
cryptography

Article

FPGA Implementation of a Cryptographically-Secure
PUF Based on Learning Parity with Noise

Chenglu Jin 1,* ID , Charles Herder 2, Ling Ren 2, Phuong Ha Nguyen 1, Benjamin Fuller 3,
Srinivas Devadas 2 and Marten van Dijk 1

1 Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT 06269, USA;
phuong_ha.nguyen@uconn.edu (P.H.N.); marten.van_dijk@uconn.edu (M.v.D.)

2 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA; chherder@gmail.com (C.H.); renling@mit.edu (L.R.); devadas@mit.edu (S.D.)

3 Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269, USA;
benjamin.fuller@uconn.edu

* Correspondence: chenglu.jin@uconn.edu

Academic Editor: Jim Plusquellic
Received: 14 October 2017; Accepted: 6 December 2017; Published: 9 December 2017

Abstract: Herder et al. (IEEE Transactions on Dependable and Secure Computing, 2017) designed
a new computational fuzzy extractor and physical unclonable function (PUF) challenge-response
protocol based on the Learning Parity with Noise (LPN) problem. The protocol requires no irreversible
state updates on the PUFs for security, like burning irreversible fuses, and can correct for significant
measurement noise when compared to PUFs using a conventional (information theoretical secure)
fuzzy extractor. However, Herder et al. did not implement their protocol. In this paper, we give
the first implementation of a challenge response protocol based on computational fuzzy extractors.
Our main insight is that “confidence information” does not need to be kept private, if the noise vector
is independent of the confidence information, e.g., the bits generated by ring oscillator pairs which
are physically placed close to each other. This leads to a construction which is a simplified version
of the design of Herder et al. (also building on a ring oscillator PUF). Our simplifications allow
for a dramatic reduction in area by making a mild security assumption on ring oscillator physical
obfuscated key output bits.

Keywords: physical unclonable function; learning parity with noise; fuzzy extractor

1. Introduction

Physical unclonable functions or PUFs [1,2] utilize inherent manufacturing variations to produce
hardware tokens that can be used as building blocks for authentication protocols. Many different
physical phenomena have been proposed to provide PUF behavior including Ring Oscillators
(ROs) [2–4], cross-coupled latches or flip-flops [5], capacitive particles in a coating [6], and beads
in an optical card [1]. PUFs can be categorized by the type of functionality they provide: Weak PUFs,
also called Physically Obfuscated Keys (POKs), are used for secure key storage. Strong PUFs implement
(pseudo) random functions based on exploiting manufacturing variations that vary from PUF instance
to PUF instance; strong PUFs are used for device identification and authentication. The primary
advantage of using a strong PUF is that the communication between the authenticator and the
physical device need not be protected. This is because each authentication uses a distinct input to the
“pseudorandom function”.

In this work, we deal with the design and implementation of strong PUFs. A strong PUF is
a physical token that implements a function that translates challenges into responses. The reliability
property of a strong PUF says that if the same challenge is provided multiple times, the responses

Cryptography 2017, 1, 23; doi:10.3390/cryptography1030023 www.mdpi.com/journal/cryptography

http://www.mdpi.com/journal/cryptography
http://www.mdpi.com
https://orcid.org/0000-0001-6306-8019
http://dx.doi.org/10.3390/cryptography1030023
http://www.mdpi.com/journal/cryptography

Cryptography 2017, 1, 23 2 of 19

should be close (according to some distance metric) but not necessarily the same. The security property
is that an adversary with access to the PUF (and the ability to see responses for chosen queries) should
not be able to predict the response for an unqueried challenge. Recently, attacks in this model allow
creation of accurate models for many proposed strong PUFs [7–11]. We only consider attacks using the
input and output behavior. An additional required security property is that the adversary should not
be able to physically clone the device to create a device with similar behavior (see [12] for more on
required properties).

These attacks can be mitigated by designing new PUFs or adding protections to the PUF
challenge-response protocol. Our focus is on improving the challenge-response protocol. A natural
way to prevent learning attacks is to apply a one-way hash to the output. However, the PUF reliability
property only says that responses are noisy: they are close, not identical. Fuzzy extractors [13] can
remove noise at the cost of leaking information about the response. This information leakage prevents
fuzzy extractors from being reused across multiple challenges [14–17]. Computational fuzzy extractors
do not necessarily leak information [18] and some constructions may be reusable [19]. Herder et al.
have designed a new computational fuzzy extractor and PUF challenge-response protocol designed
to defeat modeling attacks [20]. Their construction is based on the learning parity with noise (LPN)
problem [21], a well-studied cryptographic problem. Essentially, the LPN problem states that a product
of a secret vector and a random matrix plus noise is very hard to invert. However, their work did not
implement the protocol, leaving its viability unclear.

Our Contribution: We provide the first implementation of a challenge-response protocol based
on computational fuzzy extractors. Our implementation allows for arbitrary interleaving of
challenge creation, called Gen, and the challenge response protocol, called Ver, and is stateless.
Our implementation builds on a Ring Oscillator (RO) PUF on a Xilinx Zynq All Programmable
SoC (System on Chip) [22], which has an FPGA (Field Programmable Gate Array) and a co-processor
communicating with each other.

Our approach is based on the LPN problem, like the construction of Herder et al. [20], with the
following fundamental differences:

• In order to minimize area overhead so that all control logic and other components fit well
inside the FPGA, we reduce storage (by not storing the whole multiplication matrix of the
LPN problem, but only storing its hash) and, most importantly, we outsource Gaussian elimination
to the co-processor.

• We keep the same adversarial model: we only trust the hardware implementation of Gen and Ver
in FPGA, i.e., we do not trust the co-processor. In fact, we assume that the adversary controls
the co-processor and its interactions with the trusted FPGA logic; in particular, the adversary
observes exactly what the co-processor receives from the trusted FPGA logic and the adversary
may experiment with the trusted FPGA logic through the communication interface. As in Herder
et al. [20], we assume that an adversary can not be successful by physically attacking the trusted
FPGA logic with its underlying RO PUF. We notice that in order to resist side channel attacks
on the FPGA logic itself, the logic needs to be implemented with side channel counter measures
in mind. This paper gives a first proof-of-concept without such counter measures added to
its implementation.

• In order to outsource Gaussian elimination to the co-processor, the trusted FPGA logic reveals
so-called “confidence information” about the RO PUF to the co-processor, which is controlled by
the adversary. This fundamentally differs from Herder et al. [20] where confidence information is
kept private.

• To prove security of our proposal, we introduce a mild assumption on the RO PUF output bits:
we need to assume that the RO PUF output bits are represented by an “LPN-admissible”
distribution for which the LPN problem is still conjectured to be hard. We argue that the RO
PUF output distribution is LPN-admissible for two reasons (see Definition 1 and discussion after
Theorem 1):

Cryptography 2017, 1, 23 3 of 19

1. Since we reveal the “confidence information”, we can implement a masking trick which, as a
result, only reveals a small number of equations, making the corresponding LPN problem
very short; we know that very short LPN problems are harder to solve than long ones.

2. Studies have shown that the RO pairs which define the RO PUF on FPGA can be implemented
in such a way that correlation among RO pairs can be made extremely small; this means that
the RO PUF creates almost identical independent distributed (i.i.d.) noise bits in the LPN
problem and we know that, for i.i.d. noise bits, the LPN problem has been well-studied and
conjectured to be hard for decades.

Our main insight is that “confidence information” does not have to be kept private—this is
opposed to what has been suggested in Herder et al. [20]. As a result of our design decisions:

• The area of our implementation on FPGA is 49.1 K LUTs (Look-up Tables) and 58.0 K registers in
total. This improves over the estimated area overhead of 65.7 K LUT and 107.3 K registers for the
original construction of Herder et al. [20].

• The throughput of our implementation is 1.52 K Gen executions per second and 73.9 Ver
executions per second.

• According to our experiments on real devices, even though the underlying RO PUF has a
measured maximum error rate (i.e., the fraction of RO pairs producing a wrong response bit)
of 8% for temperatures from 0 to 70 degree Celsius, Ver correctly reconstructed responses for
1000 measurements.

• The source code of our complete implementation is available at github.com/scluconn/LPN-
based_PUF.

