
IEEE COMPUTER ARCHITECTURE LETTERS 1

DCC: A Dependable Cache Coherence Multicore Architecture
Omer Khan, Mieszko Lis, Yildiz Sinangil, Member, IEEE, and Srinivas Devadas, Fellow, IEEE

Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract—Cache coherence lies at the core of functionally-correct operation of shared memory multicores. Traditional directory-based hardware
coherence protocols scale to large core counts, but they incorporate complex logic and directories to track coherence states. Technology scaling has
reached miniaturization levels where manufacturing imperfections, device unreliability and occurrence of hard errors pose a serious dependability
challenge. Broken or degraded functionality of the coherence protocol can lead to a non-operational processor or user visible performance loss.
In this paper, we propose a dependable cache coherence architecture (DCC) that combines the traditional directory protocol with a novel execution-
migration-based architecture to ensure dependability that is transparent to the programmer. Our architecturally redundant execution migration
architecture only permits one copy of data to be cached anywhere in the processor: when a thread accesses an address not locally cached on
the core it is executing on, it migrates to the appropriate core and continues execution there. Both coherence mechanisms can co-exist in the DCC
architecture and we present architectural extensions to seamlessly transition between the directory and execution migration protocols.

Index Terms—Dependable architecture, cache coherence, multicores.

F

1 INTRODUCTION

T HE biggest challenge facing large-scale multicore processors is
the convenience of programming. Today the shared memory

abstraction is ubiquitous and multicores deploy a uniform hardware-
coherent address space to efficiently guarantee a consistent view of
data among cores. Snooping protocols do not scale to large core
counts, while directory protocols require the overhead of directo-
ries, and, further, are complex to analyze, validate, and implement.
The complexity of directory protocols is attributed to the directory
indirections that require multiple controllers to interact via the on-
chip interconnect. Network errors such as data corruption, misrouting,
and erroneous allocation of virtual channels can cause the coherence
protocol to deliver inconsistent data or, even worse, deadlock the
system. Similarly, a loss of on-chip data and directory capacity due
to memory bit-cell errors can severely affect system performance.

Semiconductor technology has reached miniaturization levels
where shrinking device sizes and low voltage operation (for en-
ergy efficiency) are the root causes for an increase in hardware
susceptibility to hard failures and device wear-out. Temperature
and power supply variability due to aggressive power management
is also expected to substantially contribute to device failure rates.
Because of the inability to precisely control manufacturing, process
variation can result in large variations of transistor threshold voltage,
which in turn causes faults in hardware that is operating close to
marginal conditions. Researchers predict that the threshold voltage
for transistors on the same die could easily vary by 30% in future
technology generations [1].

Today computer architects are investing heavily into means of
detecting and correcting errors at the expense of area, power and
performance. Traditionally, error detection and system reconfiguration
is done during manufacturing test. Recently, researchers have also
proposed several online test frameworks, where the system is concur-
rently or periodically tested at runtime, and subsequently reconfigured
to bypass the faulty components [2], [3]. Common error correction
techniques, including error correcting codes, sparing and replication,
require large overhead. Instead of relying on these expensive error
correction mechanisms, we propose an intelligent and architecturally
redundant coherence architecture alternative that is not only fault-
tolerant, but is also capable of improving performance by allowing
the system to choose an appropriate coherence protocol at the fine
granularity of OS-level pages.

• Manuscript submitted: 05-Dec-2010. Manuscript accepted: 07-Jan-2011.
Final manuscript received: 25-Jan-2011.

On-­‐chip	
 interconnec-on	
 network	

Router	

Core	

Cache	

hierarchy	

D
RA

M
	
 	

co
nt
ro
lle
r	

Coherence	

controller	

Directory	
 cache	

Migra-on	

Controller	

(a) Fully distributed tiled multicore

!"#

$%&''#$%&''#(&%)*+,#-.#

/0*&,1#-.#

(&%)*+,#-2# /0*&,1#-2#

(b) On-chip cache organization
Fig. 1. Every tile has an in-order core, a cache hierarchy, a router,
a coherence controller and a slice of the distributed directory cache. An
execution migration controller allows each core to access another tile via the
interconnect. Tiles connected to off-chip DRAM have a DRAM controller.

