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Abstract— Diastolic arrays are arrays of processing elements
that communicate exclusively through First-In First-Out (FIFO)
queues. FIFO virtualization units enable relaxed timing of data
transfers, and include hardware support to guarantee bandwidth
and buffer space for all data transfers, which may follow com-
posite paths through the network. We show that the architecture
of diastolic arrays enables efficient synthesis from high-level
specifications of communicating finite state machines so average
throughput is maximized. Preliminary results are presented on
an H.264 decoding benchmark.

I. INTRODUCTION

A diastolic array is a reconfigurable substrate that is meant
to serve as a coprocessing platform to speed up applications or
parts of applications that are throughput-sensitive and latency-
tolerant. Diastolic arrays are coarser-grained than FPGAs but
finer-grained than multicores. The adjective diastolic is used
to refer to the relaxation of the heart between muscle con-
tractions. Data transfers in diastolic arrays have more relaxed
latency requirements than in systolic arrays, hence the name.

A diastolic array has a programmable processing element
(PE) with a simple ISA, running on a fast substrate clock.
Diastolic array processors communicate exclusively through
networked First-In First-Out (FIFO) queue virtualization units
that provide hardware support to guarantee bandwidth and
buffer space for all data transfers. The architecture of diastolic
arrays enables efficient synthesis from high-level specifications
of communicating finite state machines so average throughput
is maximized.

A design is represented as multiple processing modules
(finite state machines) connected through point-to-point virtual
FIFOs. Each virtual FIFO connects a fixed source-destination
pair for one input-output pair; if two modules need multiple
connections, each connection gets its own virtual FIFO. As we
will show, virtual FIFOs provide means for efficient commu-
nication and synchronization among processing modules with
focus on average case performance. FIFO-based communica-
tion naturally supports simple synchronization through waiting
on inputs and backpressure; a processing module stalls if either
an input FIFO is empty or an output FIFO is full.

Data transfers in a diastolic array are all statically routed
and are allowed a varying number of clocks depending on the
length of, and congestion in, the transfer path comprising a se-
quence of FIFO virtualization units (FVUs). FIFOs (that have
room for more than one value) average out data-dependent
variances in each module’s execution and communication, and

the performance of the design is determined by the module
with the maximum average latency, not the worst-case input
that causes the longest latency in a module.

During synthesis to diastolic arrays, FSM modules are
assigned to processing elements (placement), “virtual” FIFOs
used for communication between modules are realized as
a sequence of FVUs (routing), modules are compiled into
instructions for processors (compilation), and the routing logic
within each PE is statically configured to implement the
correct virtual FIFO routing, while guaranteeing bandwidth
and buffer space (configuration).

A case study in Section II shows that averaging data-
dependent variances is critical to achieving high throughput for
applications such as H.264 decoding. A candidate architecture
for a diastolic array is presented in Section III. The synthesis
flow is presented in Section IV, and applied to an H.264
decoder in Section V. Related work is summarized in Section
VI. Section VII concludes the paper.

II. MOTIVATING APPLICATION

A. Example: H.264 Decoder

H.264 is widely being used for video compression. Figure 1
shows a specification of H.264 decoder; each module has data-
dependent latencies. We will examine the entropy decoder
module and inter-prediction modules and show that an archi-
tecture which targets average case latency has a performance
benefit over a conventional pipelined design that assumes the
worst case.

Entropy 
Decoding

Inverse Transform 
/ Quantization

Inter-
Prediction

Intra-Prediction

Off-Chip Memory

Deblocking, 
Reconstruction

Fig. 1. High-level module description of H.264 decoder.

The entropy decoder module in H.264 decoder performs
context-adaptive variable length decoding (CAVLD) that uses
20 different code tables. Each image block from the input



stream requires access to different code tables and the number
of table lookups varies significantly across inputs. Because the
table lookup and following computations take up the majority
of time in entropy decoding, we can assume that the latency
of the entropy decoder module is proportional to the number
of table lookups for each input (image block). In the inter-
prediction module, the latency is dominated by the number
of pixels it reads from reference frames, which depends on
the input block’s offset from the reference block (motion
vector). Therefore, the latency of inter-prediction module is
again highly dependent on the input block and can be different
for each input. Table I shows the profiling results of both
modules for the input stream ‘toys and calendar’, illustrating
the large difference between the worst-case latency and the
average-case latency.