Organization: This paper is organized as follows: In Section 2, we introduce the necessary background
and the original LPN-based PUF design of [20]. Our simplified and implementation friendly LPN-based
PUF construction is described in Section 3. The implementation details and security analysis with
discussion on admissible LPN distributions are provided in Sections 4 and 5, respectively. We compare
our work with related work in Section 6. The paper concludes in Section 7.

2. Background

2.1. Adversarial Model

In this paper, we use the same adversarial model as that in [20]:

• We assume that the hardware implementation of Gen and Ver in FPGA cannot be tampered with
by the adversaries.

• The software running on the processor does not need to be trusted. This implies that its
computation and interactions with FPGA hardware logic can be observed, tampered, and
controlled by the adversaries.

• The adversaries are able to read all the digital secrets stored in the non-volatile memory on the
device by imaging attacks, so no digital secret is allowed in the hardware device.

• The adversaries can also experiment with the trusted FPGA logic through the communication
interface and get a polynomial number of valid challenge response pairs. However, notice that
side channel analysis is not considered in our proof-of-concept implementation. In order to resist
side channel attacks on the FPGA logic itself, the logic needs to be implemented in a side channel
resilient way.

2.2. Learning Parity with Noise

We recall the definition of the LPN problem. Informally, this is the problem of decoding random
linear codes under independently and identically distributed (i.i.d.) bit errors, which is widely
conjectured to be hard for large enough error [23]. Based on LPN, many cryptographic primitives are
proposed [24–27]. Formally, the LPN problem is defined as follows [25]:

github.com/scluconn/LPN-based_PUF
github.com/scluconn/LPN-based_PUF

Cryptography 2017, 1, 23 4 of 19

Conjecture 1. Let s ∈ {0, 1}n and A ∈ {0, 1}m×n be chosen uniformly at random, m ≥ n. Let e ∈ {0, 1}m

be a vector that has all its entries ei chosen from a distribution χ, which implies that each ei is independently
and identically distributed (i.i.d). We define b ∈ {0, 1}m as

b = A · s⊕ e.

Given the pair (b, A) and knowledge of distribution χ, the (computational) LPN problem is to determine s.
The LPN conjecture states that there is no algorithm that solves an LPN problem instance (A, b) in time
poly(n, 1/(1

2 − τ)) with non-negligible probability in n where χ is a Bernoulli distribution with bias τ.

As shown in [21,28–31], the current best known algorithm is slightly sub-exponential with running
time 2Ω(n/ log n). Note that this algorithm requires 2Ω(n/ log n) samples. The construction in this
paper only provides poly(n) samples in which case the best known algorithm is 2Ω(n/ log log n) [32].
Typically, for RO POK outputs, τ > 0.4 [20,33] (this is also verified by the experiments in this paper).
This means that, for practical parameters, constant factors in Ω(n/ log log n) are the same size as the
log log n term making the algorithm take time of approximately 2n.

Related to Conjecture 1, we define, besides Bernoulli distributions with bias τ, the larger set of
LPN-admissible distributions:

Definition 1. For arbitrary distributions e ← χm (here, χm outputs a binary vector of length m), we define
χm LPN-admissible if there is no algorithm that solves an LPN problem instance (A, b) with knowledge of the
distribution χm in time poly(n, m) with non-negligible probability in n.

We will use this definition of an LPN-admissible distribution in the security analysis of our
construction. Please note that χm does not require that each dimension is i.i.d.

2.3. Original Construction

Herder et al. [20] proposed the first computationally secure PUF design, called the LPN-based PUF,
which self-corrects measurement noise even when measurement noise is large. The PUF has two main
procedures: Gen (see Figure 1) and Ver (see Figure 2), which are used to generate challenge-response
pairs (CRPs) (c, r) and regenerate a response r for a given challenge c, respectively.

In Gen (Figure 1), a Physical Obfuscated Key (POK) generates a noise vector e. The proposed POK
is implemented as a sequence of independent RO pairs (i.e., an RO PUF), which together produce e.
We assume this implements an LPN-admissible distribution; implicitly, this means that we assume
that RO pairs that are close together in the concrete circuit implementation of the POK still produce
sufficiently (admissible) independent output bits. Notice that the response vector of the POK is
vector e and this should not be confused with the response of the larger LPN-based PUF construction.
We notice that the POK ideally creates ‘close to’ unbiased response bits—in practice, the worst-case
bias per response bit we have seen in the literature and our experiments is τ > 0.4 [20,33] (in our
implementation, we measured τ = 0.47).

Figure 1. Redrawn from [20]: Gen: Gen produces a challenge response pairs (c, r), where c = (H(s, b), b)
and r = H(s).

Cryptography 2017, 1, 23 5 of 19

Figure 2. Redrawn from [20]: Ver: Ver reproduces the response r = H(s) corresponding to challenge
c = (H(s, b), b).

As a final step in Gen, vector b together with the hash of s concatenated with b are outputted
as challenge, and the hash of s is outputted as the corresponding response.

In Ver (Figure 2), the POK generates vector e′ together with a confidence information vector co′,
where each bit co′i measures the reliability of e′i. In the context of using ring oscillator pairs as
the POK, the confidence information co′i is the absolute value of the frequency difference between
two ring oscillators, and the generated bit e′i encodes the sign of this difference. If the confidence
information value is larger, it is less likely that e′i generated by this ring oscillator pair will be flipped
under environmental condition variations. Notice that this implies that the confidence information co′i
is correlated with the reliability of e′i, but it does not imply correlation between co′i and the value of e′i.

Vector co′ is used to locate the reliable bits in e′, and it is kept secret inside the device. The subset
of equations in b = A · s + e′ that correspond to these reliable positions has a very high likelihood of
containing a completely noise free subset of n = |s| equations. Let I indicate the n indices of a set of
noise free bits, and let e′I be vector e′ truncated to the positions indexed by I , and, similarly, let AI
indicate the submatrix corresponding to the rows in A indexed by I . For I , e′I = eI , hence, AI · s can
be computed from b, e′, and I . With high likelihood, AI is invertible and Gaussian elimination allows
us to regenerate the secret s. Thus, the LPN problem becomes easy if confidence information can be
used. That is, the measurement noise should be small enough in order to be able to find a proper set I
in poly(n) time—in practice, an exhaustive search over n2 to n3 most likely candidates I . The reader is
referred to [20] for further details and security proof of this construction.

The above technique creates a noise-free PUF in that the exact same previously generated response
is reconstructed by Ver. This implies that responses can serve as keys in cryptographic primitives.

3. Our Construction

It costs significant area overhead to perform Gaussian elimination in hardware. For this reason,
we propose a hardware software co-design of LPN-based PUFs where Gaussian elimination is pushed
to the untrusted software, i.e., only the hardware components are assumed to be trusted in that they are
not tampered with and an adversary can only observe the interactions between hardware and software.

As in the original construction, our LPN-based PUF has a Physical Obfuscated Key (POK),
which always measures the same response, at its core. It also has two modes of operation: Gen (Figure 3)
and Ver (Figure 4). Each instance of Gen creates a challenge-response pair. If a correctly created
challenge is given to the LPN-based PUF operating in Ver mode, then the corresponding response
is regenerated. In Figures 3 and 4, the functions in white boxes are implemented in hardware and
are trusted. The processor (in the grey box) and the software running on it are considered to be
untrusted; therefore, all of the computation executed by the software should be verified by the trusted
hardware in the diamond shaped boxes.

Cryptography 2017, 1, 23 6 of 19

Figure 3. Gen: Gen produces a challenge response pair (c, r), where c = (I, b, h1) with h1 = H(b, s, 1)
and I ⊂ {i|Tmin < coi} with |I| = 2n, and where r = h0 with h0 = H(b, s, 0).

Figure 4. Ver: Ver takes input c = (I′, b′, h′1), and either outputs an exception symbol ⊥, or outputs
the response r = h′′0 . Notice that e′I ′′ ⊕ b′I ′′ is continuously fed into the multiplier with a small amount
of bit flips (less than t bits). The regenerated index set of reliable bits is denoted as I∗ ⊂ {i|Tmin < co′i}.

Generation Gen: Matrix A is selected at random by the manufacturer, and it can be the same for
all the devices. Therefore, its hash value can be completely hard coded into the circuit to prevent
adversaries from manipulating matrix A. In our construction, a POK is implemented by m Ring
Oscillator pairs (RO pairs), where m is the number of rows in matrix A. Note that we use a POK, but
our protocol supports a large number of challenge-response pairs yielding a strong PUF overall.