We propose a novel dependable cache coherence architecture
(DCC) that combines traditional directory coherence (DirCC) with
a novel execution-migration-based coherence architecture (EM) [4].
The DCC architecture ensures error resilience and increased depend-
ability in a manner that is transparent to the programmer. EM follows
a protocol that ensures that no writable data is ever shared among
caches, and therefore does not require directories. When a thread
needs to access an address cached on another core, the hardware
efficiently migrates the thread’s execution context to the core where
the memory is allowed to be cached and continues execution there.
Our DCC architecture allows these two independent coherence proto-
cols to co-exist in the hardware. We present architectural extensions
to seamlessly transition between the DirCC and EM protocols that
ensure dependable operation of cache coherence.
2 CACHE COHERENCE ARCHITECTURES

Our baseline architecture (shown in Figure 1a) is a multicore chip
that is fully distributed across tiles with a uniform address space
shared by all tiles. Each tile in the chip communicates with others
via an on-chip network. Such physical distribution allows the system
layers to manage the hardware resources efficiently. Each tile has an
Intel Atom-like core with a 2-level L1/L2 instruction and data cache
hierarchy. Because multicores are expected to be critically constrained
by limited package pin density, we expect a small number of on-chip
memory controllers orchestrating data movement in and out of the
chip, therefore limiting off-chip memory bandwidth [5].

Cache coherence lies at the core of correct functionality in
the shared memory computational model and the cache hierarchy
organization dictates the terms for keeping the caches coherent.

IEEE COMPUTER ARCHITECTURE LETTERS 2

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

0%	

20%	

40%	

60%	

80%	

100%	

120%	

140%	

160%	

180%	

200%	

64	
 128	
 256	
 512	
 1024	

Er
ro
r	

Co

rr
ec
(
on

	
 C
od

e	

St
or
ag
e	

O
ve
rh
ea
d	

(K
By

te
s)
	

D
ir
ec
to
ry
	
 s
iz
e	

re
la
(
ve
	
 to

	
 L
2	

ca
ch
e	

	
 (L
2$
	
 =
	
 6
4K

B/
co
re
)	

Number	
 of	
 Cores	

DIR	
 per	
 L2$	

Parity	

SEC-­‐DED	

DEC-­‐TED	

Fig. 2. Directory cache overhead relative to L2 cache (shown with bars).
Although low overhead encoding schemes (shown as lines) e.g., parity, may
be enough for error detection, the cost of error correcting codes increases
sharply as the number of on-chip cores increase.

Figure 1b shows all possible cache configurations for our 2-level
cache hierarchy. Under private-L1, a directory protocol is responsible
for coherence. Although a shared-L2 caters well to applications with
large shared working sets, many traditional high-performance parallel
applications require larger private working sets, therefore making
private-L2 an attractive option [6]. Hence, our baseline architecture
utilizes a private-L2 for the DirCC configuration. On the other hand, a
shared-L1/L2 configuration unifies the physically distributed per-core
caches into a logically shared cache. Because only one copy of each
cache line can be present on chip, coherence is trivially ensured and
a directory protocol is not needed. The shared-L1/L2 organization is
used in the EM architecture.

2.1 Directory Based Cache Coherence (DirCC)

The directory protocol brings data to the locus of the computation
that is to be performed on it: when a memory instruction refers to
an address that is not locally cached, the instruction stalls while the
coherence protocol brings the data to the local cache and ensures that
the address can be safely shared or exclusively owned.

A coherence controller utilizes a MOESI protocol with all possible
cache-to-cache transfers to manage coherence for the associated
address space regions. At a high level, the coherence controller
implements protocol management state machines and contacts the
directory to record coherence-related information for associated cache
lines. The DirCC architecture implements a full-map physically
distributed directory [7]. Although a full-map directory provides
maximal performance, its area grows significantly as the core count
increases (Figure 2). There are directory schemes that are more area-
efficient than full-map [7], [8], but they incur the cost of additional
protocol messages such as full-chip broadcast, and therefore perfor-
mance loss. To keep track of data sharers and minimize expensive off-
chip accesses, an on-chip directory cache is maintained. The directory
cache is sized appropriately as a function of the number of L2 cache
entries tracked by the coherence protocol [8]. On a directory cache
eviction, the entry with the lowest number of sharers is chosen and
all sharers for that entry are invalidated.