TABLE I
H.264 PROFILING RESULTS FOR A STANDARD INPUT STREAM.

Entropy Decoder Inter-prediction
#lookups Occurrence % Data read (bytes) Occurrence %

0˜5 43.5% 0˜239 0.01%
6˜11 38.6% 240˜399 9.3%

12˜17 14.4% 400˜559 19.6%
18˜23 3.0% 560˜719 67.5%
24˜ 0.4% 720˜ 0.4%

Average 7.56 lookups Average 589.3 bytes
Maximum 32 lookups Maximum 954 bytes

If each module is completely decoupled through infinite size
FIFOs, the average-case design on a diastolic array will have
40% to 80% lower latency (or higher throughput) compared
to the pipelined design that always performs the maximum
number of operations, i.e., performs 32 lookups in the entropy
decoder and reads the entire reference frame in the inter-
predicton module. In practice, however, the throughput could
be lower than the average case if the FIFO is not large enough
because individual module latencies vary from input to input.

III. DIASTOLIC ARCHITECTURE

This section describes a candidate diastolic array architec-
ture. The architecture provides guarantees of bandwidth and
buffer space for all data transfers through:
(1) Non-blocking, weighted round-robin transfers of packets
corresponding to different virtual FIFOs (VFIFOs) from one
FIFO virtualization unit (FVU) to a neighbor,
(2) Ratioed transfer of packets corresponding to the same
VFIFO from an FVU to its neighbors and in-order reception of
said packets at FVUs to enable composite-path data transfers
where sub-paths split and reconverge (cf. Figure 2(b)), and
(3) Allocation of FVU space to packets from particular VFI-
FOs to avoid deadlock and to maximize throughput.

A. Microarchitecture Overview

A diastolic array realizes the high-level computation model
with a grid of processing elements (PEs) each with an attached
FVU as shown in Figure 2 (a). In this architecture, all PEs
operate synchronously using a single global substrate clock.
FVUs are connected to neighboring FVUs and support many
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Fig. 2. A diastolic array architecture and data propagation through the
4-nearest-neighbor interconnect. (a) The processing elements consist of a
computation unit and a FIFO. (b) A virtual FIFO can be routed using a single
path or a composite path with sub-paths that split and reconverge.

VFIFOs with synchronization mechanisms; from the PE’s
perspective, FVUs appear as many VFIFOs. In our candidate
architecture, PEs are simple MIPS-like processors and the
FVU network consists of 4 nearest-neighbor connections.
In this architecture, each FVU can take up to 5 inputs (4
neighbors and the PE) and produce up to 5 outputs in each
clock cycle. Peripheral FVUs interface with I/O pads.

Figure 2 (b) illustrates how a VFIFO is implemented
with multiple FVUs – a single-path and a composite-path
VFIFO marked by black arrows. In both examples, the VFIFO
connects the top-left PE (producer) and the bottom-right PE
(consumer). FVUs may route VFIFO packets along single- as
well as composite-path routes (cf. Section III-C). The synthesis
tool statically determines the routing and maps each VFIFO
to corresponding FVUs along possibly multiple paths where
each hop has a pre-determined flow rate (cf. Section IV-F).

B. PE and PE-to-FVU Interface

Our initial PE design is based on a MIPS-like 32-bit 5-
stage in-order processing core. The ISA for computation is
almost identical to the MIPS ISA with a branch delay slot
so that a standard MIPS compiler backend can be used to
generate efficient PE code. We use the gcc backend for MIPS
in our synthesis framework. The main difference between
the PE and a traditional MIPS core is in its support for
VFIFO mechanisms; our PE supports additional instructions
for VFIFO communication. The PE-to-FVU interface supports
either an enqueue or a dequeue in each cycle.

C. FIFO Virtualization Units (FVUs)

FVUs implement the VFIFOs and synchronization based
on backpressure. An FVU has to perform two main functions,
namely, allocate buffer space for VFIFO packets that cannot
be used by other VFIFOs, and route VFIFO packets with
appropriate rates. The routes may be single- or composite-path
routes, with the latter requiring increased FVU complexity.
When transferring data for a VFIFO, an FVU must ensure that
the receiving FVU has space available for the corresponding
VFIFO.