The POK generates a vector d with count differences coming from the RO pairs. The sign of each
entry in d gives a binary vector e, and the absolute value of the entries in d represents confidence
information co. Gen selects a set I of 2n bits from e where the corresponding confidence information
is at least some predefined threshold Tmin.

The processor feeds the rows of A one by one into the hardware. By using a bit select module
based on set I , the hardware extracts and feeds the rows of AI to a hardware matrix-vector multiplier.
The hardware matrix-vector multiplier takes input matrix AI , an input vector s generated by a True
Random Number Generator (TRNG), and eI , and computes bI = AI · s⊕ eI . We set all bits bi = 0
for i 6∈ I to generate the complete vector b of m bits. This masking trick has the advantage that no
unnecessary information is given to the adversary (and will allow us to have a reduction to a very short
LPN-problem). After b is constructed, hash values h1 = H(b, s, 1) and h0 = H(b, s, 0) are computed.
The challenge is (h1, I , b) with response h0.

Since any software computation is considered untrusted, the hardware needs to verify the
hash of A. This circuitry (with hash H(A) embedded) is used in Gen mode to verify that the

Cryptography 2017, 1, 23 7 of 19

(untrusted) processor provides the correct A specified by the manufacturer, instead of an adversarially
designed matrix. This is needed because the underlying LPN problem is only hard if A is a randomly
chosen matrix; an adversarially designed A could leak the POK behavior. Similarly, matrix A also
needs to be verified in Ver for the same reason.

Verification Ver: In Ver mode, the adversary inputs a possibly corrupted or maliciously generated
challenge (I′, b′, h′1) (in Ver, we denote all the variables, which should have the same values as the
corresponding variables used in Gen, as the original variable followed with a single quotation mark (′).
e.g., b in Gen should be equal to b′ in Ver, if it is not maliciously manipulated by adversaries). Before a
corresponding response will be reconstructed, the hardware in Ver mode needs to check whether
(I′, b′, h′1) was previously generated in Gen mode.

The POK measures again count differences from its RO pairs and obtains e′ and co′. There are
some errors in e′, so e 6= e′. For indices i corresponding to high confidence, we expect e′i 6= ei with
(very) small probability. We use this fact to remove (almost all of) the noise from the linear system.

The POK observes which i corresponds to a bit e′i that has high confidence value; we call the set
of reliable bit positions I∗, which should have a similar size as that of I . The POK then sends I∗ to
the processor. The processor takes input challenge c = (h′1, I ′, b′) and picks a subset I ′′ ⊂ I ′ ∩ I∗
with |I ′′| = n such that matrix A′I ′′ has full-rank. We notice that, by using a subset I ′′ of both I ′ and
I∗, the probability ei 6= e′i for i ∈ I ′′ is much smaller than for i ∈ I ′ or I∗.

The processor computes and transmits to the hardware matrix-vector multiplier the inverse
matrix (A′I ′′)−1 of matrix A′I ′′ . Next, the rows of matrix A′ are fed one by one into the hardware
and its hash is computed and verified against H(A). The rows corresponding to submatrix A′I ′′
are extracted (using a bit select functionality based on I ′′) and the columns of A′I ′′ are fed into the
hardware matrix-vector multiplier one by one. This verifies that A′I ′′ and (A′I ′′)−1 are inverses of
one another (the equal identity matrix box in Figure 4 verifies that the columns of the identity matrix
are being produced one after another). The correctness of matrix (A′I ′′)−1 is guaranteed by checking
whether the hash of matrix A′ matches the hash value H(A) (as was done in Gen). The correctness of
A′ implies the correctness of A′I ′′ (since A′I ′′ was fed as part of A′ into the hardware). Therefore, if all
checks pass, then (A′I ′′)−1 is indeed the inverse of a properly corresponding submatrix of the matrix
A used in Gen. (The reason why this conclusion is important is explained in Section 5.).

Next, the hardware computes the vector b′I ′′ ⊕ e′I ′′ and multiplies this vector with matrix
(A′I ′′)−1 using the hardware matrix-vector multiplier:

s′ = (A′I ′′)
−1(b′I ′′ ⊕ e′I ′′). (1)

The (non-malleable) hash value h′′1 = H(b′, s′, 1) is compared with the input value h′1 from
the challenge.

Suppose that input h′1 was generated as h′1 = H(b, s, 1) for some b and s. If h′′1 = h′1, we conclude
that s′ is correct in that it is equal to input s, which was hashed into h′1 when h′1 was generated, and b′I ′′
is correct in that it is equal to input bI ′′ , which was hashed into h′1 when h′1 was generated.

Since the adversary is not able to solve the LPN problem, the check b′I ′′ = bI ′′ together with
the conclusion that b′I ′′ led to a proper solution s′ of the LPN problem by using the bits in the
POK-generated vector e′I ′′ implies that only the LPN-based PUF itself could have generated h′1 and,
hence, the challenge. This means that the LPN-based PUF must have selected s and produced the
inputted challenge with h′1 during an execution of Gen. We notice that vector s′ = s can only be
recovered if eI ′′ in the execution of Gen equals e′I ′′ in (1). We conclude that Ver is now able to generate
the correct response h′′0 = H(b′, s′, 0) = H(b, s, 0) (since h′′0 must have been the response that was
generated by the LPN-based PUF when it computed the challenge with h′1 = h′′1).

If h′′1 6= h′1, then likely eI ′′ and e′I ′′ only differ in a few positions (if there is no adversary).
By flipping up to t bits in e′I ′′ (in a fixed pattern, first all single bit flips, next all double bit flips, etc.),
new candidate vectors s′ can be computed. When the hash h′′1 verifies, the above reasoning applies

Cryptography 2017, 1, 23 8 of 19

and s′ = s with the correct response h′′0 . Essentially, since the bits we are using for verification are
known to be reliable, if the system is not under physical attacks, then very likely there are no more than
t bit errors in e′I ′′ . Internally, we can try all the possible error patterns on e′I ′′ with at most t bit flips,
and check the resulted h′′1 against h′1 to tell whether the current e′I ′′ was used in Gen or not.

If none of the t bit flip combinations yields the correct hash value h′1, then the exception ⊥
is output. This decoding failure can be caused by attackers who feed invalid CRPs, or a very large
environmental change that results in more than t bit errors in e′I ′′ , which can also be considered as a
physical attack. We notice that allowing t-bit error reduces the security parameter with ≈t bits since
an adversary only needs to find e′I ′′ within t bit errors from eI ′′ . In order to speed up the process of
searching for the correct s′, we use a pipelined structure which keeps on injecting possible b′I ′′ ⊕ e′I ′′
(with at most t bit flips) to the hardware matrix-vector multiplier.

Being able to recover s′ = s is only possible if eI ′′ in the execution of Gen and e′I ′′ in Equation
(1) are equal up to t bit flips. This is true with high probability if Tmin is large enough and I ′′ was
properly selected as a subset of I ′ ∩ I∗. As explained by Herder et al. [20], m should be large enough
so that an appropriate Tmin can be selected with the property that, when the RO pairs are measured
again, there will be a set I ′′ ⊆ I ∩ I∗ of n reliable bits: in particular, according to the theorical analysis
in [20], for n = 128, this corresponds to m at most 450 RO pairs for operating temperature from 0 to 70
degrees Celsius and error probability (of not being able to reconstruct s) less than 10−6. Readers are
referred to Equation (2) in [20] for an estimation of Tmin given the distribution of RO outputs and the
desired error rate.

Comparison with previous work: Our approach differs from the construction of Herder et al. in [20]
in the following ways:

1. We output the indices of reliable bits to the untrusted processor, instead of keeping the positions
of these reliable bits private inside the hardware. In Section 5, we argue that the distribution of
e|I and, in general, e|co are still LPN-admissible.

2. By masking b (i.e., making b all-zero outside bI), we can reduce the security to a very short LPN
problem with 2n equations (corresponding to set I).

3. By revealing I and I∗ to the processor, the processor can select a submatrix AI ′′ with I ′′ ⊆ I ∩I∗,
which is a full rank matrix. This would consume more area if done in hardware.

