isthe challenge from the CRP that the user already knows.

begi n program

NewResponse = CGet Response(PreChall);
Qut put (Encr ypt AndMAC(
NewResponse, GCet Secret(d dChall)));

end program

Only the user and the CPUF have the initiadl CRP
needed to compute Get Secr et (A dChal) . Itisther
shared secret. The user can be sure that only he can get
NewResponse, becauseitisencrypted with the shared se-
cret. An adversary can change A dChal | to a challenge
that he knows the response to, but sinced dChal | is part
of the program, the newly created CRP would be different
from the one that the adversary istrying to hijack (because
Get Response combines the pre-chalenge with a random
hash of the program that is being run). The MAC proves

that NewResponse that the user isgetting originated from
the CPUF. The user getsthe challenge for hisnewly created
CRP by calculating h(h(program), PreChal I).

5.3.3. Introduction

Introductionis particularly easy. The certifier simply sends
aCRPto the user over some agreed upon secure channel. In
many cases, the certifier will use renewal to generate a new
CRP, and then send that to the user. The user will then use
private renewal to produce a CRP that the certifier does not
know.

5.3.4. Private Renewal

The user sends the following program to the CPUF, where
Pr eChal | issettosomearbitraryvalue, d dChal | isthe
challenge from the CRP that the user aready knows, and
PubKey isthe user’s public key.

begi n program
NewResponse =
Message =
Publ i cEncr ypt (NewResponse,
Qut put (Message,
MAC(Message,
end program

Get Response(PreChal |);
PubKey) ;

Get Secret (A dChall)));

The user can be certain that only he can read the
NewResponse, because it is encrypted with his public
key. If the adversary tries to replace PubKey by his own
public key, he will get the response to a different chal-
lenge because PubKey is part of the program, and there-
fore indirectly changes the output of Get Response. The

MAC can only be forged by the party that the user is shar-
ing the old CRP with (probably a certifier that the user
just performed introduction with). If we assume that that
party is not doing an active attack, then we know that
the MAC was produced by the CPUF, and therefore, the
NewResponse isindeed characteristic of the CPUF. The
user getsthe challenge for his newly created CRP by cal cu-
lating h(h(program), PreChal |).

5.4. Anonymity Preserving Protocols

In section 3.3.1 we showed how a CPUF could be made
to take on many different personalitiesin order to preserve
the anonymity of its owner. People don’t want their CPUF
to give away the fact that the same person is gambling
on gambling.com and doing anonymous computation for
SETI@home. In thissection, we shall add a personaity se-
lector tothe PUF asinfigure 1. We shall call the personality
selector Per sonal i t ySel . The person who is trying to
hide his identity will be called the owner of the CPUF, but
aswe shall see at theend of section 5.4.2 the notionismore
genera than this. We shall assume that al sources of infor-
mation concerning the identity of the CPUF's owner have
been diminated by other protocol layers, and shall focus on
preventing the CPUF from leaking his identity. We shall
also assume that there are enough peopl e using anonymized
introduction that traffic analysis (correlating the arriva of a
message at a node with the departure of a message a little
whilelater ssimply from timing considerations) is unusable.

Programs must not be given permissionto freely writeto
Per sonal i t ySel , or else they could put the CPUF into
aknown personality and defeat the purpose of having a per-
sonality selector. We shall therefore describe how thevaue
of Per sonal i t ySel iscontrolled. First, two new primi-
tive functions are provided by the CPUF:

e ChangePer sonal i t y(Seed) setsthe personality
to h(Personal i tySel , Seed). Wherehisaran-
dom hash function.

e RunPr og(Program runsthe itsargument without
changing Per sonal i t ySel .

Moreover, when aprogram isloaded into the CPUF from
the outside world, and run (as opposed to being run by
RunPr og), Personal i t ySel isset to zero. We shall
cal thisthe default personality.

The pseudo-code uses afew extra primitive functions:

e Decrypt (nesg, key) is used to decrypt mesg
that was encrypted with key.

e HashW t hProg(x) computes h(h(program), X).
Thisfunction reads the area where the CPUF is storing
the hash of the program.

e Hash(...) isarandom hash function.

e Blind(mesg, fact) isused to apply the blinding
factor f act tomesg. See section 5.4.2 for abrief de-
scription of blinding.

