
Controlled Physical Random Functions
�

Blaise Gassend, Dwaine Clarke, Marten van Dijk
�
and Srinivas Devadas

Massachusetts Institute of Technology
Laboratory for Computer Science

Cambridge, MA 02139, USA�
gassend,declarke,marten,devadas � @mit.edu

Abstract

A Physical Random Function (PUF) is a random func-
tion that can only be evaluated with the help of a complex
physical system. We introduce Controlled Physical Random
Functions (CPUFs) which are PUFs that can only be ac-
cessed via an algorithm that is physically bound to the PUF
in an inseparable way.

CPUFs can be used to establish a shared secret between
a physical device and a remote user. We present protocols
that make this possible in a secure and flexible way, even in
the case of multiple mutually mistrusting parties.

Once established, the shared secret can be used to en-
able a wide range of applications. We describe certified ex-
ecution, where a certificate is produced that proves that a
specific computation was carried out on a specific proces-
sor. Certified execution has many benefits, including pro-
tection against malicious nodes in distributed computation
networks. We also briefly discuss a software licensing appli-
cation.

1. Introduction

A Physical Random Function (PUF) is a random function
that can only be evaluated with the help of a complex phys-
ical system. PUFs can be implemented in different ways
and can be used in authenticated identification applications
[GCvDD02, Rav01]. In this paper, we introduce Controlled
Physical Random Functions (CPUFs) which are PUFs that
can only be accessed via an algorithm that is physically
bound to the PUF in an inseparable way.

PUFs and controlled PUFs enable a host of applications,
including smartcard identification, certified execution and

�
This work was funded by Acer Inc., Delta Electronics Inc., HP Corp.,

NTT Inc., Nokia Research Center, and Philips Research under the MIT
Project Oxygen partnership.�

Visiting researcher from Philips Research, Prof Holstlaan 4, Eind-
hoven, The Netherlands.

software licensing. In current smartcards, it is possible for
someone who is in possession of a smartcard to produce a
clone of it, by extracting its digital key information through
one of many well documented attacks [And01]. With a
unique PUF on the smartcard that can be used to authenticate
the chip, a digital key is not required: the smartcard hard-
ware is itself the secret key. This key cannot be duplicated,
so a person can lose control of it, retrieve it, and continue
using it.

Certified execution produces a certificate which proves
that a specific computation was carried out on a specific pro-
cessor chip, and that the computation produced a given re-
sult. The person requesting the computation can then rely on
the trustworthiness of the chip manufacturer who can vouch
that he produced the chip, instead of relying on the owner
of the chip, who could make up the result without actually
executing the computation.1 Certified execution is very use-
ful in grid computing (e.g., SETI@home) and other forms
of distributed computation to protect against malicious vol-
unteers. In fact, certified execution can enable a business
model for anonymous computing, wherein computation can
be sold by individuals and the customer can be ensured re-
liability of service, via the generation of certificates.

ControlledPUFs can also be used to ensure that a piece of
code only runs on a processor chip that has a specific identity
defined by a PUF. In this way, pirated code would fail to run.

In Section 2 we define PUFs and CPUFs. The reader who
is not interested in PUF or CPUF implementations can then
skip to Section 4. A possible implementation of PUFs and
controlled PUFs on silicon integrated circuits is the subject
of Section 3. Then in Section 4, we describe our model for
using controlled PUFs. Section 5 describes a man-in-the-
middle attack, and the protocols that protect a CPUF from it.
Finally, in Section 6, we describe how controlled PUFs can
be applied to authentication and certified execution prob-

1Many software methods have been devised to get around this, but they
generally involve performing extra computation. We believe that these
methods are only justified until a satisfactory hardware solution becomes
widely available.

1

lems, and briefly describe a software licensing application.

2. Definitions

Definition 1 A Physical Random Function (PUF)2 is a
function that maps challenges to responses, that is embodied
by a physical device, and that verifies the following proper-
ties:

1. Easy to evaluate: The physical device is easily capable
of evaluating the function in a short amount of time.

2. Hard to characterize: From a polynomial number of
plausible physical measurements (in particular, deter-
mination of chosen challenge-response pairs), an at-
tacker who no longer has the device, and who can only
use a polynomial amount of resources (time, matter,
etc...) can only extract a negligible amount of infor-
mation about the response to a randomly chosen chal-
lenge.

In the above definition, the terms short and polynomial
are relative to the size of the device, which is the security
parameter. In particular, short means linear or low degree
polynomial. The term plausible is relative to the current
state of the art in measurement techniques and is likely to
change as improved methods are devised.

In previous literature [Rav01] PUFs were referred to
as Physical One Way Functions, and realized using 3-
dimensional micro-structures and coherent radiation. We
believe this terminology to be confusing because PUFs
do not match the standard meaning of one way functions
[MvOV96].

Definition 2 A PUF is said to be Controlled if it can only
be accessed via an algorithm that is physically linked to the
PUF in an inseparable way (i.e., any attempt to circumvent
the algorithm will lead to the destruction of the PUF). In
particular this algorithm can restrict the challenges that are
presented to the PUF and can limit the informationabout re-
sponses that is given to the outside world.

The definition of control is quite strong. In practice, link-
ing the PUF to the algorithm in an inseparable way is far
form trivial. However, we believe that it is much easier to do
than to link a conventional secret key to an algorithm in an
inseparable way, which is what current smartcards attempt.

Control turns out to be the fundamental idea that allows
PUFs to go beyond simple authenticated identification ap-
plications. How this is done is the main focus of this paper.

2PUF actually stands for Physical Unclonable Function. It has the ad-
vantage of being easier to pronounce, and it avoids confusion with Pseudo-
Random Functions.

Definition 3 A type of PUF is said to be Manufacturer Re-
sistant if it is technically impossible to produce two identi-
cal PUFs of this type given only a polynomial amount of re-
sources.

Manufacturer resistant PUFs are the most interesting
form of PUF as they can be used to make unclonable sys-
tems.