4. Since the processor knows the selected submatrix AI ′′ , the processor can compute the inverse
matrix. Hence, we do not need a complex Gaussian eliminator in hardware and we reuse the
matrix-vector multiplier used in Gen mode.

5. Because the processor with executing software is considered to be untrusted, we add mechanisms
to check manipulation of AI ′′ and bI ′′ .

6. Matrix A does not need to be hard-coded in circuitry. Instead, a hash-of-A-checking circuitry is
hard coded in hardware giving less area overhead.

4. Implementation

We implemented our construction on Xilinx Zynq All programmable SoC [22]. The Zynq platform
contains an ARM-based programming system with some programmable logic around it. Having a
hard core embedded, this platform makes our software hardware co-design implementation easier
and more efficient in software execution. We implemented the software units on the ARM core and the
hardware units in the programmable logic. The communication between these two parts is over an
AXI Stream Interface in order to maximize the communication throughput. The FPGA layout of the
implemented LPN-based PUF is shown in Figure 5.

Cryptography 2017, 1, 23 9 of 19

Figure 5. FPGA layout of the entire LPN-based PUF implementation. Four main components are
highlighted: LPN core (Green), RO pairs (Yellow), communication (Red), hash function SHA-256 (Blue).
The ARM core is positioned at the large black rectangle top left; the thick black column in the middle is
block RAM. We magnify the left bottom corner in this figure (highlighted by a purple box) to be Figure 6.

We have 450 RO pairs for generating e with confidence information co as depicted in Figures 3
and 4. Each RO has five stages, and the two ROs in each RO pair are manually placed at adjacent
columns on the FPGA to minimize the systematic effects [33] (see Figure 6). We measure the toggles at
the output of each RO for 24 clock cycles to generate e and co. In Gen mode, module Index Selection
compares vector co with a threshold Tmin to produce an index vector, which indicates the positions of
all the reliable bits. This is used in module Bit Selection to condense the 450-bit vector e to a 256-bit
vector eI by selecting 256 bits out of all the reliable bits. Set I restricted to these 256 bits is sent to the
processor as part of the generated challenge.

Next, the processor sends matrix A (450 rows times 128 columns) to the hardware row by row.
All the rows will be fed into the hash function to compute H(A) to verify the correctness of A.
Only the rows in AI , which will be used later in a matrix multiplication, are selected and stored by the
Row Selection module. Since we implemented a pipelined matrix-vector multiplier for multiplying
a 128 × 128 matrix with a 128-bit vector, Gen multiplies the 256 × 128 submatrix AI of A with a
randomly generated vector s by loading this submatrix in two parts. After XORing eI , we obtain a

Cryptography 2017, 1, 23 10 of 19

256-bit vector bI . Module Bit Expand adds zeroes to create the full 450-bit vector b. After Bit Expand,
we feed the 450 bits of b and the 128 bits of s to the hash module to compute h1 = H(b, s, 1) and
h0 = H(b, s, 0). We implemented a multiple ring oscillator based true random number generator [34]
to generate the 128-bit vector s, and SHA-256 [35] is implemented as the hash function.

Figure 6. In this figure, we magnify the area at the left bottom corner in Figure 5. We only highlighted
the LUTs implementing RO arrays as orange blocks. Each LUT is implemented as one inverter.
Therefore, they are 5-stage ROs, and they are placed manually in adjacent columns on the FPGA.

In Ver mode, 450 RO pairs are evaluated in the same way as in Gen. Now, the module Index
Selection generates index set I∗, which is sent to the processor. A correctly and non-maliciously
functioning processor should take the intersection of I∗ and the correct set I ′ = I , which was
produced by Gen. From this intersection, the processor selects an index set I ′′ such that the submatrix
A′I ′′ = AI ′′ is invertible. Since a randomly selected 128 × 128 submatrix may not be invertible, it may
require the processor to try a couple of times until finding an invertible matrix. Matrix (A′I ′′)−1 is
streamed to the hardware row by row and is stored in registers, which will be the matrix input for the
matrix-vector multiplier.

Next, the processor streams A′ = A into the hardware row by row. All the rows will be fed
into the hash function to compute H(A) to verify the correctness of A. At the same time, the rows of
A′ = A are fed into the Row Selection module for selecting the 128 × 128 submatrix A′I ′′ . All the rows
in A′I ′′ are temporarily saved in an array of shift registers. After all the rows of A′I ′′ are streamed in,
the array of shift registers can shift out A′I ′′ column by column and reuse the pipelined matrix-vector
multiplier in Gen to check whether the product of A′−1

I ′′ and each column of A′I ′′ is a column of the
identity matrix or not.

If the above two checks pass, then the inverse matrix (A′I ′′)
−1 will be multiplied with e′I ′′ ⊕ b′I ′′

to recover s′. Here, the processor should have given b′ = b to the hardware so that the Bit Selection
module can be used to obtain b′I ′′ = bI ′′ (with I ′′ ⊆ I ′ = I). The recovered s′ is further verified by
computing h′′1 = H(b′, s′, 1). If h′′1 = h′1; then, the hardware computes and outputs h′0 = H(b′, s′, 0).
According to the calculation in [20], we set t = 1. This means that we need to exhaustively try all the
one bit flips. This means that there are 129 possible possible e′I ′′ ⊕ b′I ′′ in total (these can be fed one by
one into the pipelined matrix-vector multiplier). If none of these yields a correct h′′1 , then the hardware
will output an all-zero vector to indicate a ⊥ response. Similarly, if any of the above checks (of the
hash of A and of the inverse matrix) fails, then the hardware will output the all-zero vector as well.

Our implementation results. The area of our full design on FPGA is 49.1 K LUTs and 58.0 K
registers in total. The area utilization of each part is shown in Table 1. The three most costly components
are two 128 × 128 register arrays and the 450 RO pairs, which form together the underlying RO PUF.

Cryptography 2017, 1, 23 11 of 19

The dynamic power consumption of the complete implementation is 1.753 W, and its static power
consumption is 0.163 W.

The throughput of our implementation is measured as 1.52 K Gen executions per second and
73.9 Ver executions per second. The execution time of Gen is dominated by the matrix transmission,
which takes 91% of the overall execution time. However, Ver is dominated by the software Gaussian
elimination, where each Gaussian elimination takes about 3880 µs to finish, and each Ver requires 3.47
Gaussian eliminations on average.

Table 1. Area utilization of the implemented LPN-based PUF.

Core Components Common Components

Component LPN Core b ROs c Comm d Hash TRNG Total

Area (# LUTs) 28.5 K/53.5% a 12.2 K/22.9% 7.6 K/14.3% 0.8 K/1.5% 10/0% 49.1 K/92.3%
Registers 38.0 K/35.7% 9.9 K/9.3% 7.5 K/7.0% 2.5 K/2.3% 0.1 K/0% 58.0 K/54.5%

a The percentage presented in this table is the percentage of resource utilization with respect to all the
available resources on one ZedBoard; b LPN Core: Includes a 128 × 128 Matrix — 128 vector multiplier,
two 128× 128 register arrays, Bit Selection, Row Selection, and control logic to control the whole system; c ROs:
Includes 450 Ring Oscillator pairs together with Index Selection; d Comm: When this PUF system is fully
integrated with the processor, we expect that the hardware overhead for communication can be eliminated.

Comparison. The original construction in [20] would need a hardware Gaussian eliminator in an
implementation. The most efficient implementation of a pipelined Gaussian eliminator takes 16.6 K
LUT and 32.9 K registers on FPGA for a 128 row matrix [36]. In our design, we save this area by
pushing the computation to the software.

One may argue that, in order to push Gaussian elimination to untrusted software, we have to add
extra hardware to check for the correctness of the inverse matrix. Notice, however, for checking this
inverse matrix, we reuse the matrix-vector multiplier in Gen. Therefore, the only additional hardware
overhead is one 128 × 128 register array. If we do Gaussian elimination in hardware, then we need
registers to store the whole matrix A′I∗∩I ′ of size 128 × 256 and the output matrix of the Gaussian
elimination, which is another 128 × 128 bits: this is because a random matrix constructed by 128 rows
in A′I∗∩I ′ may not have full rank. As a result, the hardware may need to try a couple of times in
order to find an invertible submatrix of A′I∗∩I ′ . For these reasons, compared to our implementation
in this paper, Gaussian elimination in hardware will cost an additional 128 × 128 register utilization
together with the control logic for randomly selecting 128 rows out of a 256-row matrix.