5.4.1. Choosing the Current Personality

When the CPUF's owner wants to show a personality other
than his CPUF's default personality, he intercepts dl pro-
grams being sent to the CPUF and encapsulates them in a
piece of code of hisown:

ESeed =
/* the personality seed *
* encrypted with Secret */

EPr ogram =
/* the encapsul ated program *
* encrypted with Secret */

begi n program
Secret = CGet Secret(Chall enge);
Seed = Decrypt (Eseed, Secret);
Program = Decrypt (EProgram Secret);

ChangePer sonal i t y(Seed) ;
RunPr og(Pr ogr am ;
end program

Note that the line that precedes begi n pr ogr amisa
piece of datathat accompani esthe program but that does not
participate in the hash of the program. If EPr ogr amwere
included in the hash, then we would not be ableto encrypt it
because the encryption key would depend on the encrypted
program. Other values that appear are Seed, an arbitrarily
selected seed; and Chal | enge, the chalenge of one of the
owner’'s CRPs.

By encapsulating the program in this way, the owner is
able to change the personality that the CPUF is exhibiting
when it runsthe user’s program. Thereisno primitiveto al-
low the user’ s program to see the personality that it isusing,
and the seed that is used with ChangePer sonal ity is
encrypted so the user has no way of knowing which person-
ality heisusing. The user’s program is encrypted, so even
by monitoring the owner’s communication, the user cannot
determine if the program that is being sent to the CPUF is
his own program.

5.4.2. Anonymous|ntroduction

The anonymous introduction protocol is much more com-
plicated than the other protocols we have seen so far. We
will only sketch out the details of why it works. This pro-
tocol uses blinding, a description of which can be found in
[Schog).

The essential idea of blinding is this: Alice wants Bob
to sign a message for her, but she does not want Bob to
know what he has signed. To do this Alice hides the mes-
sage by applying what is called a blinding factor. Bob re-
ceives the blinded message, signsit and returns the signed
blinded message to Alice. Alice can then remove the blind-
ing factor without damaging Bob’s signature. The resulting
message issigned by Bob, but if Bob signs many messages,
he cannot tell which unblinded message he signed on which
occasion.®

Here is the anonymous introduction protocol :

1. The owner collects a challenge from the certifier, and
the user’s public key. He produces the following pro-
gram from figure 8 that is sent to the CPUF.

2. The owner decrypts the output from the CPUF, checks
the MAC, and passes Mesg5 on to the certifier, dong
with a copy of the program (only the part that partici-
patesin the MAC) encrypted with the certifier’spublic

key.

3. The certifier decryptsthe program, checksthat it isthe
official anonymous introduction program, then hashes
it to calculate Cer t Secr et . He can then verify that
Mesg4 is authentic with the MAC. He findly signs
Mesg4, and sends the result to the owner.

4. The owner unblinds the message, and ends up with a
signed version of Mesg3. He can check the signature,
and the MAC in Mesg3 to make sure that the certifier
isn't communicating hisidentity to the user. Hefinally
sends the unblinded message to the user. This message
isinfact aversion of Mesg3 signed by the certifier.

5. The user checks the signature, and decrypts Mesg2
with his secret key to get a CRP.

Remarks:

e User PubKey and Cert Chal | enge must be en-
crypted, otherwise it is possible to correlate the mes-
sage that Alice sends to the CPUF with the certifier’s
challenge or with the user’s public key.

e Seed must be encrypted to prevent the certifier or the
user from knowing how to voluntarily get into the per-
sonality that the user is being shown.

8In this protocol, to avoid over-complication, we have assumed that Al-
ice does not need to know Bob'’s public key in order to sign a message.
For real-world protocols such as the one that David Chaum describesin
[Cha85] thisisnot true. Therefore, an actual implementation of our anony-
mousintroduction protocol might have to include the certifier’s public key
inthe program that is sent to the CPUF. In that case, it should be encrypted
to prevent correlation of messages going to the CPUF with a specific trans-
action with the certifier.

/* Various val ues encrypted
with Omner Secret. */

ESeed = ...
EPreChal | engeSeed = ...
EUser PubKey = ...