3. Implementing a Controlled Physical Ran-
dom Function

In this section, we describe ways in which PUFs and
CPUFs could be implemented. In each case, a silicon IC en-
forces the control on the PUF.

�����������
	��
�����������

It is possible to produce a PUF with classical crypto-
graphic primitives provided a key can be kept secret. If an
IC is equipped with a secret key � , and a pseudo-random
hash function � , and tamper resistant technology is used to
make � impossible to extract from the IC, then the function

��� ������� � �
is a PUF. If control logic is embedded on the tamper resistant
IC along with the PUF, then we have effectively created a
CPUF.

However, this kind of CPUF is not very satisfactory.
First, it requires high quality tamper-proofing. There are
systems available to provide such tamper-resistance. For
example, IBM’s PCI Cryptographic Coprocessor, encap-
sulates a 486-class processing subsystem within a tamper-
sensing and tamper-responding environment where one can
run security-sensitive processes [SW99]. Smart cards also
incorporate barriers to protect the hidden key(s), many of
which have been broken [And01]. In general, however, ef-
fective tamper resistant packages are expensive and bulky.

Secondly, the digital PUF is not manufacturer resistant.
The PUF manufacturer is free to produce multiple ICs with
the same secret key, or someone who manages to violate the
IC’s tamper-resistant packaging and extract the secret key
can easily produce a clone of the PUF.

Because of these two weaknesses, a digital PUF does
not offer any security advantage over conventional crypto-
graphic primitives, and it is therefore better to use a conven-
tional crypto-system.

���"! ��#��
�
�
$&%('������

3.2.1. Statistical Variation of Delay

By exploiting statistical variations in the delays of devices
(gates and wires) within the IC, we can create a manufac-

turer resistant PUF [GCvDD02]. Manufactured IC’s, from
either the same lot or wafer have inherent delay variations.
There are random variations in dies across a wafer, and from
wafer to wafer due to, for instance, process temperature and
pressure variations, during the various manufacturing steps.
The magnitude of delay variation due to this random com-
ponent can be ��� or more.

On-chip measurement of delays can be carried out with
very high accuracy, and therefore the signal-to-noise ratio
when delays of corresponding wires across two or more IC’s
are compared is quite high. The delays of the set of devices
in a circuit is unique across multiple IC’s implementing the
same circuit with very high probability, if the set of devices
is large [GCvDD02]. These delays correspond to an implicit
hidden key, as opposed to the explicitly hidden key in a dig-
ital PUF. While environmental variations can cause changes
in the delays of devices, relative measurement of delays, es-
sentially using delay ratios, provides robustness against en-
vironmental variations, such as varying ambient tempera-
ture, and power supply variations.

3.2.2. Challenge-Response Pairs

Given a PUF, challenge-response pairs can be generated,
where the challenge can be a digital input stimulus, and the
response depends on the transient behavior of the PUF. For
instance, we can combine a number of challenge dependent
delay measures into a digital response. The number of po-
tential challenges grows exponentially with the number of
inputs to the IC. Therefore, while two IC’s may have a high
probability of having the same response to a particular chal-
lenge, if we apply enough challenges, we can distinguishbe-
tween the two IC’s.

3.2.3. Attacks on Silicon PUFs

There are many possible attacks on manufacturer resistant
PUF’s – duplication, model building using direct measure-
ment, and model building using adaptively-chosen chal-
lenge generation. We briefly discuss these and show that sig-
nificant barriers exist for each of these attacks. A more de-
tailed description can be found in [GCvDD02].

The adversary can attempt to duplicate a PUF by fabri-
cating a counterfeit IC containing the PUF. However, due to
statistical variation, unless the PUF is very simple, the ad-
versary will have to fabricate a huge number of IC’s and pre-
cisely characterize each one, in order to create and discover
a counterfeit.

Assume that the adversary has unrestricted access to the
IC containing the PUF. The adversary can attempt to create a
model of the IC by measuring or otherwise determining very
precisely the delays of each device and wire within the IC.
Direct measurement of device delays requires the adversary
to open the package of the IC, and remove several layers,

such as field oxide and metal. One can also create a package
which has a significant effect on the delays of each device
within the IC, and the removal of the package will immedi-
ately destroy the PUF, since the delays will change appre-
ciably.

The adversary could try to build a model of the PUF by
measuring the response of the PUF to a polynomial num-
ber of adaptively-chosen challenges.3 We believe this to be
the most plausible form of attack. However, there is a sig-
nificant barrier to this form of attack as well because creat-
ing timing models of a circuit accurate to within measure-
ment error is a very difficult problem that has received a lot
of attention from the simulation community. Manageable-
sized timing models can be produced which are within �����
of the real delays, but not within the measurement accuracy
of ���
	���� .

In addition to attacking the PUF directly, the adversary
can attempt to violate a CPUF’s control. This includes try-
ing to get direct access to the PUF, or trying to violate the
control algorithm (which includes the private and authenti-
cated execution environment that we will be discussing in
Section 5). The best way we have found to prevent this at-
tack is for the algorithm (i.e., the digital part of the IC) to be
embedded within the physical system that defines the PUF.
In the Silicon PUF case, this can be accomplished by over-
laying PUF delay wires over any digital circuitry that needs
to be protected. Damaging any one of those wires would
change the PUF, rendering the adversary’s attack useless.
This strategy obviates the need for active intrusion sensors
that are present in conventional secure devices to destroy
key material in the event that an invasive attack occurs. For
non invasive attacks such as irradiating the IC or making it
undergo voltage spikes and clock glitches, conventionalpre-
vention methods must be used.

���"� ��
������ %����
'�	 � ����� ��� �
'�	���%�'���� %��

Using control, it is possible to make a silicon PUF more
robust and reliable. Figure 1 summarizes the control that can
be placed around the PUF to improve it. The full details of
these improvements can be found in [GCvDD02].