If we would implement the original construction in hardware, then its area overhead without
additional control logic is estimated at 65.7 K LUT (49.1 K + 16.6 K) and 107.3 K register
(58.0 K + 32.9 K + 16.4 K). This resource utilization would be larger than the available resources on our
FPGA (53.2 K LUT and 106.4 K registers).

Experimental Results. We characterized the error rate of RO pairs defined as the percentage
of error bits generated in one 450 bit vector e. The error rate of the implemented 450 RO pairs
at room temperature is 2.7%, which is in the range (2∼4%) that has been reported in a large scale
characterization of ring oscillators [4]. We measured the error rate of 450 RO pairs under different
temperatures from 0 to 70 degrees Celsius where the output of the 450 RO pairs is compared to a
reference output vector e generated at 25 degrees Celsius. We observed a maximum error rate of
8% (36 out of 450) over 1000 repeated measurements. This error rate is within the range of the error
correction bound (9%) estimated in [20]. We also characterized the bias of all the RO pair outputs,
τ = 0.47 for our implementation.

We experimented with the whole system under different temperatures (at 0 ◦C, 25 ◦C and 70 ◦C).
This showed that Ver was always able to reconstruct the proper response. No failure was observed
over 1000 measurements under different tempratures. We did not perform testing on voltage variation
and aging because the overall error rate is only affected by the error rate of the RO pair output bits.

Cryptography 2017, 1, 23 12 of 19

As long as the error rate of RO outputs is lower than 9% [20], given the current implementation, we can
have a large probability to regenerate the correct response. The overall error rate will not be affected
by how we introduce the errors in RO pairs.

If a TRNG has already been implemented in the system, then the TRNG can be reused for the
LPN-based PUF as well. As a part of a proof-of-concept implementation of the LPN-based PUF, we did
not perform a comprehensive evaluation of our implemented TRNG.

Future Direction. In our implementation, the area of LPN core mainly consists of two 128 × 128
bit register arrays for storing two matrices. It is possible to eliminate storage of these two matrices in
order to significantly reduce the area at the cost of paying a performance penalty.

The proposed alternative implementation works as follows: instead of storing two matrices for
checking (in Ver) whether (A′I ′′)

−1 and A′I ′′ are indeed inverse matrices of one another, we only store
at most one row or one column in the hardware at the same time. In Ver, we will need to first feed in
matrix A′, and let the hardware check its hash. At the same time, the rows in A′I ′′ are selected and
fed into another hash engine to compute H(A′I ′′), which is separately stored. However, the hardware
does not store any of the rows of A′I ′′ (and this avoids the need for a 128 × 128 bit register array).
Notice that after this process the authenticity of matrix A′ has been verified, and, as a result, we know
that the rows of A′I ′′ are equal to the rows of AI ′′ , hence, the stored hash H(A′I ′′) = H(AI ′′) which
can now be used to verify the submatrix A′I ′′ whenever it is loaded again into the hardware.

Next, matrix (A′I ′′)
−1 is fed into the hardware column by column. When a column is fed into

the hardware, e.g., the i-th column, we store it in the hardware temporarily. Then, the processor sends
the whole matrix A′I ′′ to the hardware row by row. Its hash is computed on the fly and in the end
compared with the stored hash H(A′I ′′) = H(AI ′′). At the same time, each received row of A′I ′′ is
multiplied (inner product) with the current stored i-th column of (A′I ′′)

−1. This is used to check if
the product is indeed equal to the corresponding bit in the i-th column of the identity matrix. If this
check passes for all rows of A′I ′′ and the hash verifies as well, then this column will be added to the
intermediate value register of (A′I ′′)

−1 · (e′I ′′ ⊕ b′I ′′), based on whether i-th bit of e′I ′′ ⊕ b′I ′′ equals 1
or not.

In the above protocol, we also hash all received columns of (A′I ′′)
−1 and store the hash in

a separate register. If the above checks pass for all columns, then we know that this hash must
correspond to (AI ′′)−1. This will facilitate the process of trying other possible versions of e′I ′′ ⊕ b′I ′′ in
the future (where the processor again feeds matrix (A′I ′′)

−1 column by column so that its hash and at
the same time (A′I ′′)

−1 · (e′I ′′ ⊕ b′I ′′) can be computed).
The first trial/computation of (A′I ′′)

−1 · (e′I ′′ ⊕ b′I ′′) requires the processor to feed in matrix A′

(450 × 128 bits) once, matrix A′I ′′ (128 × 128 bits) 128 times (since it needs to be fed in once after each
column of (A′I ′′)

−1 is fed in), and (A′I ′′)
−1 (128 × 128 bits) once. If the first trial on e′I ′′ ⊕ b′I ′′ fails,

we will need to feed in (A′I ′′)
−1 a few more times until it recovers the correct s; now, only H((A′I ′′)

−1)

needs to be checked, hence, A′I ′′ does not need to be sent again and again. Therefore, we can estimate
the throughput upper bound of this new implementation by our time measurement in our current
implementation. Since the hardware computation time in our implementation does not dominate the
overall computation time, we can estimate the performance of the new alternative implementation
by only counting software computation time and data transmission time. In Gen, this alternative
implementation will have a similar execution time because the matrix can be multiplied with vector
s row by row and output bit by bit. Ver in this alternative implementation will require transmitting
2,171,136 bits for the first trial/computation of (A′I ′′)

−1 · (e′I ′′ ⊕ b′I ′′). Knowing that it takes about
600 µs to send 57,600 bits in our implementation, transmitting 2,171,136 will require about 22,626 µs,
and on average we will need to try Gaussian elimination 3.472 times to find an invertible matrix,
which will take about 13,471µs. The throughput upper bound of this alternative implementation
would be 27.0 Ver per second.

Cryptography 2017, 1, 23 13 of 19

To implement this alternative solution, we can reuse some of the current components: Bit Select,
Index Select, Bit Expand, ROs, TRNG and Communication (technically, Row Select can be reused
as well, but in our current implementation, Row Select is highly integrated with matrix registers.
Therefore, we cannot get a separate area utilization number of Row Select without matrix registers).
We will need to double the size of the hash circuitry because we will always need two hash engines to
run at the same time. The area of LPN core can be reduced significantly, the lower bound (without the
state machine for controlling all the components) of the area utilization would be 2 K LUTs and
4.8 K registers. Adding to this the utilization of the other components, the total size would be at least
23.4 K LUTs and 24.8 K registers.

If area size needs to be further reduced, we recommend implementing the alternative solution at
the cost of a 1/3 lower throughput of Ver.

The comparison between our implementation and the estimation of the previous construction
and an alternative implementation is summarized in Table 2.

Table 2. Comparison between three implementations.

Previous a Ours Future a

Gaussian Elimination HW GE SW GE SW GE

#registers for storing matrices 3n2 2n2 n

Processor Not Required Required Required

Area
∼65.7 K LUTs
∼107.3 K Registers

49.1 K LUTs
58.0 K Registers

∼23.4 K LUTs
∼24.8 K Registers

Throughput N/A b Gen: 1.52 K per second
Ver: 73.9 per second

Gen: ∼1.52 K per second
Ver: ∼27.0 per second

a Numbers are estimated; b This number is not available, because it highly depends on how the matrix A
is stored, and how fast it can be fetched; c HW GE stands for hardware Gaussian elimination, and SW GE
stands for software Gaussian elimination.

5. Security Analysis

We adopt the following security definition from Herder et al. [20]:

Definition 2. A PUF defined by two modes Gen and Ver is ε-secure with error δ if

Pr[(c, r)← Gen(1k) : r← Ver(c)] > 1− δ

and for all probabilistic polynomial time (PPT) adversaries A, Advs−uprd
PUF (A) ≤ ε, which is defined in terms of

the following experiment [20].

Algorithm 1 Stateless PUF Strong Security

1: procedure Exps−uprd
PUF (A)

2: Amakes polynomial queries to Gen and Ver.
3: When the above step is over, A will return a pair (c, r)
4: if A returns (c, r) such that:

• Gen did not return (c, r) before
• Ver(c) = r

5: then return 1
6: else return 0
7: end procedure

The s− uprd advantage of A is defined as

Advs−uprd
PUF (A) = Pr[Exps−uprd

PUF (A) = 1].