Each FVU has one data memory that is shared among all
VFIFOs mapped to the FVU. The synthesis tool statically



partitions a large part of this data memory among VFIFOs.
Each VFIFO assigned to an FVU has a partition size of at
least one packet and these partitions are exclusively used for
each VFIFO while the remaining data memory can be shared
by all of the VFIFOs. In this way, the synthesis tool can
guarantee that each virtual FIFO has the necessary number
of FIFO entries to avoid deadlock no matter what the traffic
pattern is. Further, the synthesis tool tries to allocate buffer
space to achieve the maximum transfer rate for each VFIFO
across the corresponding FVUs (cf. Section IV-F.2).

In each substrate cycle, an FVU can receive data from up
to 5 sources, the attached PE and 4 nearest-neighbor FVUs,
and send data to up to the same 5 destinations. The FVU-to-
FVU interface is used to forward data from the source PE to
the destination PE; in each substrate cycle, the FVU selects
one VFIFO for each subsequent hop in a weighted round-
robin fashion and forwards its data. This is done in a non-
blocking fashion; if there is no data available for a VFIFO, or
if the receiving FVU does not have an entry available for the
particular VFIFO, the next VFIFO is selected. The weights
are determined after the routing step (cf. Section IV-F) and
applied in the configuration step (cf. Section IV-G).

Each FVU has four possible neighboring FVUs. For each of
these links, a list of VFIFOs that share this link is generated
by the synthesis tool after the routing step. For each link,
a weighted round-robin send algorithm is used to schedule
packets, where the weights are given by the flow rates. A
VFIFO that does not have packets to send out or one that
does not have space available in the subsequent FVU is passed
over for the next VFIFO. If an FVU corresponds to a split
point for a composite-path route for a VFIFO, the VFIFO
is added to the list for multiple links, and the weight is the
flow rate for that link as given by the routing step. Each of
the packets of the VFIFO that come into this split FVU are
marked by a marking algorithm to go in a particular direction
in a deterministic way, in the ratios of the flow rates for the
different directions. A packet marked to go in one direction is
not sent in another. This is done so packets can be received
in order at the reconvergent or destination FVU.

At an FVU that is a reconvergent point for a VFIFO, an
acknowledgement algorithm allows an incoming packet from
multiple neighbors to come in at appropriate ratios so as to
guarantee in-order communication through this FVU, and to
ensure that deadlock due to out-of-order packets will not occur.
A later packet should not use up space in a reconvergent
FVU on a composite path and block an earlier packet. The
ratios in the acknowledgement algorithms depend on the
throughput ratios of the split and reconvergent flows and are
determined after the routing step as described in Section IV-
G. FVUs are then configured with appropriate weights for the
round-robin send algorithm and ratios for the marking and
acknowledgement algorithms.

IV. SYNTHESIS FLOW

The synthesis flow is illustrated in Figure 3. While we
described a candidate diastolic architecture in Section III,

various PE microarchitectures and FVU network topologies
can be supported with the synthesis flow described here.Input file Synthesis tool Intermediate file Final product
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Fig. 3. Synthesis Flow for Diastolic Arrays.

A. Specification

Synthesis begins from a specification of the hardware design
as finite state machine (FSM) modules described in C that
communicate via VFIFOs. The specification will also provide
minimum VFIFO sizes that ensure that the design does not
deadlock. We will assume that for VFIFO i, zi packets are
required, with pi bits in each packet.

Our specification is simpler than synchronous data flow
[1], and similar to an intermediate output of a parallelizing
compiler such as StreamIt [2] after parallelism extraction,
but could also be directly written by a designer. Minimum
requirements for FIFO sizes can be determined by compilers
such as StreamIt [3].

A high-level view of the specification of an H.264 decoder
was shown in Figure 1. The goal of synthesis is to maximize
average throughput, which requires that bandwidth and buffer
space be properly allocated to all VFIFOs.
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Fig. 4. Some modules in the H.264 specification of Figure 1 are grouped
together, others are partitioned across PEs.