A random hash function placed before the PUF prevents
the adversary from performing a chosen challenge attack on
the PUF. This prevents a model-building adversary from se-
lecting challenges that allow him to extract parameters more
easily. An Error Correcting Code (ECC) can be used to take
noisy physical measurements and turn them into consistent
responses. Finally, an output random hash function decore-
lates the response from actual physical measurements, thus
making a model-building adversary’s task even harder.

3Clearly, a model can be built by exhaustively enumerating all possible
challenges, but this is intractable.

ECCPUF

ID

Improved PUF

Hash
Random

Redundancy Information

Response
Personality

Challenge
Hash

Random

���������	��

�������������
�����������������! �"�����#
�%$�&'�(�)�

3.3.1. Giving a PUF Multiple Personalities

A possible concern with the use of PUFs is in the area of
privacy. Indeed, past experience shows that users feel un-
comfortable with processors that have unique identifiers, be-
cause they feel that they can be tracked. Users could have
the same type of concern with the use of PUFs, given that
PUFs are a form of unique identifier.

This problem can be solved by providing a PUF with
multiple personalities. The owner of the PUF has a param-
eter that she can control that allows her to show different
facets of her PUF to different applications. To do this, we
hash the challenge with a user-selected personality number,
and use that hash as the input to the rest of the PUF.

In this way, the owner effectively has many different
PUFs at her disposal, so third parties to which she has shown
different personalities cannot determine if they interacted
with the same PUF.

Section 5.4 goes into the details of the protocols that use
multiple personalities.

4. Models

*���� + �����
�
$&��� � %('-, %
.0/ �

Figure 2 illustrates the basic model for applications using
the PUF.

1 The user is the principal that wants to make use of the
computing capabilities of a chip.

1 The user and the chip are connected to one another by
an untrusted public communication channel.

1 The interface between the chip and the untrusted com-
munication channel is a PUF.

1 Given a challenge a PUF can compute a corresponding
response.

1 The user is in the possession of her own private list of
CRPs originally generated by the PUF. The list is pri-
vate because only the user and the PUF know the re-
sponses to each of the challenges in the list. We as-

sume that the user’s challenges can be public, and that
the user has established several CRPs with the PUF.

untrusted
communication

channel
CPUF chipUser

���2�����	�%3��
45��6����879���;:<"�"��!�=�
$����=���
�

The responses are only known to the user and the PUF.
To establish this property we need a secure way of manag-
ing the CRPs as described in section 4.2. CPUFs control the
access to CRPs by algorithms which enable secure manage-
ment. Special attention will be given to protection against
man-in-the-middle-attacks while managing CRPs. To pre-
vent man-in-the-middle attacks, we prevent a user from ask-
ing for the response to a specific challenge, during the CRP
management protocols. This is a concern in the CRP man-
agement protocols, as, in these protocols, the chip sends re-
sponses to the user. In the application protocols, the re-
sponses are used to generate MACs, and are never sent to
the user.

*��"! � �<>���, ��' ��	?/ �@/ '���, %
.0/ � �

In our models for challenge-response pair management,
the user does not have CRPs for the CPUF yet, and would
like to establish its own private list of CRPs. For challenge-
response pair management, we introduce the following 3
new principals:

1 manufacturer: the manufacturer is the principal that
made the chip with the CPUF. When the manufacturer
had the chip, and was in physical contact with the chip,
it established its own private list of CRPs. We assume
that, in the special situation when the manufacturer is
in physical contact with the CPUF chip, the communi-
cation channel between the manufacturer and the chip
is authentic and private. Though the manufacturer was
originally in physical contact with the chip, we assume
that it does not have the chip now.

1 owner: the owner is the principal that controls access to
the CPUF. The owner has its own private list of CRPs.
The owner can be considered to be the principal that
bought the CPUF chip from the manufacturer.

1 certifier: the certifier has its own private list of CRPs
for the CPUF, and is trusted by the user. The manu-
facturer of the CPUF chip can act as a certifier to other
users. After the user has established its own private list
of CRPs, it may act as a certifier to another user, if the

second user trusts the first user. For example, if the user
trusts the owner of the chip, the owner of the chip can
also act as a certifier.

We have 5 scenarios:

1 bootstrapping: the manufacturer of the CPUF gets the
initial CRP from the CPUF.

1 introduction: a user, who does not have any CRPs for
the CPUF, securely obtains a CRP from a certifier.

1 private renewal: after obtaining a CRP from a certifier,
the user can use this CRP to generate his own private
list of CRPs.

1 renewal: after generating his own private list of CRPs,
the user can use one of these to generate more private
CRPs.

1 anonymous introduction: in anonymous introduction,
a user, who does not have any CRPs for the CPUF,
securely obtains a certified, anonymous, CRP for the
CPUF. The user is given a CRP that is certified by
the certifier. However, in anonymous introduction, the
owner of the CPUF does not want to reveal to the user
which CPUF the user is being given a CRP to. Thus, at
the end of the protocol, the user knows that he has been
given a CRP that is certified by the certifier, and can use
this CRP to generate other CRPs with the CPUF and
run applications using the CPUF. However, if the user
colludes with the certifier, or other users with certified,
anonymous CRPs to the CPUF, he will not be able to
use the CRPs to determine that he is communicating
with the same CPUF as them.

4.2.1. Bootstrapping

Figure 3 illustrates the model for bootstrapping. When a
CPUF has just been produced, the manufacturer generates a
CRP for it. We assume that, when the manufacturer gener-
ates this CRP, it is in physical contact with the chip, and thus,
the communication channel is private and authentic. None
of the other protocols make this assumption.

Manufacturer CPUF chip

���������9�����
45��6���� 79���������0� ��� �	$�"�"��!���

4.2.2. Introduction

Figure 4 illustrates the model for CPUF introduction. In in-
troduction, the certifier gives a CRP for the CPUF to the user
over a channel that is authentic and private.