Cryptography 2017, 1, 23 14 of 19

For our construction (reusing the proof in [20]), the security game in Definition 2 is equivalent to
that where the adversary A does not make any queries to Ver.

The adversary in control of the processor can repeatedly execute Gen and Ver and receive various
instances of sets I and I∗. This information can be used to estimate confidence information and this
gives information about co to the adversary. Therefore, we assume the strongest adversary, who has
full knowledge about co in the following theorem.

Theorem 1. Let χ2n be the conditional distribution of eI = sign(dI) given co = |d| and given index set I
with |I| = 2n and I ⊆ {i : Tmin < coi = |di|}. If the distribution χ2n is LPN-admissible, then the proposed
PUF construction has Advs−uprd

PUF (A) negligible in n under the random oracle model.

The proof uses similar arguments to those found in sections VIII.A and VII.C.2 of [20], with three
differences: (1) the adversary who wants to break LPN problems takes an LPN instance (A, b), where
A ∈ {0, 1}2n×n and b ∈ {0, 1}2n. Thus, the related LPN problem is restricted to only 2n equations,
instead of m equations (m > 2n) in [20]; (2) the distribution of e is from χ2n which is conditioned on co,
instead of χ in [20]; (3) in our construction, the querries to the random oracle are (b, s, 0) and (b, s, 1),
which are different from (b, s) and s used in the original construction. But this does not affect the
capability of recovering s from the look up table constructed in the original proof in [20].

The above theorem talks about LPN-admissible distributions for very short LPN problems (i.e.,
the number of linear equations is 2n, twice the length of s). Short LPN problems are harder to solve
than longer LPN problems [32]. Thus, we expect a larger class of LPN-admissible distributions in
this setting.

In our implementation, d is generated by RO pairs on the FPGA. It has been shown in [33] that,
across FPGAs, the behavior of ROs correlate, i.e., if one depicts the oscillating frequency as a function
of the spatial location of the RO, then this mapping looks the same across FPGAs. This means that
different RO pairs among different FPGAs with the same spatial location behave in a unique way: an
adversary may still program its own FPGAs from the same vendor and measure how the output of RO
pairs depend on spatial locality its on its own FPGAs (which is expected to be similar across FPGAs).

The spatial locality of one RO pair does not influence the behavior of another RO pair on the
same FPGA. However, if the output of one RO pair is known, the adversary is able to refine its
knowledge about spatial locality dependence. In this sense, RO pairs with different spatial locations
on the same FPGA become correlated. However, since the two neighboring ROs are affected almost
the same by systematic variations, the correlation (even with knowledge of confidence information)
between the RO pair outputs generated by physically adjacent ROs is conjectured to be very small.
This claim is also verified experimentally in [33]. We can conclude that different RO pairs will show
almost i.i.d. behavior, if all the bits are generated by comparing neighboring ROs. However, even
though the larger part of spatial locality is canceled out, conditioned on the adversary’s knowledge
of how spatial locality influences RO pairs, an RO pair’s output does not look completely unbiased
with τ = 0.5. In general, however, τ > 0.4 (this corresponds to the inter Hamming distance between
RO PUFs) [20,33]. Hence, the 450 RO pairs seem to output random independent bits, i.e., Bernoulli
distributed with a bias τ > 0.4. Since we conjecture the hardness of LPN stating that Bernoulli
distributions (with much smaller bias) are LPN-admissible, this makes it very likely that in our
implementation an LPN-admissible distribution is generated.

As a final warning, we stress that replacing the 450 RO pairs by, e.g., a much smaller (in area)
ring oscillating arbiter PUF introduces correlation, which is induced by how such a smaller PUF
algorithmically combines a small pool of manufacturing variations into a larger set of challenge
response pairs. This type of correlation will likely not give rise to a LPN-admissible distribution
(the confidence information may be used by the attacker to derive an accurate software model of the
smaller PUF which makes χ2n—as perceived by the adversary—a low entropy source distribution).

Cryptography 2017, 1, 23 15 of 19

Including b and s in the hash computation. We analyze the reasons why s and b must be
included in h1:

Parameter s. s is the only dynamic variable in the design so it ensures that challenge-response
pairs are unpredictable. (We cannot directly use s as a part of the challenge or response itself as this
would provide information about e to the adversary.)

Parameter b. This inclusion is because of a technicality regarding Definition 2 (one bit flip in b
likely gives a new valid challenge-response pair).

Checking the hash of A. We note that Gen checks if the adversary provides the correct matrix A
as input by verifying the hash of A. If this check is not done, then the adversary can manipulate matrix
A, and, in particular, submatrix A′I ′′ and its inverse (A′I ′′)−1 in Ver. This leads to the following attack:
suppose the inverse of the manipulated matrix is close to the original inverse (AI ′′)−1 with only one
bit flipped in column j. Let C be an all-zero matrix with only the one bit flipped in the j-th column.
Then, Ver computes

s′ = ((AI ′′)
−1 ⊕ C)(bI ′′ ⊕ e′I ′′)

= ((AI ′′)
−1 ⊕ C)(AI ′′s⊕ eI ′′ ⊕ e′I ′′)

= s⊕ CAI ′′s⊕ ((AI ′′)
−1 ⊕ C)(eI ′′ ⊕ e′I ′′).

Since Ver repeats this computation by flipping at most t bits in bI ′′ ⊕ e′I ′′ , we may assume that
the term (A−1

I ′′ ⊕ C)(eI ′′ ⊕ e′I ′′) will be equal to zero for one of these computations. This means that
Ver outputs the correct response based on s′ = s only if CAI ′′s = 0. Due to the specific choice for C,
this happens if and only if the j-th row of AI has inner product zero with s. By observing whether Ver
outputs a valid response or ⊥, the adversary is able to find out whether this inner product is equal to 0
or 1 and this leaks information about s.

Machine Learning Resistance. Current strong PUF designs are delay-based and vulnerable to
Machine Learning (ML) attacks. In order to obtain a strong PUF design with provable security, we
bootstrap a strong PUF from a weak PUF (also called POK) by including a digital interface within the
trusted computing base. This makes the new LPN-based strong PUF from [20] provably secure as its
security is reduced to the hardness of the LPN problem (at the price of not being lightweight due to
the larger digital interface). In other words, no ML attack can ever attack the LPN-based PUF unless
an ML approach can solve LPN.

6. Related Work

6.1. Attacks on PUFs

We classify all the attacks on PUFs based on what kind of information the attacks require.

Pure Machine Learning Attacks and Cryptanalysis. Strong PUF designs are vulnerable to pure
machine learning attacks and cryptanalsis, which only require a sufficient amount of challenge
response pairs to build a software model of a PUF. Many existing machine learning algorithms can
be used to model a strong PUF, e.g., Support Vector Machine, Logistic Regression [7,8], Probably
Approximately Correct Learning [37,38], Evolution Strategy [39], and Linear Programming [40].
Moreover, cryptanalysis attacks exploit the mathematical model of PUFs and builds a model of
a specific PUF without using any machine learning algorithms [11].

Hybrid Attacks. Hybrid attacks refer to the attacks that run machine learning algorithms on the
CRPs collected with some extra side channel information [9], or the CRPs collected when some faults
are introduced in the PUF evaluation intentionally [10,41].

Cryptography 2017, 1, 23 16 of 19

Side Channel Attacks. By photonic emission analysis, the adversaries are able to extract the
delay information of delay-based PUFs without invasive attacks [42,43]. This advanced attack allows
the adversaries to characterize a delay-based PUF easily.

Notice that, as the first proof-of-concept implementation of the LPN-based PUF, we did not
add countermeasures against side channel attacks in our implementation. However, some generic
countermeasures against side channel attacks can be easily added on top of our implementation [44].

6.2. Secure PUF-Based Authentication Protocols

In recent work, new ideas are proposed to secure a potentially vulnerable PUF at protocol level.
As an example of a PUF-based authentication protocol, the Slender PUF protocol requires a strong
PUF with strict avalanche property to be wrapped around by a digital interface for obfuscating its
challenges and responses [45]. In this way, the full challenge response pairs will not be exposed to the
adversaries, and thus it is heuristically secure against the current attacking methods.