To gain an understanding of performance tradeoffs for the DirCC
protocol, we consider the average memory latency (AML), a metric
that dominates program execution times in data-centric multicores.

AMLDirCC = cost$access,DirCC +rate$miss,DirCC×cost$miss,DirCC (1)

While cost$access,DirCC mostly depends on the cache technology
itself, the performance of the DirCC protocol primarily depends
on rate$miss,DirCC and cost$miss,DirCC. Many multithreaded parallel
applications exhibit a variety of producer-consumer communication
patterns for data sharing. When an application shows strong sharing
patterns, DirCC performance is impacted in the following ways: (i)
the directory causes an indirection leading to an increase in the cache
miss access latency for both producer and the consumer, (ii) the
automatic read data replication results in one address being stored

in many core-local caches, reducing the amount of cache left for
other data, therefore adversely impacting miss rates, and (iii) a write
to shared data or a directory cache eviction requires all shared copies
of the data to be invalidated, which results in higher miss rates and
additional protocol latencies.

2.2 Execution Migration Based Coherence (EM)
The execution migration protocol always brings the computation
to the data: when a memory instruction requests an address not
cached by the current core, the execution context (architecture state
in registers and the TLB) moves to the core that is home for that
data. The physical address space in the system is partitioned among
the cores, and each core is responsible for caching its region of the
address space. When a core C executes a memory access for address
A, it first computes the home core H for A. If H = C, it is a core
hit, and the request for A is forwarded to the cache hierarchy. If
H 6= C, it is a core miss; the core C halts execution and migrates
the architectural state to H via the on-chip interconnect. The thread
context is loaded in the remote core H and the memory access is
now performed locally.

It is important to note that the EM protocol does not require a
directory and its associated overheads. Although the EM protocol
efficiently exploits spatial locality, the opportunities for exploiting
temporal locality are limited to register values. As soon as the exe-
cution context migrates, the data that was local before the migration
is now remote. Subsequently, any memory accesses to the same core
become local. To gain an understanding of performance tradeoffs for
the EM protocol, we consider the average memory latency (AML).

AMLEM = cost$access,EM + rate$miss,EM× cost$miss,EM +

ratecore miss× costmigration
(2)

While cost$access,EM mostly depends on the cache technology itself,
EM performance primarily depends on the other variables. Because
data replication is prohibited, the cache miss rates are lowered signif-
icantly compared to DirCC. Additionally, the EM protocol does not
suffer from directory indirections, and therefore reduces the latency
of cache misses. However, the performance of the EM protocol is
critically constrained by the frequency and cost of migrations.

The core miss rate is primarily dependent on the application’s
data sharing patterns. But the placement of data also plays a key
role, as it determines the frequency and distance of migrations. Data
placement has been studied extensively in the context of NUMA
architectures (e.g., [9]) as well as more recently in the NUCA context
(e.g., [6]). The operating system controls memory-to-core mapping
via the existing virtual memory mechanism: when a virtual address is
first mapped to a physical page, the OS chooses where the relevant
page should be cached by mapping the virtual page to a physical
address range assigned to a specific core. Since the OS knows which
thread causes a page fault, the following heuristic works well: similar
to a first-touch-style scheme [10], the OS maps the page to the first
core to access it, taking advantage of data access locality to reduce
the core miss rate while keeping the threads spread among cores.
This allows the OS to assign a home core to each page; 4KB pages
can be used as in traditional operating systems.

Since the core miss cost is application-dependent and sometimes
unavoidable, it is critical that the migrations be as efficient as pos-
sible. Therefore, we utilize the efficiency of in-hardware migrations
and an intelligent one-way migration protocol to achieve the shortest
possible migration latencies. What happens if the target home core
is already executing another thread? We evict the executing thread
and migrate it elsewhere before allowing the new thread to enter
the core. Our migration framework features two execution contexts
at each core: one for the core’s native thread (i.e., the thread

IEEE COMPUTER ARCHITECTURE LETTERS 3

Memory
access

in core A

Address
cacheable
in core A?

Access memory and
continue execution

Migrate
thread to

home core

yes

no

threads
exceeded?