As the certifier knows the CRP the user is given, the cer-
tifier can read all of the messages the user exchanges with
the CPUF using this CRP. The user, thus, needs to use the
private renewal protocol to generate his own private list of
CRPs.

Furthermore, as, in this scheme, the CPUF honors mes-
sages that are MAC’ed with a key generated from the re-
sponse of the CRP the certifier has given to the user, the user
and the certifier can collude to determine that they are com-
municating with the same CPUF. They, and other users who
use the same certifier, may then be able to use this infor-
mation to track and monitor the CPUF’s transactions. The
CPUF’s owner can introduce the CPUF to the user using the
anonymous introduction protocol to deal with this problem.

Certifier User

���������9�����
45��6���� 79��������������6��
�����=���

4.2.3. Private Renewal

Figure 5 illustrates the model for private renewal. The user
is assumed to already have a certified CRP. However, he
wants to generate a private list of CRPs. In this model, the
communication channel between the user and the CPUF is
untrusted.

untrusted
communication

channel
CPUF chipUser

���������9�	���?45��6����)7	����&�� �=#�$�� ��
����
���5$��

4.2.4. Renewal

The model for renewal is the same as that for private re-
newal. The user is assumed to have already generated a pri-
vate list of CRPs, and would like to generate more private
CRPs with the CPUF. He may need more CRPs for his ap-
plications, say.

4.2.5. Anonymous Introduction

Figure 6 illustrates the model for anonymous introduction.
Again, the user is the principal which does not have CRPs
for the CPUF yet, and would like to establish its own pri-
vate list of CRPs. The communication channels between the
certifier, owner and user are secure (private and authentic).

The communication channels between each of these princi-
pals and the CPUF is untrusted. In our version of the pro-
tocol, the certifier and owner communicate with each other,
the owner and user communicate with each other, and the
owner communicates with the CPUF. The certifier and user
can potentially collude to determine if their CRPs are for the
same CPUF.

communicationcertifier channelowner

untrusted

user CPUF chip

���2�����	�����045��6���� 79���;:<�
������ %���
� �!��� ����6��
�����=���

5. Protocols

We will now describe the protocols that are necessary
in order to use PUFs. These protocols must be designed
to make it impossible to get the response to a chosen chal-
lenge. Indeed, if that were possible, then we would be vul-
nerable to a man-in-the-middle attack that breaks nearly all
applications. The strategy that we describe is designed to be
deterministic and state-free to make it as widely applicable
as possible. Slightly simpler protocols are possible if these
constraints are relaxed.

� ��� � , ��'�� �
'�� ����/	�	, �	.�. ��/ + � ����$�

Before looking at the protocols, let us have a closer look
at man-in-the-middle attack that we must defend against.
The ability to prevent this man-in-the-middle attack is the
fundamentaldifference between controlledand uncontrolled
PUFs.

The scenario is the following. Alice wants to use a
challenge-response pair (CRP) that she has to interact with a
CPUF in a controlled way (we are assuming that the CRP is
the only shared secret between Alice and the CPUF). Oscar,
the adversary, has access to the PUF, and has a method that
allows him to extract from it the response to a challenge of
his choosing. He wants to impersonate the CPUF that Alice
wants to interact with.

At some point, in her interaction with the CPUF, Alice
will have to give the CPUF the challenge for her CRP so that
the CPUF can calculate the response that it is to share with
her. Oscar can read this challenge because up to this point
in the protocol Alice and the CPUF do not share any secret.
Oscar can now get the response to Alice’s challenge from

the CPUF, since he has a method of doing so. Once Oscar
has the response, he can impersonate the CPUF because he
knows everything Alice knows about the PUF. This is not at
all what Alice intended.

We should take note that in the above scenario, there is
one thing that Oscar has proven to Alice. He has proven that
he has access to the CPUF. In some applications, such as
the key cards from [Rav01], proving that someone has ac-
cess to the CPUF is probably good enough. However, for
more powerful examples such as certified execution that we
will cover in section 6.2, where we are trying to protect Al-
ice from the very owner of the CPUF, free access to the PUF
is no longer sufficient.

More subtle forms of the man-in-the-middle attack exist.
Suppose that Alice wants to use the CPUF to do what we
will refer to in section 6.2 as certified execution. Essentially,
Alice is sending the CPUF a program to execute. This pro-
gram executes on the CPUF, and uses the shared secret that
the CPUF calculates to interact with Alice in a secure way.
Here, Oscar can replace Alice’s program by a program of his
own choosing, and get his program to execute on the CPUF.
Oscar’s program then uses the shared secret to produce mes-
sages that look like the messages that Alice is expecting, but
that are in fact forgeries.

� �"! ���5/�� /&��� �
'�	 ����/<, �('�� �
'�� ����/	�	, �9.�. ��/ +�� ����$�

5.2.1. Basic CPUF Access Primitives

In the rest of this section, we will assume that the CPUF is
able to execute some form of program in a private (nobody
can see what the program is doing) and authentic (nobody
can modify what the program is doing) way.4 In some CPUF
implementations where we do not need the ability to execute
arbitrary algorithms, the program’s actions might in fact be
implemented in hardware or by some other means – the ex-
act implementation details make no difference to the follow-
ing discussion.

In this paper we will write programs in pseudo-code in
which a few basic functions are used:

1 Output(arg1, ...) is used to send results out of
the CPUF. Anything that is sent out of the CPUF is po-
tentiallyvisible to the whole world, except during boot-
strapping, where the manufacturer is in physical pos-
session of the CPUF.

1 EncryptAndMAC(message, key) is used to en-
crypt and MAC message with key.

1 PublicEncrypt(message, key) is used to en-
crypt message with key, the public key.

4In fact the privacy requirement can be substantially reduced. Only the
key material that is being manipulated needs to remain hidden.