Another method, called Lockdown technique, adds a digital interface around the PUF for limiting
the number of used challenge response pairs [46]. By not revealing too many CRPs, it is very hard for
adversaries to successfully build a model.

The PUF primitives themselves in the authentication protocols referred to above are vulnerable
to attacks. However, if, as in this paper, their digital interfaces are considered to be part of the full
PUF design, then these PUF+Interface designs can be shown to be heuristically secure against all the
known machine learning attacks.

6.3. Secure Lightweight PUF Designs

Given the recent development in attacking techniques, to the best of our knowledge, there is
only one lightweight (meaning without digital interface) secure PUF that is resistant against all
known attacks. MXPUF is inspired by a deep understanding of state-of-the-art attacks, and the authors
show heuristic security by performing all known attacks on their design [47].

6.4. Comparison with Related Work

There are three main differences between our work and the existing machine learning resilient
designs: (1) the security of the LPN-based PUF can be reduced to a well-established computational
hardness assumption; however, the security of the existing machine learning resilient designs
is heuristic; (2) the LPN-based PUF does not require e-fuses, which implies no non-volatile storage
as a possible attack point and allows arbitrary interleaving of generation and verification processes;
(3) the LPN-based PUF can generate an error-free response that can be used for key generation; however,
the PUFs enhanced as described in Section 6.2 can only be used for authentication because the challenge
applied to the PUFs cannot be fully controlled by the user/verifier. The MXPUF of Section 6.3 is
likely to be more sensitive to noise leading to error-prone responses than other constructions due to its
concatenated XOR-PUF structure; this will require it to use a fuzzy extractor with several coding layers.
Given these advantages, the LPN-based PUF is a good candidate for secure key management.

7. Conclusions

In this work, we present the first implementation of a PUF challenge response protocol based on
computational fuzzy extractors. Specifically, our approach is built on the LPN problem that is related to
the hardness of decoding a random binary code with errors. The LPN problem allows us to transform
a weak PUF into a strong PUF that supports an exponential number of challenges and responses.
In fact, our system retains security when Gen and Ver are arbitrarily interleaved. Even with these
security advantages, our implementation retains the efficiency benefits of traditional challenge
response protocols, requiring (essentially) one matrix multiplication and two hash computations.

Cryptography 2017, 1, 23 17 of 19

Our implementation is secure if the LPN problem is hard for RO outputs in the presence of
confidence information.

As one of the future research directions, one can build a compact LPN-based PUF by reducing
trusted internal registers and having more interactions and input validations. According to our estimation,
this will lead to a significant area reduction with at least three times more performance overhead.

Acknowledgments: This project was supported in part by the AFOSR MURI under award number
FA9550-14-1-0351, and in part funded by an NSF grant CNS-1617774 “Self-Recovering Certificate Authorities
using Backward and Forward Secure Key Management.”, and in part funded by NSF grant CNS-1523572.

Author Contributions: Chenglu Jin implemented the whole design, and performed the experiments. Chenglu
Jin, Phuong Ha Nguyen and Marten van Dijk collectively contributed to the simplified construction and the
compact implementation as a future direction. Ling Ren contributed the idea of pushing Gaussian elimination to
untrusted software. Benjamin Fuller and Marten van Dijk provided the idea of LPN admissible distributions. All
the authors collectively provided the security analysis. Srinivas Devadas provided contributions to all sections by
giving fruitful feedback that significantly improved the quality of the paper.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Pappu, R.S.; Recht, B.; Taylor, J.; Gershenfeld, N. Physical one-way functions. Science 2002, 297, 2026–2030.
2. Gassend, B.; Clarke, D.; van Dijk, M.; Devadas, S. Silicon physical random functions. In Proceedings of the 9th

ACM Conference on Computer and Communications Security, Washington, DC, USA, 18–22 November 2002;
pp. 148–160.

3. Yin, C.E.D.; Qu, G. LISA: Maximizing RO PUF’s secret extraction. In Proceedings of the 2010 IEEE International
Symposium on Hardware-Oriented Security and Trust (HOST), Anaheim, CA, USA, 13–14 June 2010;
pp. 100–105.

4. Maiti, A.; Casarona, J.; McHale, L.; Schaumont, P. A large scale characterization of RO-PUF. In Proceedings of
the 2010 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), Anaheim, CA, USA,
13–14 June 2010; pp. 94–99.

5. Kumar, S.; Guajardo, J.; Maes, R.; Schrijen, G.J.; Tuyls, P. The butterfly PUF protecting IP on every FPGA.
In Proceedings of the IEEE International Workshop on Hardware-Oriented Security and Trust, Anaheim,
CA, USA, 9 June 2008; pp. 67–70.

6. Tuyls, P.; Schrijen, G.J.; Škorić, B.; van Geloven, J.; Verhaegh, N.; Wolters, R. Read-proof hardware from
protective coatings. In Proceedings of the 8th International Conference on Cryptographic Hardware and
Embedded Systems, Yokohama, Japan, 10–13 October 2006; pp. 369–383.

7. Rührmair, U.; Sehnke, F.; Sölter, J.; Dror, G.; Devadas, S.; Schmidhuber, J. Modeling attacks on physical
unclonable functions. In Proceedings of the 17th ACM Conference on Computer and Communications
Security, Chicago, IL, USA, 4–8 October 2010; pp. 237–249.

8. Rührmair, U.; Sölter, J.; Sehnke, F.; Xu, X.; Mahmoud, A.; Stoyanova, V.; Dror, G.; Schmidhuber, J.;
Burleson, W.; Devadas, S. PUF modeling attacks on simulated and silicon data. IEEE Trans. Inf. Forensics Secur.
2013, 8, 1876–1891.

9. Rührmair, U.; Xu, X.; Sölter, J.; Mahmoud, A.; Majzoobi, M.; Koushanfar, F.; Burleson, W.P. Efficient Power
and Timing Side Channels for Physical Unclonable Functions. In Proceedings of the 16th International
Workshop on Cryptographic Hardware and Embedded Systems, Busan, South Korea, 23–26 September 2014;
pp. 476–492.

10. Delvaux, J.; Verbauwhede, I. Fault Injection Modeling Attacks on 65 nm Arbiter and RO Sum PUFs via
Environmental Changes. IEEE Trans. Circuits Syst. 2014, 61-I, 1701–1713.

11. Nguyen, P.H.; Sahoo, D.P.; Chakraborty, R.S.; Mukhopadhyay, D. Efficient Attacks on Robust Ring Oscillator
PUF with Enhanced Challenge-Response Set. In Proceedings of the Design, Automation & Test in Europe
Conference & Exhibition (DATE), Grenoble, France, 9–13 March 2015.

12. Armknecht, F.; Maes, R.; Sadeghi, A.R.; Standaert, F.X.; Wachsmann, C. A Formal Foundation for the Security
Features of Physical Functions. In Proceedings of the 2011 IEEE Symposium on Security and Privacy (SP),
Berkeley, CA, USA, 22–25 May 2011.

Cryptography 2017, 1, 23 18 of 19

13. Dodis, Y.; Reyzin, L.; Smith, A. Fuzzy extractors: How to generate strong keys from biometrics and other
noisy data. In Proceedings of the International Conference on the Theory and Applications of Cryptographic
Techniques, Interlaken, Switzerland, 2–6 May 2004; pp. 523–540.

14. Simoens, K.; Tuyls, P.; Preneel, B. Privacy Weaknesses in Biometric Sketches. In Proceedings of the 2009 30th
IEEE Symposium on Security and Privacy, Berkeley, CA, USA, 17–20 May 2009; pp. 188–203.

15. Boyen, X. Reusable Cryptographic Fuzzy Extractors. In Proceedings of the 11th ACM Conference on
Computer and Communications Security, Washington, DC, USA, 25–29 October 2004; pp. 82–91.

16. Blanton, M.; Aliasgari, M. On the (non-)reusability of fuzzy sketches and extractors and security in the
computational setting. In Proceedings of the International Conference on Security and Cryptography
(SECRYPT), Seville, Spain, 18–21 July 2011; pp. 68–77.

17. Blanton, M.; Aliasgari, M. Analysis of reusability of secure sketches and fuzzy extractors. IEEE Trans. Inf.
Forensics Secur. 2013, 8, 1433–1445.