B. Profiling Modules in the Specification

Profiling the specification provides the synthesis tool with
information required for various steps. First, each module is
simulated separately on an array PE and a histogram of module
latency over different module inputs is produced, which gives
us a range of latency as well as an average. These latencies are
used in the module grouping and partitioning step (cf. Section
IV-C). Profiling is also used to compute a rate distribution and
average transfer rate di in bits per second for each VFIFO
i, which is a key measure used in the routing step. In this



step, the entire system is simulated, assuming a target system
throughput is specified, and assuming that each VFIFO has
large buffer space and does not share hardware with other
VFIFOs. Achieving the di rates becomes the goal for the
routing and the buffer allocation steps. For each VFIFO i,
a distribution of buffer size and average buffer size mi in bits
that is required for sustaining the average transfer rate di is
determined. This is derived from the variation in buffer sizes
during system simulation.

C. Module Grouping and Partitioning
Based on the profiling results, modules are grouped or

partitioned. Grouping involves assigning two or more modules
on the same PE, while partitioning involves splitting a module
across multiple PEs in order to exploit parallelism and reduce
the effective average latency.

Grouping is done if there are more modules than PEs, or if
there is tight feedback between modules. When two modules
are run on the same PE, their latencies will increase to their
sum. If the inverse of this combined latency is equal to or more
than the VFIFO rates corresponding to each of these modules,
the modules can be grouped together. Grouped modules are
executed in interleaved fashion on a PE. If a module does
not have inputs available, it cedes to the next module. After
a module execution, if there is no space available in the
PE’s FIFO for the result, the module will stall until space
is available.

If we are unable to obtain the target system throughput,
the modules whose latencies are too high are targets for
partitioning. We will not address automatic partitioning here.

An example of module grouping and partitioning for our
H.264 example is shown in Figure 4. The partitioning was
done manually, and the grouping automatically using a simple
bin-packing heuristic. After grouping and partitioning, the
profiling step is run again to determine the new module and
VFIFO rates.

D. Compilation

Modules are compiled to a generic PE in a decoupled way to
produce scheduling information and executables. Our PEs have
an ISA that is a subset of the MIPS ISA and we used a MIPS
compiler in our experiments of Section V. All communications
to other PEs are through FVUs with FIFO control, which the
compilation step is aware of only at the level of writing and
reading data values to and from the VFIFO. A PE may wait
on a given read (dequeue) instruction or a write (enqueue)
instruction because of FIFO control.

E. Placement
The primary goal of placement is to find a placement of

the modules such that a feasible route can be determined for
each of the VFIFOs. A feasible route is a route for each of the
VFIFOs that has enough bandwidth for each FIFO’s average
transfer rate di obtained through profiling, and therefore allows
the system to achieve maximum average throughput.

We need to define a notion of routability in order to generate
a good placement. A recursive graph partitioning approach can

then be used to find a placement with high routability. Cutsize-
based approaches such as the Kernighan-Lin algorithm [4] are
not directly applicable because cutsize does not represent the
total traffic of a set of modules placed in an array section. Even
if the design is partitioned into two sections with a minimum
cutsize, one of partitioned sections might have significant
internal costs that result in poor routability. By using the sum
of internal costs and external costs as a cost function rather
than cutsize, as shown below, heuristic algorithms can be used
to maximize routability of placements.

Given a set of PEs A with cardinality |A|, and a set of
modules VA placed on PEs in A, we define routability of this
(partial) placement as

R(A) =
|A|∑

vi,vj∈VA

w(i, j) +
∑

vi∈VA,vj /∈VA

(w(i, j) + w(j, i))

where {vi} is the set of modules in the design, w(i, j) is the
total demand for bandwidth from module i to module j, and
vi ∈ VA iff vi is placed on a PE included in A.

An effective heuristic to generate placements that are signif-
icantly more routable than random placements gives priorities
to PEs based on residual capacities of connecting links.
Modules with the highest total demand are iteratively placed
on PEs with the highest priorities. Since placement is done
after module grouping, at most one module is placed on
each PE. When a module is placed on a PE the capacities
of links connecting to the PE are scaled down using a
scaling parameter, and the priorities of neighboring PEs are
recomputed. This heuristic spreads modules across the array
to a degree determined by the scaling parameter. A number of
placements are generated using different scaling parameters,
and run through the rest of the synthesis process, and the best
solution is selected.