1 MAC(message, key)MACs messagewithkey.

The CPUF’s control is designed so that the PUF can only
be accessed by programs, and only by using two primitive
functions: ���������	��

������� and ���������	������� . If � is the PUF,
and � is a publicly available random hash function (or in
practice some pseudo-random function) then the primitives
are defined as:

���������	��
������	� ��������� �� "!#!#�	�
$%� �'&
� � � � � �(�����	$%�� ") � �������	���
 %!*!#���
$"� � �

�������+�	������� �(���
 "!#!#�	�
$%� �,&
� � � �������	$%�� ") � ��� �(���
 "!#!#�	�
$%� � �

In these primitives, �����	$"�� %) is the program that is be-
ing run in an authentic way. Just before starting the pro-
gram, the CPUF calculates ���������	$%�� ") � , and later uses
this value when ������������
������	� and �������+�	������� are invoked.
We shall show in the next section that these two primitives
are sufficient to implement the CRP management scenar-
ios that were detailed in section 4. We shall also see that
���������	��

������� is essentially used for CRP generation while
���������	������� is used by applications that want to produce a
shared secret from a CRP.

Figure 7 summarizes the possible ways of going between
pre-challenges, challenges, responses and shared secrets. In
this diagram moving down is easy. You just have to cal-
culate a few hashes. Moving up is hard because it would
involve reversing those hashes, which happen to be one-
way hashes. Going from left to right is easy for the pro-
gram whose hash is used in the ������������
������	� or ���������	�������
primitives, and hard for all other programs. Going from
right to left is hard if we assume that the PUF can’t invert
a one-way function. We will not use this fact as the adver-
sary’s task wouldn’t be easier if it was easy.

5.2.2. Using a CRP to Get a Shared Secret

To show that the man-in-the-middle attack has been de-
feated, we shall show that a user who has a CRP can use
it to establish a shared secret with the PUF (previously,
the man-in-the-middle could determine the value of what
should have been a shared secret).

The user sends a program like the one below to the CPUF,
where Challenge is the challenge from the CRP that the
user already knows.

begin program
Secret = GetSecret(Challenge);
/* Program that uses Secret as *
* a shared secret with the user */

end program

Note that � �-

���	$%�� ") � includes everything that is con-
tained between begin program and end program.
That includes the actual value of Challenge. The same
code with a different value for Challenge would have a
different program hash.

The user can determine Secret because he knows
the response to Challenge, and so he can calculate
� � � �-

���	$%�� ") � �����	��

������� � . Now we must show that a
man-in-the-middle cannot determine Secret.

By looking at the program that is being sent to the CPUF,
the adversary can determine the challenge from the CRP that
is being used. This is the only starting point he has to try to
find the shared secret. Unfortunately for him, the adversary
cannot get anything useful from the challenge. Because the
challenge is deduced from the pre-challenge via a random
function, the adversary cannot get the pre-challenge directly.
Getting the Response directly is impossible because the only
way to get a response out of the CPUF is starting with a pre-
challenge. Therefore, the adversary must get the shared se-
cret directly from the challenge.

However, only a program that hashes to the same value as
the user’s program can get from the challenge to the secret
directly by using ���������	������� (any other program would get
a different secret that can’t be used to find out the response
or the sought after secret because it is the output of a random
function). Since the hash function that we are using is colli-
sion resistant, the only program that the attacker can use to
get the shared secret is the user’s program. If the user pro-
gram is written in such a way that it does not leak the secret
to the adversary, then the man-in-the middle attack fails. Of
course, it is perfectly possible that the user’s program could
leak the shared secret if it is badly written. But this is a prob-
lem with any secure program, and is not specific to PUFs.
Our goal isn’t to prevent a program from giving away its se-
cret but to make it possible for a well written program to pro-
duce a shared secret.

� �"� � � � ���
��/ '�	
/-> / ��� %�'�� / � �(� �%, ��' ��	?/ �@/ '�� � � %���% �
$&%�� �

Now we shall see how ���������	��
������	� and ���������	�������
can be used to implement the key management primitives
that were described in section 4.5 It is worth noting that the
CPUF need not preserve any state between program execu-
tions.

5The implementations that are presented contain the minimum amount
to encryption to ensure security. A practical implementation would proba-
bly want to include nonces to ensure message freshness, and would encrypt
and MAC as much information as possible. In particular, it is not necessary
in our model to encrypt the pre-challenges that are used to produce CRPs.
Nevertheless hiding the pre-challenge (and therefore the challenge) would
make it harder for an adversary to mount an attack in which he manages to
forcibly extract the response to a specific challenge from the CPUF.

Shared−SecretChallenge
GRP, GSPGRP

(2) GSP calls GetSecret

E
as

y

H
ar

d
Pre−Challenge Response

GRP

(1) GRP calls GetResponse

h(h(GSP),
Response)

h(h(GRP),
PreChal) (5) PUF Evaluation

Hard
Easy only for the right program

���2�����	�����������=� 6��=$����9$� ���
� � � ���
� 6�� 7	7����9����� �5$��
� �07 %�0#��!���	�
��� �5�
��� &'�9��

���
$��!�=�����0�
�������
$��!�=�����0�
���

��
��"
���
�
�
��$��
6����
$��9�
6�

���
���9��� �������
�@6��0�	� �
6 $�� ��� � �!�
6��=�
$�� �
� ���
$ �����
��&��(� 6����
�����0��� ���!�
�
� ���
�@&��(�
� ���
�����������!� �?6�� �
���
��6 � �
$�� �0� $��=����� ���
� $�� ��� � 6��!�9�
� � � �����
(& $��
6���� & $��9�����
� "����;���	$� %� ���
$��<�
$��!�

���������	��

������� $��
6 ���������	������� �9�?��"
�
�����=#
��� �������
�@���
$��!� �����0�@$��
6����
� �9�
��"
���
�
� 6���"
���
6 �������
���
(&����
$��
���9�
$ ���
6 ���
�� ��)$��
6 ���
�%���
$��9�?6@�
�
���	��� 6���"
���
6��-��� ���
����� &
�

5.3.1. Bootstrapping

The manufacturer makes the CPUF run the following pro-
gram, where PreChall is set to some arbitrary value.

begin program
Response = GetResponse(PreChall);
Output(Response);

end program

The user gets the challenge for his newly created CRP
by calculating ��� ���
����	$"�� %) � � PreChall � , the response is
the output of the program.