Migrate another
thread back to
its native core

yes

Access memory and
continue execution

no

On-chip Network
Core originating
memory access

Core where address
can be cached

(a) The migration protocol invoked on each core miss

!"#$%&"'

()*'

()*'

()*'

()*'

()*'

()*'

()*'

()*'

!"#$% !+,-".' !+,-".' !"#$%

()*'

()*'

()*'

()*'

!"#$%&"'

()*'

()*'

()*'

()*'

Core A Core B Interconnection Network

(b) Microarchitecture support for a single execution context transfer
Fig. 3. A fast, hardware-level migration framework for the EM protocol.

!"#$%&'#()
*+,$-..
/!"#001.

23$%45'6.
7"8#+5'6.
*+,$-.
/271.

0+,$.9.

0+,$.:. 0+,$.0.

0+,$.!.

!"#00.
;.
27.

Fig. 4. The DCC architecture allows three modes of operation for cache
coherence. Default is either DirCC or EM, and the third mode allows a hybrid
scheme that selectively uses one of the two protocols. DCC operates at the
granularity of OS pages.

originally assigned there and holding its private data), and one for
a guest thread. When an incoming guest migration encounters a
thread running in the guest slot, this thread is evicted to its native
core. Figure 3a shows the protocol support for ensuring a successful
migration, and Figure 3b shows the hardware support required to
enable migrating a thread from one core to another. The greater the
available network bandwidth, the faster the migrations. Therefore, our
migration framework can be scaled by widening the router datapaths.

3 DEPENDABLE CACHE COHERENCE ARCHITECTURE

In this section we describe the details of the proposed dependable
cache coherence architecture (DCC) that combines the directory
protocol (DirCC) with a novel execution migration protocol (EM) to
enable architecturally redundant cache coherence for the large-scale
multicore era, where not only manufacturing fault rates are expected
to be high, but many errors are likely to evolve during the lifetime
of the processor. Because these schemes can co-exist and seamlessly
transition at granularity of OS pages, DCC is capable of offering
error-resilient hardware cache coherence.
3.1 Fault Detection and Reconfiguration
Fault tolerance techniques are generally categorized into detec-
tion/isolation followed by correction/recovery due to errors. This
paper focuses on the fault correction/recovery aspect. However, fault
detection and system reconfiguration are a necessary component of
any fault tolerance scheme and may require additional complexity.

Traditionally, error detection and system reconfiguration is done
during manufacturing test. Recently, researchers have also proposed
several online test frameworks. For example, Constantinides et al.
have proposed a software-based error detection and diagnosis tech-
nique, which is based on using firmware to periodically insert special
instructions and test sequences for diagnosis [2]. Their architecture
extends the existing scan chains to provide access to microarchitec-
tural components for detecting errors and subsequently de-configuring
the faulty components.
3.2 Architecturally Redundant Coherence
The DCC architecture enables runtime transitions between the two
coherence protocols at the level of memory accesses, thereby en-
abling fine-grain redundancy with the goal of keeping user-level
performance impact to a minimum. For each memory instruction,
the translation look-aside buffer (TLB) provides the information
about the home core for that address. Note that the EM protocol
operates on an OS-page granularity (generally 4 KBytes) of the OS,
whereas, the DirCC protocol operates at cache line (generally 64
Bytes) granularity.

Figure 4 provides an overview of the modes of operation for the
DCC architecture. The various usage models for enabling depend-
ability are discussed below:
3.2.1 Case A
If a directory controller or link is faulty, the address segments that this
directory node is responsible for are transitioned to EM. Alternatively,
if the system opts to transition between DirCC and the EM protocol
at the application level, observing high cache miss rates can trigger
this transition for all address regions.
3.2.2 Case B
This scenario allows a hybrid scheme where parts of the address
segments are handled via DirCC, and parts via EM. If portions of
the data cache are disabled because of memory errors, the pages
with high cache miss rates can be transitioned to the EM protocol.
In DirCC, a write to shared data requires an expensive invalidation
of all shared copies, whereas EM involves no such invalidations.
Detecting pages with high invalidation rates can also guide transition
of such pages from DirCC to EM.