For acyclic specifications, such as stream computations
without feedback [2], [3], there are no hard requirements on
the communication latency of VFIFO packets. In the H.264
application, modules both write and read off-chip memory,
however, these two operations are so far apart in time that this
feedback can be ignored during synthesis.

If feedback across modules occurs within a few substrate
clocks, then the latency of communication paths can affect
system throughput. An example of such feedback is bypass
paths in a pipelined processor. The latency of communication
can be included in the module latency, but we wish for
other communication and the synthesis flow to not adversely
affect this latency. We will need communication paths with
minimum latency in the implementation (cf. Section IV-H),
in addition to guaranteeing bandwidth and buffer space for
all communications. In the next two sections, we assume
that we have acyclic specifications, and then generalize our
methodology in Section IV-H.

F. Routing of Virtual FIFOs

The route for each VFIFO is determined after module
placement. The routing step chooses paths for each virtual



FIFO that require multiple hops using the transfer rates for
each VFIFO. A VFIFO route can correspond to multiple paths
through the mesh network, each with the same source and
same destination. A route with multiple paths is referred to as
a split flow. The source processor sends data at pre-determined
ratios through multiple paths, and the data elements are
received and processed in order at the destination processor.
In addition, intermediate FVUs may need to collect packets
for a given VFIFO and send them out at pre-determined ratios
– the reconvergent points of Section III-C.

1) Multicommodity Flow Linear Program: We can formu-
late the search for a feasible route as a maximum concurrent
multicommodity flow problem, where the commodities corre-
spond to the data packets in each VFIFO. This problem is
solvable in polynomial time using linear programming (LP)
[5]. This formulation is slightly different from the one in
Chapter 3 of [6] which minimizes the maximum link capacity
required to support given bandwidth requirements.

Definition 1: Maximum concurrent multicommodity
flow: Given a flow network G(V,E), where edge (u, v) ∈ E
has capacity c(u, v). There are k commodities K1,
K2, . . . , Kk, defined by Ki = (si, ti, di), where si

and ti are the source and sink, respectively for commodity
i, and di is the demand. The flow of commodity i along
edge (u, v) is fi(u, v). Find an assignment of flow, i.e.,
∀(u, v) ∈ E fi(u, v) ≥ 0, which satisfies the constraints:

Capacity constraints :
k∑

i=1

fi(u, v) ≤ c(u, v)

Flow conservation :

∀i, ∀u 6= si, ti
∑

(w,u)∈E

fi(w, u) =
∑

(u,w)∈E

fi(u, w)

∀i
∑

(si,w)∈E

fi(si, w) =
∑

(w,ti)∈E

fi(w, ti) ≤ di

and maximizes the minimal fraction of the flow of each
commodity to its demand:

T = min
1≤i≤k

∑
(si,w)∈E fi(si, w)

di
(1)

We assume ∀i, ∀w fi(w, si) = fi(ti, w) = 0 in the
formulation. k is the number of VFIFOs. The capacities for
the edges in the network are equal to the bandwidth of the
link between adjacent FVUs in the diastolic array architecture.
The link bandwidths c(u, v) are all equal to L by default, but
may be set to lower values (cf. Section IV-H). The source for
commodity i is the source processor in the given placement
for VFIFO i, and similarly the destination. The demand di for
VFIFO i is the average transfer rate for that FIFO obtained
through profiling. To accommodate bursts in VFIFO traffic, we
also maximize the minimum residual capacity over all links,
namely,

S = min
(u,v)∈E

c(u, v)−
k∑

i=1

fi(u, v).

We would like T to be 1 and S to be large. One strategy is to
run the LP maximizing x ·T +S, where x is a large constant.

2) Buffer Allocation Linear Program: We still need to
incorporate the requirements on buffer sizes for deadlock
avoidance and to achieve the di rates. After we run LP and
obtain the fi(u, v)’s, we have a flow for each VFIFO i, i.e., a
set of paths with particular rates on each link in the diastolic
array. We can run another linear program to perform buffer
allocation along each chosen VFIFO route.

We first determine the FVUs in the PE’s that correspond to
each VFIFO’s commodity flow.

∀u, ∀i iff ∃v s.t. (fi(u, v) > 0 or fi(v, u) > 0) gi(u) = 1

Note that for a given flow the gi’s are constants that are either 1
or 0, corresponding to whether or not packets from the VFIFO
will reside in the FVU corresponding to PE u.