5.3.2. Renewal

The user sends the following program to the CPUF, where
PreChall is set to some arbitrary value, and OldChall
is the challenge from the CRP that the user already knows.

begin program
NewResponse = GetResponse(PreChall);
Output(EncryptAndMAC(
NewResponse, GetSecret(OldChall)));

end program

Only the user and the CPUF have the initial CRP
needed to compute GetSecret(OldChall). It is their
shared secret. The user can be sure that only he can get
NewResponse, because it is encrypted with the shared se-
cret. An adversary can change OldChall to a challenge
that he knows the response to, but since OldChall is part
of the program, the newly created CRP would be different
from the one that the adversary is trying to hijack (because
���������	��

������� combines the pre-challenge with a random
hash of the program that is being run). The MAC proves

that NewResponse that the user is getting originated from
the CPUF. The user gets the challenge for his newly created
CRP by calculating ��� ���
����	$"�� %) � � PreChall � .

5.3.3. Introduction

Introduction is particularly easy. The certifier simply sends
a CRP to the user over some agreed upon secure channel. In
many cases, the certifier will use renewal to generate a new
CRP, and then send that to the user. The user will then use
private renewal to produce a CRP that the certifier does not
know.

5.3.4. Private Renewal

The user sends the following program to the CPUF, where
PreChall is set to some arbitrary value, OldChall is the
challenge from the CRP that the user already knows, and
PubKey is the user’s public key.

begin program
NewResponse = GetResponse(PreChall);
Message =
PublicEncrypt(NewResponse, PubKey);

Output(Message,
MAC(Message, GetSecret(OldChall)));

end program

The user can be certain that only he can read the
NewResponse, because it is encrypted with his public
key. If the adversary tries to replace PubKey by his own
public key, he will get the response to a different chal-
lenge because PubKey is part of the program, and there-
fore indirectly changes the output of ������������
������	� . The

MAC can only be forged by the party that the user is shar-
ing the old CRP with (probably a certifier that the user
just performed introduction with). If we assume that that
party is not doing an active attack, then we know that
the MAC was produced by the CPUF, and therefore, the
NewResponse is indeed characteristic of the CPUF. The
user gets the challenge for his newly created CRP by calcu-
lating �������-
����	$"�� ") � � PreChall � .
� �=*�� +�' %�'�� � �
��� � � / � / � ���
'�	 � � %(��%�$&%�� �

In section 3.3.1 we showed how a CPUF could be made
to take on many different personalities in order to preserve
the anonymity of its owner. People don’t want their CPUF
to give away the fact that the same person is gambling
on gambling.com and doing anonymous computation for
SETI@home. In this section, we shall add a personality se-
lector to the PUF as in figure 1. We shall call the personality
selector PersonalitySel. The person who is trying to
hide his identity will be called the owner of the CPUF, but
as we shall see at the end of section 5.4.2 the notion is more
general than this. We shall assume that all sources of infor-
mation concerning the identity of the CPUF’s owner have
been eliminated by other protocol layers, and shall focus on
preventing the CPUF from leaking his identity. We shall
also assume that there are enough people using anonymized
introduction that traffic analysis (correlating the arrival of a
message at a node with the departure of a message a little
while later simply from timing considerations) is unusable.

Programs must not be given permission to freely write to
PersonalitySel, or else they could put the CPUF into
a known personality and defeat the purpose of having a per-
sonality selector. We shall therefore describe how the value
of PersonalitySel is controlled. First, two new primi-
tive functions are provided by the CPUF:

1 ChangePersonality(Seed) sets the personality
to ��� PersonalitySel � Seed � . Where h is a ran-
dom hash function.

1 RunProg(Program) runs the its argument without
changing PersonalitySel.

Moreover, when a program is loaded into the CPUF from
the outside world, and run (as opposed to being run by
RunProg), PersonalitySel is set to zero. We shall
call this the default personality.

The pseudo-code uses a few extra primitive functions:

1 Decrypt(mesg, key) is used to decrypt mesg
that was encrypted with key.

1 HashWithProg(x) computes �������-

���	$%�� ") � � x � .
This function reads the area where the CPUF is storing
the hash of the program.

1 Hash(...) is a random hash function.

1 Blind(mesg,fact) is used to apply the blinding
factor fact to mesg. See section 5.4.2 for a brief de-
scription of blinding.

5.4.1. Choosing the Current Personality

When the CPUF’s owner wants to show a personality other
than his CPUF’s default personality, he intercepts all pro-
grams being sent to the CPUF and encapsulates them in a
piece of code of his own:

ESeed =
/* the personality seed *
* encrypted with Secret */

EProgram =
/* the encapsulated program *
* encrypted with Secret */

begin program
Secret = GetSecret(Challenge);
Seed = Decrypt(Eseed, Secret);
Program = Decrypt(EProgram,Secret);

ChangePersonality(Seed);
RunProg(Program);

end program

Note that the line that precedes begin program is a
piece of data that accompanies the program but that does not
participate in the hash of the program. If EProgram were
included in the hash, then we would not be able to encrypt it
because the encryption key would depend on the encrypted
program. Other values that appear are Seed, an arbitrarily
selected seed; and Challenge, the challenge of one of the
owner’s CRPs.

By encapsulating the program in this way, the owner is
able to change the personality that the CPUF is exhibiting
when it runs the user’s program. There is no primitive to al-
low the user’s program to see the personality that it is using,
and the seed that is used with ChangePersonality is
encrypted so the user has no way of knowing which person-
ality he is using. The user’s program is encrypted, so even
by monitoring the owner’s communication, the user cannot
determine if the program that is being sent to the CPUF is
his own program.