ECert Chal l enge = ...

begi n program
Onner Secret = Cet Secr et (Oaner Chal | enge) ;
Seed = Decrypt (ESeed, OwnerSecret);
PreChal | engeSeed =
Decrypt (EPr eChal | engeSeed, Owner Secret);
User PubKey =
Decrypt (EUser PubKey, Owaner Secret);
Cert Chal | enge =
Decrypt (ECert Chal | enge, Oaner Secret);

Cert Secret = CGetSecret(CertChall enge);
PreChal | enge =

Hash(User PubKey, PreChal |l engeSeed);
NewChal | enge = HashW t hPr og(Pr eChal | enge) ;
ChangePer sonal i t y(Seed) ;
NewResponse = CGet Response(PreChal |l enge);

Mesgl = (NewChal | enge, NewResponse);

Mesg2 = PublicEncrypt(Mesgl, UserPubKey);
Mesg3 = (Mesg2, MAC(Mesg2, Omner Secret));
Mesg4 = Blind(Mesg3, OwmnerSecret);

Mesg5 = (Mesg4, MAC(Mesg4, CertSecret));
Mesg6 = Encrypt AndMVAC(Mesg5, Owner Secret);

Qut put (Mesgb) ;
end program

Figure 8. The anonymous introduction pro-
gram.

e PreChal | engeSeed must be encrypted to prevent
the certifier from finding out the newly created chal-
lenge when he inspects the program in step 3.

e Theencryption between Mesg5 and Mesg6 isneeded
to prevent correl ation of the message from the CPUFto
the owner and the message from the owner to the cer-
tifier.

Interestingly, we are not limited to one layer of encapsu-
lation. A principal who has gained access to a personality
of a CPUF through anonymous introduction can introduce
other partiestothisPUF. In particul ar, hecan send thesigned
CRPthat hereceived back tothe certifier and get thecertifier
to act asacertifier for hispersonality when he anonymously
introduces the CPUF to other parties.

6. Applications

We believethere are many applicationsfor which CPUFs
can be used, and we describe afew here. Other applications
can be imagined by studying the literature on secure copro-
cessors, in particular [Yee94]. We note that the general ap-
plicationsfor which thistechnology can be used include all
the applications today in which there is a single symmetric
key on the chip.

6.1. Smartcard Authentication

The easiest application to implement is authentication.
One widespread application is smartcards. Current smart-
cards have hidden digital keys that can sometimes be ex-
tracted using many different kinds of attacks [And01]. With
a unique PUF on the smartcard that can be used to authen-
ticate the chip, a digita key is not required: the smartcard
hardware isitself the secret key. This key cannot be dupli-
cated, so aperson can lose control of it, retrieveit, and con-
tinueusing it. The smartcard can be turned off if the owner
thinks that it is permanently lost by getting the application
authority to forget what it knows of the secret signature that
is associated with the unique smartcard.

The following basic protocol is an outline of a protocol
that a bank could use to authenticate messages from PUF
smartcards. This protocol guarantees that the message the
bank receives originated from the smartcard. It does not,
however authenticate the bearer of the smartcard. Some
other means such as a PIN number or biometrics must be
used by the smartcard to determine if its bearer is alowed
touseit.

1. The bank sends the following program to the smart-
card, whereRisasingleuse number and Chal | enge
isthe bank’s challenge:

begi n program
Secret = CGet Secret(Chall enge);

/* The smartcard sonmehow *
* generates Message to send *
* to the bank */

Qut put (Message,
MAC((Message, R), Secret));
end program

2. The bank checks the MAC to verify the authenticity
and freshness of the message that it gets back from the
PUF.

The number Risuseful in the case where the smartcard
has state that is preserved between executions. In that case
it isimportant to ensure the freshness of the message.

If the privacy of the smartcard’s message is a require-
ment, the bank can a so encrypt the message with the same
key that isused for the MAC.

6.2. Certified execution

At present, computation power is a commodity that un-
dergoes massive waste. Most computer users only use a
fraction of their computer’s processing power, though they
use it in a bursty way, which justifies the constant demand
for higher performance. A number of organizations, such
as SETI@home and distributed.net, are trying to tap that
wasted computing power to carry out large computationsin
ahighly distributed way. This style of computation isunre-
liable as the person requesting the computation has no way
of knowing that it was executed without any tampering.

With chip authentication, it would be possible for a cer-
tificate to be produced that proves that a specific computa-
tion was carried out on a specific chip. The person request-
ing the computation can then rely on the trustworthiness of
the chip manufacturer who can vouch that he produced the
chip, instead of relying on the owner of the chip.

There are two ways in which the system could be used.
Either the computation is done directly on the secure chip,
either it isdone on afaster insecure chip that is being moni-
tored in ahighly interactiveway by supervisory code on the
secure chip.

To illustrate this application, we present a simple exam-
pleinwhich the computationis donedirectly on thechip. A
user, Alice, wants to run a computationally expensive pro-
gram over the weekend on Bob’s 128-bit, 300MHz, single-
tasking computer. Bob's computer has a single chip, which
hasaPUF. Alicehasalready established CRPswiththe PUF
chip.