The buffer size in PE u that we wish to allocate to VFIFO i
in terms of the number of packets is denoted li(u), and these
are the variables in the LP. The available buffering in a PE u
is b(u) bits. In our candidate architecture, these are all equal
to M bits, however, critical FIFOs (cf. Section IV-H) may be
assigned some of the buffer space prior to running the LP.
Recall that mi is the average buffer size required for VFIFO i
to sustain its transfer rate di, as obtained by the profiling step
(cf. Section IV-B), zi is the number of packets in VFIFO i
that ensures that deadlock will not occur and pi is the packet
size for the virtual FIFO packet in bits (cf. Section IV-A).

Definition 2: Optimal Buffer Allocation: For each VFIFO
i, we are given a buffer size requirement mi and a set of
FVUs gi(u) = 1 that are on the VFIFO’s route. We are given
available buffer sizes b(u) for each PE u. Find an assignment
of buffers li(u) for each VFIFO i that satisfies:

FVU Buffer Limit : ∀u
k∑

i=1

pi · li(u) ≤ b(u)

Deadlock Avoidance : ∀i, ∀u li(u) ≥ gi(u)

∀i
∑

w:gi(w)=1

li(w) ≥ zi

Allocation : ∀i pi ·
∑

w:gi(w)=1

li(w) ≤ mi

and maximizes the minimal fraction of the allocated buffers
of each commodity to its demand for buffering:

U = min
1≤i≤k

pi ·
∑

w:gi(w)=1 li(w)

mi
(2)

The deadlock avoidance requirement comes from the speci-
fication; there should be at least pi bits worth of dedicated
space available in each FVU that is used by a VFIFO to
route its packets, and further the set of FVUs implementing
the VFIFOs should provide zi packets worth of space. Since
the FVUs in the diastolic array will accept packets from
VFIFOs whose limit has not been exceeded, while possibly
rejecting packets from other VFIFOs, deadlock will not occur
in the array implementation. There is a limit on the number of



VFIFOs that can be mapped to an FVU due to the deadlock
requirement.

On top of the deadlock avoidance requirement, we would
also like to allocate enough buffer space for each VFIFO so the
transfer rates can be met, while ensuring fair allocation across
VFIFOs (cf. Eqn. 2). Note that the li(u)’s corresponding to
gi(u) = 0 can be set to zero. Of course, we need the li(u)’s
to be integers, so we will truncate or round up the values after
we obtain the solution to the LP.

Given a user-specified amount of CPU time, we choose
many solutions with corresponding maximum T for the first
LP, to maximize U . We also repeat this process for many
placements, and pick the solution with the maximum T ,
breaking ties by choosing the one with maximum U .

G. Configuration

Once we have found a feasible route, or settled on a
throughput less than the maximum, the final step is to generate
configurations for each processor and FVU. The PEs are
configured with the compiled code of the modules that will
execute on the PE.

The flow rates determined by the LP are made integral
with appropriate multiplications to keep the ratios as close as
possible in the case where an integral flow is not provided by
LP. (There is no need to round up or truncate these rates.)
Each link in each FVU is first configured with the set of
VFIFOs that share this link. Each link is configured to send
out packets in a weighted round-robin fashion over all the
VFIFOs that share this link. If an FVU is a split point for
a VFIFO, the marking algorithm for incoming packets is
configured with appropriate ratios for the different links that
this VFIFO’s packets will depart the FVU on. At reconvergent
FVUs including the destination, packets corresponding to each
VFIFO are received in order, by choosing the packets from
different links using an acknowledgement algorithm.

Consider the example of Figure 5. A FVU may split a flow
of packets two to four ways. For a three-way split in ratio
aR : bB : cT , the marking algorithm at FVU S will mark the
first a packets to the right, the next b packets to the bottom,
and the next c packets to the top, repeatedly. Note that these
a packets will contend for bandwidth in the link to the right
with other VFIFO packets, and a weighted round-robin send
algorithm will periodically send these packets out. The right
sub-flow is represented as abc indicating that the first a packets
from the source were picked, the next b packets were sent
somewhere else, etc; this pattern repeats indefinitely. The right
sub-flow is split again in FVU V in the ratio a1

T : a2
B ; the

patterns generated will be a1a2bc, and a1a2bc. At FVU Q,
the sub-flows a1a2bc and abc converge. The acknowledgement
algorithm at Q will pick a1 packets from the bottom and c
packets from the left, repeatedly. This produces a sub-flow
represented as a1a2bc. Finally, the FVU at destination R will
pick a1 packets from the top, a2 + b packets from the bottom,
and c packets from the top, repeatedly.