EM performance is dominated by the overheads of migrations;
therefore, we expect the core miss rate to determine a transition
of some pages back to the DirCC protocol. Also, because DirCC
performs well under high read data sharing and low write frequency,
detecting such pages can trigger EM to DirCC transitions.
3.2.3 Case C
If the directory cache is unable to maintain the coherence require-
ments (for example, large portions of the directory cache are faulty),
or the directory controller (or link) becomes faulty at runtime, the
address segments that this directory node is responsible for are
transitioned to the EM protocol.
3.2.4 Case D
If a migration controller or migration link is faulty for a tile and the
directory controller is alive, the pages assigned to the corresponding
core are transitioned to the directory protocol.

In the worst-case scenario where both coherence mechanisms are
broken, the processor is interrupted to invoke an OS-level reassign-
ment of address segments to working nodes in the system.

3.3 Coherence Protocol Transitions
In this section we discuss the DCC architectural mechanisms to
enable transitions between DirCC and the EM protocols. Each
transition is performed at the minimum granularity of the OS page
size.
3.3.1 DirCC→ EM
When a page is selected for transition to the EM protocol, the
directory sends a special broadcast message to all cores. This message
at each core takes the following actions: (a) flush the cache lines
(if modified state), (b) update the TLB for the associated page and
mark it stalled for EM (note that on initial page allocation, the OS is
expected to assign a home core and set EM to disabled by default),
and (c) send a reply message to the directory. The directory waits for
all replies from each core and in parallel invalidates all the related
cache lines (associated with the page) in the directory cache. Any
transient requests to access this page results in the directory initiating
a reply message to the requesting core to retry. When all replies

IEEE COMPUTER ARCHITECTURE LETTERS 4

are accounted for at the directory (implying all transient requests
have been observed and cleaned up at the directory), another special
broadcast message is sent to all cores. This updates the TLB to
enable the EM protocol. During the time between stalled and enable
mode, the TLB blocks new memory accesses. When the page is
transitioned to EM, subsequent accesses to the page now result in
the TLB identifying the home core for the access and EM takes over
for that page.

3.3.2 EM→ DirCC
Because EM only allows a single core to cache any data associated
with a page, the migration controller at the home core (for the page
being transitioned) initiates a cache flush for the addresses in the
page. A special broadcast message is sent to all cores to update the
TLB for this page to EM disable. The home core waits for all replies
for this broadcast. This allows all inflight migrations to be observed
at the home core, which results in an update to the page’s TLB for
each thread and eviction of the thread back to its native core. For
any subsequent memory access initiated for this page, the request is
forwarded to the associated directory controller.
4 EVALUATION
We used the Graphite simulator [11] to model the DirCC and EM
protocols. We implemented a tile-based multicore with 256 cores;
various processor parameters are summarized in Table 1. On-chip
directory caches (not needed for EM) were set to sizes recommended
by Graphite on basis of the total L2 cache capacity.

4.1 LU
We first evaluate the average memory latency (AML) of the
SPLASH-2 LU NON CONTIGUOUS benchmark. This benchmark ex-
hibits strong read/write data sharing, which causes mass evictions
of the cache lines actively used by the application. At the same
time, replication of the same data in many core caches adds to the
cache capacity requirements in DirCC. A combination of capacity
and coherence misses results in a 9% cache hierarchy miss rate for
the DirCC, while the EM protocol eliminates all such misses and only
incurs 0.1% compulsory misses. Together, the caches and the off-chip
components contribute 17.8 cycles/memory-access for DirCC and 2.4
for the EM protocol.

The DirCC cache misses also incur a latency of several round-
trip messages due to directory indirections: reads that no core holds
exclusively take at least two, while accesses requiring broadcast
invalidations incur many messages. The measured cost of the di-
rectory protocol comes out to 17.4 cycles/memory-access. On the
other hand, migrations add to the cost of accessing memory for
the EM protocol. We measured a core miss rate of 65% for the
LU NON CONTIGUOUS benchmark. With an average of 12 network
hops per migration, we measured an overhead of 51 cycles per
migration, resulting in an amortized cost of 26 cycles/memory-access.
Overall, the AMLs of DirCC and the EM protocol come out to 35.2
and 28.4 cycles/memory-access, respectively. This corresponds to a
1.25× advantage for EM over the DirCC protocol.