18. Fuller, B.; Meng, X.; Reyzin, L. Computational Fuzzy Extractors. In Proceedings of the 19th International
Conference on the Theory and Application of Cryptology and Information Security, Bengaluru, India,
1–5 December 2013; pp. 174–193.

19. Canetti, R.; Fuller, B.; Paneth, O.; Reyzin, L.; Smith, A. Reusable Fuzzy Extractors for Low-entropy
Distributions. In Proceedings of the 35th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Vienna, Austria, 8–12 May 2016; pp. 117–146.

20. Herder, C.; Ren, L.; van Dijk, M.; Yu, M.M.; Devadas, S. Trapdoor Computational Fuzzy Extractors and
Stateless Cryptographically-Secure Physical Unclonable Functions. IEEE Trans. Dependable Secur. Comput.
2017, 14, 65–82.

21. Blum, A.; Kalai, A.; Wasserman, H. Noise-tolerant learning, the parity problem, and the statistical query
model. J. ACM 2003, 50, 506–519.

22. Xilinx. Zynq-7000 All Programmable SoC Overview. Available online: https://www.xilinx.com/support/
documentation/data_sheets/ds190-Zynq-7000-Overview.pdf (accessed on 1May 2017)

23. Regev, O. On lattices, learning with errors, random linear codes, and cryptography. J. ACM 2009, 56, 34.
24. Blum, A.; Furst, M.L.; Kearns, M.J.; Lipton, R.J. Cryptographic Primitives Based on Hard Learning Problems.

In Proceedings of the 13th Annual International Cryptology Conference, Santa Barbara, CA, USA,
22–26 August 1993; pp. 278–291.

25. Hopper, N.J.; Blum, M. Secure Human Identification Protocols. In Proceedings of the 7th International
Conference on the Theory and Application of Cryptology and Information Security, Gold Coast, Australia,
9–13 December 2001; pp. 52–66.

26. Applebaum, B.; Cash, D.; Peikert, C.; Sahai, A. Fast Cryptographic Primitives and Circular-Secure Encryption
Based on Hard Learning Problems. In Proceedings of the 29th Annual International Cryptology Conference,
Santa Barbara, CA, USA, 16–20 August 2009; pp. 595–618.

27. Applebaum, B.; Barak, B.; Wigderson, A. Public-key cryptography from different assumptions. In Proceedings
of the Forty-Second ACM Symposium on Theory of Computing, Cambridge, MA, USA, 5–8 June 2010;
pp. 171–180.

28. Levieil, É.; Fouque, P. An Improved LPN Algorithm. In Proceedings of the 5th International Conference,
Maiori, Italy, 6–8 September 2006; pp. 348–359.

29. Arora, S.; Ge, R. New Algorithms for Learning in Presence of Errors. In Proceedings of the 38th International
Colloquium, Zurich, Switzerland, 4–8 July 2011; pp. 403–415.

30. Bernstein, D.J.; Lange, T. Never Trust a Bunny. In Proceedings of the 8th International Workshop,
RFIDSec 2012, Nijmegen, The Netherlands, 2–3 July 2012; pp. 137–148.

31. Guo, Q.; Johansson, T.; Löndahl, C. Solving LPN Using Covering Codes. In Proceedings of the 20th
International Conference on the Theory and Application of Cryptology and Information Security, Kaoshiung,
Taiwan, 7–11 December 2014; pp. 1–20.

32. Lyubashevsky, V. The parity problem in the presence of noise, decoding random linear codes, and the
subset sum problem. In Proceedings of the 8th International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems, APPROX 2005 and 9th International Workshop on Randomization
and Computation, RANDOM 2005, Berkeley, CA, USA, 22–24 August 2005; pp. 378–389.

33. Maiti, A.; Schaumont, P. Improved Ring Oscillator PUF: An FPGA-friendly Secure Primitive. J. Cryptol. 2011,
24, 375–397.

https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf

Cryptography 2017, 1, 23 19 of 19

34. Sunar, B.; Martin, W.J.; Stinson, D.R. A provably secure true random number generator with built-in
tolerance to active attacks. IEEE Trans. Comput. 2007, 56, doi:10.1109/TC.2007.250627.

35. Standard, S.H. Federal Information Processing Standard Publication 180-2. US Department of Commerce,
National Institute of Standards and Technology (NIST), 2002. Available online: https://csrc.nist.gov/
publications/fips/fips180-2/fips180-2withchangenotice.pdf (accessed on 1 May 2017).

36. Scholl, S.; Stumm, C.; Wehn, N. Hardware implementations of Gaussian elimination over GF (2) for channel
decoding algorithms. In Proceedings of the Africon 2013, Pointe-Aux-Piments, Mauritius, 9–12 September 2013;
pp. 1–5.

37. Ganji, F.; Tajik, S.; Fäßler, F.; Seifert, J.P. Strong machine learning attack against PUFs with no mathematical
model. In Cryptographic Hardware and Embedded Systems—CHES 2016, Proceedings of the 18th International
Conference, Santa Barbara, CA, USA, 17–19 August 2016; Springer: Berlin/Heidelberg, Germany, 2016;
pp. 391–411.

38. Ganji, F.; Tajik, S.; Seifert, J. Why Attackers Win: On the Learnability of XOR Arbiter PUFs. In Proceedings
of the 8th International Conference, TRUST 2015, Heraklion, Greece, 24–26 August 2015; pp. 22–39.

39. Becker, G.T. The Gap Between Promise and Reality: On the Insecurity of XOR Arbiter PUFs. In Proceedings
of the 8th International Conference, TRUST 2015, Heraklion, Greece, 24–26 August 2015.

40. Liu, Y.; Xie, Y.; Bao, C.; Srivastava, A. A Combined Optimization-Theoretic and Side-Channel Approach for
Attacking Strong Physical Unclonable Functions. IEEE Trans. Very Large Scale Integr. Syst. 2017, PP, 1–9

41. Tajik, S.; Lohrke, H.; Ganji, F.; Seifert, J.P.; Boit, C. Laser Fault Attack on Physically Unclonable Functions.
In Proceedings of the 12th Workshop on Fault Diagnosis and Tolerance in Cryptography, St. Malo, France,
13 September 2015.

42. Tajik, S.; Dietz, E.; Frohmann, S.; Seifert, J.; Nedospasov, D.; Helfmeier, C.; Boit, C.; Dittrich, H. Physical
Characterization of Arbiter PUFs. In Proceedings of the 16th International Workshop on Cryptographic
Hardware and Embedded Systems, Busan, Korea, 23–26 September 2014; pp. 493–509.

43. Ganji, F.; Krämer, J.; Seifert, J.; Tajik, S. Lattice Basis Reduction Attack against Physically Unclonable
Functions. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, Denver, CO, USA, 12–16 October, 2015; pp. 1070–1080.

44. Gross, H.; Mangard, S.; Korak, T. An efficient side-channel protected aes implementation with arbitrary
protection order. In Proceedings of the Cryptographers’ Track at the RSA Conference 2017, San Francisco,
CA, USA, 14–17 February 2017; pp. 95–112.

45. Majzoobi, M.; Rostami, M.; Koushanfar, F.; Wallach, D.S.; Devadas, S. Slender PUF Protocol: A Lightweight,
Robust, and Secure Authentication by Substring Matching. In Proceedings of the 2012 IEEE Symposium on
Security and Privacy Workshops (SPW), San Francisco, CA, USA, 24–25 May 2012; pp. 33–44.

46. Yu, M.D.M.; Hiller, M.; Delvaux, J.; Sowell, R.; Devadas, S.; Verbauwhede, I. A lockdown technique to
prevent machine learning on PUFs for lightweight authentication. IEEE Trans. Multi-Scale Comput. Syst.
2016, 2, 146–159.

47. Nguyen, P.H.; Sahoo, D.P.; Jin, C.; Mahmood, K.; van Dijk, M. MXPUF: Secure PUF Design against
State-of-the-art Modeling Attacks. IACR Cryptol. ePrint Arch. 2017, 2017, 572.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
https://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Adversarial Model
	Learning Parity with Noise
	Original Construction

	Our Construction
	Implementation
	Security Analysis
	Related Work
	Attacks on PUFs
	Secure PUF-Based Authentication Protocols
	Secure Lightweight PUF Designs
	Comparison with Related Work

	Conclusions
	References