1. Alicesendsthefollowing program to the CPUF, where
Chal | enge isthe challenge from her CRP:

begi n program
Secret = CGet Secret(Chall enge);
/* The certified conputation *
* is performed, the result *
* is placed in Result */
Qut put (Resul t,
MAC(Resul t, Secret));
end program

2. Thebank checks the MAC to verify the authenticity of
the message that it gets back from the PUF.

Unlike the smartcard application, we did not include a
single use random number in this protocol. Thisis because
we are assuming that we are doing pure computation that

cannot become stale (any day we run the same computation
it will givethe same result).

Inthisapplication, Aliceistrusting that thechipin Bob's
computer performs the computation correctly. Thisis eas-
ier to ensure if al the resources used to perform the com-
putation (memory, CPU, etc.) are on the PUF chip, and in-
cluded in the PUF characterization. We are currently re-
searching and desi gning more sophisticated architecturesin
which the PUF chip can securely utilize off-chip resources
using some ideas from [Lie00] and a memory authentica-
tion scheme that can be implemented in a hardware proces-
sor [GSCt03].

There is aso the possibility of a PUF chip using the ca-
pabilities of other networked PUF chips and devices using
certified executions. The PUF would have CRPsfor each of
the computers it would be using, and perform computations
using protocol s similar to the one described in this section.

6.3. Software licensing

We are exploring ways in which apiece of code could be
madeto run only on achip that hasaspecific i dentity defined
by a PUF. In thisway, pirated code would fail to run. One
method that we are considering isto encrypt the code using
the PUF s responses on an instruction per instruction basis.
Theinstructionswould be decrypted inside of the PUF chip,
and could only bedecrypted by theintended chip. Astheop-
erating system and off-chip storageisuntrustworthy, special
architectural support will be needed to protect the intellec-
tual property asin [Lie0Q].

7. Conclusion

Inthis paper we have introduced the notion of Controlled
Physical Random Functions (CPUFs) and shown how they
can be used to establish ashared secret with a specific physi-
ca device. The proposedinfrastructureisflexible enoughto
allow multiple mutually mistrusting parties to securely use
the same device. Moreover, provisions have been made to
preserve the privacy of the device's owner by allowing her
to show apparently different PUFs at different times.

We have aso described two examples of how CPUFs
can be applied. They hold promise in creating smartcards
with an unprecedented level of security. They also enable
these smartcards or other processorsto run user programsin
a secure manner, producing a certificate that gives the user
confidence in the results generated. While we have not de-
scribed software licensing and intellectual property protec-
tion applicationsin this paper, the protocolsfor these appli-
cationswill have some similarity to those described herein,
and are a subject of ongoing work.

References

[And01]

[Chas5]

[GCvDDO02]

[GSC+03]

[Lie00]

[MvOV96]

[Rav01]

[Schos]

[SW99]

[Yee4]

Ross J. Anderson. Security Engineering:
A Guide to Building Dependable Distributed
Systems. John Wiley and Sons, 2001.

David Chaum. Security without identifica-
tion: Transaction systems to make big brother
obsolete. Communications of the ACM,
28:1030-1040, 1985.

Blaise Gassend, Dwaine Clarke, Marten van
Dijk, and Srinivas Devadas. Silicon physical
random functions. In Proceedings of the 9*%
ACM Conference on Computer and Commu-
nications Security, November 2002.

Blaise Gassend, G. Edward Suh, Dwaine
Clarke, Marten van Dijk, and Srinivas De-
vadas. Caches and merkle trees for effi-
cient memory authentication. In Proceedings
of the 9** International Symposium on High-
Performance Computer Architecture, Febru-
ary 2003.

David Lie et al. Architectura Support for
Copy and Tamper Resistant Software. In Pro-
ceedings of the 9th International Conference
on Architectural Support for Programming
Languages and Operating Systems (ASPLOS
1X), pages 169-177, November 2000.

Alfred J. Menezes, Paul C. van Oorschot, and
Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996.

P. S. Ravikanth. Physical One-Way Functions.
PhD thesis, Massachusetts Institute of Tech-
nology, 2001.

Bruce Schneier. Applied Cryptography. Wi-
ley, 1996.

S. W. Smith and S. H. Weingart. Building
a High-Performance, Programmable Secure
Coprocessor. In Computer Networks (Special
Issue on Computer Network Security), vol-
ume 31, pages 831-860, April 1999.

Bennet S. Yee. Using Secure Coproces-
sors. PhD thesis, Carnegie Mellon University,
1994,