As a final step of configuration, buffer space constraints for
each VFIFO that is assigned to an FVU are specified.

S V
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Rabc

abc
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a1a2bc

a1a2bc

a1a2bc
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Fig. 5. Configuring Marking and Acknowledgement Algorithms for
Composite-Path Routes

H. Minimizing Latency of Virtual FIFOs

As described in Section IV-F, all VFIFOs are guaranteed
bandwidth and buffer space during synthesis, but we make
no guarantees about latency. VFIFOs with longer paths (many
hops) will have greater latency. This will not matter when there
are no tight feedback paths.

While we cannot make latency guarantees about all VFIFOs
or even a large number of VFIFOs, we can provide minimum
latencies for a few critical VFIFOs, associated with feedback
and identified during profiling whose increased latency will
directly degrade performance. The connecting module pairs
corresponding to critical VFIFOs are kept in the same partition
during the placement step (cf. Section IV-E) for as long as
possible, so VFIFO lengths are minimized. Prior to the routing
LP step, a direct route is chosen for each of these VFIFOs,
with no splits to avoid packet reordering at the destination. The
bandwidth of each of the links c(u, v) in the route is reduced
by the corresponding di, and the buffer space in each of the
n FVUs comprising the chosen VFIFO route is reduced by
max(mi/n, pi). The two LP’s are run as before to produce
routes and buffer allocations for the remaining VFIFOs.

V. RESULTS ON AN H.264 DECODER

The profiling result of the H.264 decoder shows that Inter-
Prediction occupies most of the computation time. Therefore,
modules of H.264 decoder were grouped and partitioned as
shown in Figure 4 to enhance throughput by increasing par-
allelism. Figure 6 shows throughput demands of each VFIFO
given by the profiling step assuming a 1 GHz substrate clock.

A number of candidate placements were generated using
the heuristic of Section IV-E. For each placement the capacity
and the flow conservation constraints were generated and this
LP problem was solved by ILOG CPLEX. Figure 7 provides
routing results for different link bandwidths. The throughput of
each route is indicated. When the link bandwidth is 200MB/s,
a feasible route without composite paths is found. Composite
paths allow the fulfilment of the demanded throughput with
smaller link bandwidth, such as 100MB/s (Figure 7(b)) and
60MB/s (Figure 7(c)). In Figure 7(b), for example, the route
from C4 to C9 is split because the link between them cannot
deliver more than 100MB/s. However, if the link bandwidth is
too small, the routing algorithm will determine that there is no
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Fig. 6. Demand throughput of each VFIFO in H.264 decoder

feasible route, and report the best route for the given network
(Figure 7(d)).
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Fig. 7. Routing results of H.264 decoder on a 4x4 array for different link
bandwidths. The bottom four PEs are not shown.

Of course, different placements result in different routes.
For example, Figure 8 illustrates how a placement can give a
better routing result than another. When there is no feasible
route as in Figure 7(d), the placement that maximizes the
minimal fraction of the throughput is chosen from amongst
the generated candidate placements (cf. Section IV-E).

The total synthesis time is very fast – a few seconds for this
example. The time required to synthesize a Verilog description
of H.264 to an FPGA is approximately 46 minutes for logic
synthesis and 52 minutes for place and route [7]. Efficient syn-
thesis is enabled because the specification deals with packets
rather than bits, because compilation to processors is fast, and
because the synthesis algorithms used here are efficient. We
note that profiling took 2 minutes for this example.

After finding a feasible or the best route, the synthesis tool
allocates buffers for VFIFOs in each FVU. Taking the route
in Figure 7 (c), Table II summarizes zi, pi and mi values as
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20 Total Paths (split path in thick and gray)
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Fig. 8. Routing results of H.264 decoder on a 4x4 array for a different
placement and with the link bandwidth of Figure 7(d).

defined in Section IV. Here mi was obtained from the profiling
step, and zi and pi from the specification. The buffer allocation
result is given in Figure 9.