4.2 RAYTRACE

Next, we evaluate the AML of the SPLASH-2 RAYTRACE benchmark.
This benchmark is dominated by read-only data sharing and a
working set that fits our data caches. Therefore, the DirCC protocol
observes a relatively low cache hierarchy miss rate of 1.5%, while the
EM protocol incurs 0.3% cache misses. Together, the caches and the
off-chip components contribute 3.1 cycles/memory-access for DirCC
and 3.0 for the EM protocol.

Since DirCC observes very few and mostly inexpensive directory
indirections, the measured cost of the directory protocol comes out to
2.7 cycles/memory-access. The core miss rate in RAYTRACE is 29%.
With an average of 11 network hops per migration, we measured an

Parameter Settings

Cores 256 in-order, single issue cores
L1 I/D cache/ core 32/16KB, 4/2-way set associativity
L2 cache/ core 64KB, 4-way set associativity
Electrical network 2D Mesh, XY routing, 256b flits

2 cycles per hop (+ contention delays)
1.5 Kbits execution context size [13]

Data Placement FIRST-TOUCH, 4KB page size
Directory Coherence MOESI protocol, Full-map physically dis-

tributed 10MB directory, 16-way set assoc.
Memory 30GB/s bandwidth, 75ns latency

TABLE 1
DEFAULT PROCESSOR CONFIGURATION

overhead of 47 cycles per migration, resulting in an amortized cost of
12 cycles/memory-access. Overall, the AMLs of DirCC and the EM
protocol come out to 5.8 and 15 cycles/memory-access, respectively.
This corresponds to a 2.6× advantage for DirCC over EM.

Our initial evaluation results indicate that depending on the data
sharing patterns of an application, either cache coherence protocol
can perform better than the other. We note that protocol-specific
application transformations are possible for either protocol, and
optimizations for the EM protocol have been developed [12]. The
proposed DCC architecture is not only poised to enable a dependable,
architecturally redundant cache coherence mechanism, but it can be
designed to enhance system performance by intelligently choosing
either the DirCC or the EM protocol at the granularity of applications
or OS pages.

5 CONCLUSION

Today microprocessor designers are investing heavily into means of
detecting and correcting errors at the expense of area, power and per-
formance. In this paper we have proposed a novel dependable cache
coherence architecture (DCC) that provides architectural redundancy
for maintaining coherence between on-chip caches.

REFERENCES

[1] S. Borkar, “Designing reliable systems from unreliable components: the
challenges of transistor variability and degradation,” in IEEE Micro,
2005.

[2] K. Constantinides, O. Mutlu, T. Austin, and V. Bertacco, “Software-
based online detection of hardware defects: Mechanisms, architectural
support and evaluation,” in MICRO, 2007.

[3] M. D. Powell, A. Biswas, S. Gupta, and S. S. Mukherjee, “Architectural
core salvaging in a multi-core processor for hard-error tolerance,” in
ISCA, 2009.

[4] O. Khan, M. Lis, and S. Devadas, “EM2: A Scalable Shared-Memory
Multicore Architecture,” MIT-CSAIL-TR-2010-030, 2010.

[5] S. Borkar, “Thousand core chips: a technology perspective,” in DAC,
2007.

[6] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reactive
NUCA: near-optimal block placement and replication in distributed
caches,” in ISCA, 2009.

[7] D. Chaiken, C. Fields, K. Kurihara, and A. Agarwal, “Directory-based
cache coherence in large-scale multiprocessors,” in COMPUTER, 1990.

[8] A. Gupta, W. Weber, and T. Mowry, “Reducing memory and traffic
requirements for scalable directory-based cache coherence schemes,” in
ICPP, 1990.

[9] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum, “Operating
system support for improving data locality on cc-numa compute servers,”
SIGPLAN Not., 1996.

[10] M. Marchetti, L. Kontothanassis, R. Bianchini, and M. Scott, “Using
simple page placement policies to reduce the cost of cache fills in
coherent shared-memory systems,” in IPPS, 1995.

[11] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald et al., “Graphite: A
distributed parallel simulator for multicores,” in HPCA, 2010.

[12] K. S. Shim, M. Lis, M. H. Cho, O. Khan et al., “System-level optimiza-
tions for memory access in the execution migration machine (EM2),” in
Workshop on Computer Arch. and Operating System co-design, 2011.

[13] K. K. Rangan, G. Wei, and D. Brooks, “Thread motion: fine-grained
power management for multi-core systems,” in ISCA, 2009.