5.4.2. Anonymous Introduction

The anonymous introduction protocol is much more com-
plicated than the other protocols we have seen so far. We
will only sketch out the details of why it works. This pro-
tocol uses blinding, a description of which can be found in
[Sch96].

The essential idea of blinding is this: Alice wants Bob
to sign a message for her, but she does not want Bob to
know what he has signed. To do this Alice hides the mes-
sage by applying what is called a blinding factor. Bob re-
ceives the blinded message, signs it and returns the signed
blinded message to Alice. Alice can then remove the blind-
ing factor without damaging Bob’s signature. The resulting
message is signed by Bob, but if Bob signs many messages,
he cannot tell which unblinded message he signed on which
occasion.6

Here is the anonymous introduction protocol:

1. The owner collects a challenge from the certifier, and
the user’s public key. He produces the following pro-
gram from figure 8 that is sent to the CPUF.

2. The owner decrypts the output from the CPUF, checks
the MAC, and passes Mesg5 on to the certifier, along
with a copy of the program (only the part that partici-
pates in the MAC) encrypted with the certifier’s public
key.

3. The certifier decrypts the program, checks that it is the
official anonymous introduction program, then hashes
it to calculate CertSecret. He can then verify that
Mesg4 is authentic with the MAC. He finally signs
Mesg4, and sends the result to the owner.

4. The owner unblinds the message, and ends up with a
signed version of Mesg3. He can check the signature,
and the MAC in Mesg3 to make sure that the certifier
isn’t communicating his identity to the user. He finally
sends the unblinded message to the user. This message
is in fact a version of Mesg3 signed by the certifier.

5. The user checks the signature, and decrypts Mesg2
with his secret key to get a CRP.

Remarks:

1 UserPubKey and CertChallenge must be en-
crypted, otherwise it is possible to correlate the mes-
sage that Alice sends to the CPUF with the certifier’s
challenge or with the user’s public key.

1 Seed must be encrypted to prevent the certifier or the
user from knowing how to voluntarily get into the per-
sonality that the user is being shown.

6In this protocol, to avoid over-complication, we have assumed that Al-
ice does not need to know Bob’s public key in order to sign a message.
For real-world protocols such as the one that David Chaum describes in
[Cha85] this is not true. Therefore, an actual implementation of our anony-
mous introduction protocol might have to include the certifier’s public key
in the program that is sent to the CPUF. In that case, it should be encrypted
to prevent correlation of messages going to the CPUF with a specific trans-
action with the certifier.

/* Various values encrypted
with OwnerSecret. */

ESeed = ...
EPreChallengeSeed = ...
EUserPubKey = ...
ECertChallenge = ...

begin program
OwnerSecret = GetSecret(OwnerChallenge);
Seed = Decrypt(ESeed, OwnerSecret);
PreChallengeSeed =

Decrypt(EPreChallengeSeed, OwnerSecret);
UserPubKey =

Decrypt(EUserPubKey, OwnerSecret);
CertChallenge =

Decrypt(ECertChallenge, OwnerSecret);

CertSecret = GetSecret(CertChallenge);
PreChallenge =

Hash(UserPubKey, PreChallengeSeed);
NewChallenge = HashWithProg(PreChallenge);
ChangePersonality(Seed);
NewResponse = GetResponse(PreChallenge);

Mesg1 = (NewChallenge, NewResponse);
Mesg2 = PublicEncrypt(Mesg1, UserPubKey);
Mesg3 = (Mesg2, MAC(Mesg2, OwnerSecret));
Mesg4 = Blind(Mesg3, OwnerSecret);
Mesg5 = (Mesg4, MAC(Mesg4, CertSecret));
Mesg6 = EncryptAndMAC(Mesg5, OwnerSecret);
Output(Mesg6);
end program

���������9����� ���
� $��
������ %���
� �!��������6��
����� ��� "�����

���9$� ��

1 PreChallengeSeed must be encrypted to prevent
the certifier from finding out the newly created chal-
lenge when he inspects the program in step 3.

1 The encryption between Mesg5 and Mesg6 is needed
to prevent correlation of the message from the CPUF to
the owner and the message from the owner to the cer-
tifier.

Interestingly, we are not limited to one layer of encapsu-
lation. A principal who has gained access to a personality
of a CPUF through anonymous introduction can introduce
other parties to this PUF. In particular, he can send the signed
CRP that he received back to the certifier and get the certifier
to act as a certifier for his personality when he anonymously
introduces the CPUF to other parties.

6. Applications

We believe there are many applications for which CPUFs
can be used, and we describe a few here. Other applications
can be imagined by studying the literature on secure copro-
cessors, in particular [Yee94]. We note that the general ap-
plications for which this technology can be used include all
the applications today in which there is a single symmetric
key on the chip.

����� �(#�� ��� � $&���).�+�������/ '�� �
$&��� � %('

The easiest application to implement is authentication.
One widespread application is smartcards. Current smart-
cards have hidden digital keys that can sometimes be ex-
tracted using many different kinds of attacks [And01]. With
a unique PUF on the smartcard that can be used to authen-
ticate the chip, a digital key is not required: the smartcard
hardware is itself the secret key. This key cannot be dupli-
cated, so a person can lose control of it, retrieve it, and con-
tinue using it. The smartcard can be turned off if the owner
thinks that it is permanently lost by getting the application
authority to forget what it knows of the secret signature that
is associated with the unique smartcard.

The following basic protocol is an outline of a protocol
that a bank could use to authenticate messages from PUF
smartcards. This protocol guarantees that the message the
bank receives originated from the smartcard. It does not,
however authenticate the bearer of the smartcard. Some
other means such as a PIN number or biometrics must be
used by the smartcard to determine if its bearer is allowed
to use it.

1. The bank sends the following program to the smart-
card, where R is a single use number and Challenge
is the bank’s challenge:

begin program
Secret = GetSecret(Challenge);
/* The smartcard somehow *
* generates Message to send *
* to the bank */
Output(Message,

MAC((Message, R), Secret));
end program

2. The bank checks the MAC to verify the authenticity
and freshness of the message that it gets back from the
PUF.

The number R is useful in the case where the smartcard
has state that is preserved between executions. In that case
it is important to ensure the freshness of the message.