TABLE II
BUFFER SIZES FOR H.264.

virtual FIFO pi (bits) mi (bits) zi (packets)
s1 128 512 1
s2 512 1536 1
s3-s6 680 2024 1
s7 768 1536 1
s8 15552 31104 1
s9 3072 6144 1
s10-s11 1024 2048 1
s12-s13 512 1024 1
s14 3072 6144 1
s15 96 384 1
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Fig. 9. Buffer allocation of H.264 decoder on a 4x4 array for the route of
Figure 7 (c). The bottom four PEs are not shown.

Additional architectural details and results on a processor
performance modeling benchmark [8] that includes tight feed-
back due to bypass paths can be found in [9].

VI. RELATED WORK

Systolic arrays [10] have been used to efficiently run
many regular applications such as matrix multiplication. These
SIMD processors contain synchronously-operating elements
which receive and send data in a highly regular manner
through a processor array. Data transfer timing in MIMD
diastolic arrays is more relaxed than in systolic arrays.



Dally’s virtual channels [11] allocate buffer space for virtual
channels in a decoupled way from bandwidth allocation; dias-
tolic arrays guarantee bandwidth as well as buffer space, and
implement multiple-hop, virtual composite channels. iWarp
[12] implemented virtual channels across single links.

Diastolic arrays are simpler than commercial multicores
or architectures such as Raw [13] and Tilera [14], and
also target a smaller class of throughput-sensitive, latency-
insensitive applications. Unlike Raw, diastolic arrays allow
sharing of physical FIFOs by virtual FIFOs in a non-blocking
way for data transfers. Tilera has five different networks
that interconnect tiles including a static network, whereas
diastolic arrays implement a single logically static network
that supports sharing of flows, split flows and buffer allocation.
TRIPS [15] uses significantly larger cores that are 16-issue.
Asynchronous Array of simple Processors (AsAP) [16] is a
multicore processor for DSP applications, which consists of
a 2-D array of simple processors connected through dual-
clock FIFOs in a Globally Asynchronous Locally Synchronous
(GALS) fashion. The FIFO sizes in AsAP are appreciably
smaller than those in diastolic arrays; these FIFOs are mainly
used to interface two clock domains and hide communication
latencies rather than optimizing average case performance as
in diastolic arrays.

Ambric [17] uses a circuit-switched network as opposed
to a packet-switched network, with a small amount of FIFO
buffering. Channels are set up by configuring the network
much like in an FPGA, and synthesis to the Ambric chip is
similar to FPGA synthesis, though significantly faster due to
structure provided by the designer [18].

A multi-path routing strategy is presented in [19], which
uses packet identifiers to avoid deadlock and requires multi-
paths to be non-intersecting. (The composite-path of Figure
5 is not non-intersecting due to FVU D.) A set of non-
intersecting paths is heuristically selected, and LP is run to find
flow rates for each path. In contrast, our throughput-optimal
LP determines paths and flow rates simultaneously.

VII. CONCLUSIONS AND LIMITATIONS

By focusing on throughput, by requiring the specification
to be written in a particular way, and by designing a diastolic
array architecture with appropriate hardware mechanisms, we
have developed a synthesis flow that we believe is signif-
icantly easier to implement and optimize than conventional
reconfigurable substrate synthesis flows. Implementing FIFOs
and processors using BRAM and CLBs on an FPGA is quite
expensive, and so a custom hardware implementation of a
diastolic array is necessary. We plan to more comprehensively
evaluate candidate architectures on applications such as H.264
encoding and detailed processor performance modeling, prior
to undertaking a hardware implementation. The architectural
tradeoffs corresponding to supporting composite-path routes
or only supporting single-path routes, and varying the ISA,
FIFO or memory sizes need to be explored. Since LP may
produce complex routes with highly composite paths, we
are developing heuristic methods which can be finely tuned

that use the LP formulation to determine upper bounds on
throughput, and which limit the maximum number of VFIFOs
that share a link. Finally, we need to characterize what
applications are readily and naturally expressible as finite state
machines interacting through FIFOs, and extend our synthesis
flow or the architecture to deal with applications where average
throughput varies significantly.
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