If the privacy of the smartcard’s message is a require-
ment, the bank can also encrypt the message with the same
key that is used for the MAC.

���"! � �</ � � ����/).�/��?/ $���� � %�'

At present, computation power is a commodity that un-
dergoes massive waste. Most computer users only use a
fraction of their computer’s processing power, though they
use it in a bursty way, which justifies the constant demand
for higher performance. A number of organizations, such
as SETI@home and distributed.net, are trying to tap that
wasted computing power to carry out large computations in
a highly distributed way. This style of computation is unre-
liable as the person requesting the computation has no way
of knowing that it was executed without any tampering.

With chip authentication, it would be possible for a cer-
tificate to be produced that proves that a specific computa-
tion was carried out on a specific chip. The person request-
ing the computation can then rely on the trustworthiness of
the chip manufacturer who can vouch that he produced the
chip, instead of relying on the owner of the chip.

There are two ways in which the system could be used.
Either the computation is done directly on the secure chip,
either it is done on a faster insecure chip that is being moni-
tored in a highly interactive way by supervisory code on the
secure chip.

To illustrate this application, we present a simple exam-
ple in which the computation is done directly on the chip. A
user, Alice, wants to run a computationally expensive pro-
gram over the weekend on Bob’s 128-bit, 300MHz, single-
tasking computer. Bob’s computer has a single chip, which
has a PUF. Alice has already established CRPs with the PUF
chip.

1. Alice sends the following program to the CPUF, where
Challenge is the challenge from her CRP:

begin program
Secret = GetSecret(Challenge);
/* The certified computation *
* is performed, the result *
* is placed in Result */
Output(Result,

MAC(Result, Secret));
end program

2. The bank checks the MAC to verify the authenticity of
the message that it gets back from the PUF.

Unlike the smartcard application, we did not include a
single use random number in this protocol. This is because
we are assuming that we are doing pure computation that

cannot become stale (any day we run the same computation
it will give the same result).

In this application, Alice is trusting that the chip in Bob’s
computer performs the computation correctly. This is eas-
ier to ensure if all the resources used to perform the com-
putation (memory, CPU, etc.) are on the PUF chip, and in-
cluded in the PUF characterization. We are currently re-
searching and designing more sophisticated architectures in
which the PUF chip can securely utilize off-chip resources
using some ideas from [Lie00] and a memory authentica-
tion scheme that can be implemented in a hardware proces-
sor [GSC � 03].

There is also the possibility of a PUF chip using the ca-
pabilities of other networked PUF chips and devices using
certified executions. The PUF would have CRPs for each of
the computers it would be using, and perform computations
using protocols similar to the one described in this section.

���"���(# %�� ��� ��� / �
�
$ / '�� �
'�	

We are exploring ways in which a piece of code could be
made to run only on a chip that has a specific identitydefined
by a PUF. In this way, pirated code would fail to run. One
method that we are considering is to encrypt the code using
the PUF’s responses on an instruction per instruction basis.
The instructions would be decrypted inside of the PUF chip,
and could only be decrypted by the intended chip. As the op-
erating system and off-chip storage is untrustworthy, special
architectural support will be needed to protect the intellec-
tual property as in [Lie00].

7. Conclusion

In this paper we have introduced the notion of Controlled
Physical Random Functions (CPUFs) and shown how they
can be used to establish a shared secret with a specific physi-
cal device. The proposed infrastructure is flexible enough to
allow multiple mutually mistrusting parties to securely use
the same device. Moreover, provisions have been made to
preserve the privacy of the device’s owner by allowing her
to show apparently different PUFs at different times.

We have also described two examples of how CPUFs
can be applied. They hold promise in creating smartcards
with an unprecedented level of security. They also enable
these smartcards or other processors to run user programs in
a secure manner, producing a certificate that gives the user
confidence in the results generated. While we have not de-
scribed software licensing and intellectual property protec-
tion applications in this paper, the protocols for these appli-
cations will have some similarity to those described herein,
and are a subject of ongoing work.

References

[And01] Ross J. Anderson. Security Engineering:
A Guide to Building Dependable Distributed
Systems. John Wiley and Sons, 2001.

[Cha85] David Chaum. Security without identifica-
tion: Transaction systems to make big brother
obsolete. Communications of the ACM,
28:1030–1040, 1985.

[GCvDD02] Blaise Gassend, Dwaine Clarke, Marten van
Dijk, and Srinivas Devadas. Silicon physical
random functions. In Proceedings of the �����
ACM Conference on Computer and Commu-
nications Security, November 2002.

[GSC � 03] Blaise Gassend, G. Edward Suh, Dwaine
Clarke, Marten van Dijk, and Srinivas De-
vadas. Caches and merkle trees for effi-
cient memory authentication. In Proceedings
of the ����� International Symposium on High-
Performance Computer Architecture, Febru-
ary 2003.

[Lie00] David Lie et al. Architectural Support for
Copy and Tamper Resistant Software. In Pro-
ceedings of the 9th International Conference
on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-
IX), pages 169–177, November 2000.

[MvOV96] Alfred J. Menezes, Paul C. van Oorschot, and
Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996.

[Rav01] P. S. Ravikanth. Physical One-Way Functions.
PhD thesis, Massachusetts Institute of Tech-
nology, 2001.

[Sch96] Bruce Schneier. Applied Cryptography. Wi-
ley, 1996.

[SW99] S. W. Smith and S. H. Weingart. Building
a High-Performance, Programmable Secure
Coprocessor. In Computer Networks (Special
Issue on Computer Network Security), vol-
ume 31, pages 831–860, April 1999.

[Yee94] Bennet S. Yee. Using Secure Coproces-
sors. PhD thesis, Carnegie Mellon University,
1994.

