
A Framework to Accelerate Sequential Programs
on Homogeneous Multicores

Christopher W. Fletcher1, Rachael Harding1, Omer Khan2, and Srinivas Devadas1

1Massachusetts Institute of Technology, Cambridge, MA, USA, {cwfletch, rhardin, devadas}@mit.edu
2University of Connecticut, Storrs, CT, USA, khan@uconn.edu

Abstract—This paper presents a light-weight dynamic optimization framework for homogeneous multicores. Our system profiles
applications at runtime to detect hot program paths, and offloads the optimization of these paths to a Partner core. Our work contributes
two insights: (1) that the dynamic optimization process is highly insensitive to runtime factors in homogeneous multicores and (2) that
the Partner core’s view of application hot paths can be noisy, allowing the entire optimization process to be implemented with very little
dedicated hardware in a multicore.

F

1 INTRODUCTION
With forecasts predicting hundreds of cores in the near
future, designers have an ever increasing number of
parallel processing units at their disposal. One way to
use these additional cores is to parallelize applications
further. Due to the parallelism wall, however, researchers
have begun to use spare cores to augment other cores
that run (serial) user workloads.

Dynamic optimization is a traditional approach to
speedup serial workloads in single core and multi-
threaded environments. A dynamic optimizer’s job is to
detect frequently executed application code (called hot
paths) and recompile that code into contiguous traces [4].
This process occurs at runtime, allowing dynamic opti-
mizers to exploit input data-dependent optimizations that
static compilers cannot realize. Indeed, previous dynamic
optimizers have reported significant speedups [1], [19].

The problem with previous frameworks is their re-
quired memory footprint and dedicated hardware overhead—
typically over 50 KBytes—to track, store and expand
traces [19], [11]. In emerging processors such as homo-
geneous multicores, adding dynamic optimizer-specific
hardware storage to each core is clearly undesirable. Fur-
thermore, storing both optimizer and application work-
ing set in shared L1 cache causes significant contention,
given multicore systems’ typical L1 capacities.

In this paper we present a framework to support
dynamic optimizations on homogeneous multicores. The
key insight enabling our work is that while dynamic op-
timization is a memory-intensive process, it is naturally
loosely-coupled. Like prefetching, dynamic optimization
can take place in the background and does not block
the application. On a homogeneous multicore, this means
the application and optimizer (implemented as a helper
thread(s)) can be run on separate cores (the App and
Partner cores), thereby preventing pipeline and memory
contention between the two.

This paper contributes the following insights:
(1) That the dynamic optimization process is highly in-

sensitive to runtime factors in a homogeneous multicore.
(2) That a dynamic optimizer’s view of application hot

paths can be noisy, yet still capture the “big picture,”
since the most beneficial hot paths occur thousands or
millions of times.

Using these insights, we develop a 2-core dynamic
optimization system that:

(1) Consumes less power than a baseline system with
a single core running an application without our frame-
work.

(2) Maintains comparable trace coverage to previous
dynamic optimization systems that require significant
dedicated hardware (e.g., [11]).

(3) Is implemented using < 50 Bytes of dedicated
hardware per core.

1.1 Trace structure
Throughout this work, traces are defined as single-
entry, multi-exit blocks of instructions as in Dynamo [1]
(thereby allowing the system to adopt the types of
optimizations used in Dynamo). Branches remain in the
trace, with their direction possibly reversed so that the
“not taken” direction stays on the trace. If a branch
is taken, we say the trace has early exited, transferring
control flow to a software compensation block attached
to the end of the trace, which contains an direct jump
back to the application. Otherwise, the trace regular
exited, taking a jump back to the application at the bottom
of the trace.

1.2 Related work
Previous work has studied dynamic optimization in
single core and simultaneous multithreading (SMT) envi-
ronments, using customized hardware or software mem-
ory to support the optimization process [1], [11], [19].
Replay [11] and Trident [19] store and consolidate hot
trace description messages in dedicated hardware predic-
tor tables. Like our work, Trident is also an event-driven
dynamic optimizer but monitors events in hardware
tables, while we perform these operations in software.
Additionally, Trident is based in a complex core/SMT
setting where the application and helper thread run on
the same core. Dynamo is a pure software system that
runs as a software interpreter until it detects a hot path,
and stores optimized traces in software memory along
with the application [1].

Dynamic parallelization is another approach to speed
up applications in a multicore environment [18], [2], [17],

[7]. These approaches identify parallel code within an ap-
plication and create micro threads on independent cores
to run that parallel code. Micro threads are speculative—
if data dependencies are violated [2], [17], [7] or trace
early exits are taken [18], the system must rollback. In
contrast, our system focuses on optimizing sequential
code and executes software compensation routines in-
stead of performing complete rollbacks.

Helper threads running in spare hardware contexts
have been studied extensively, primarily in a prefetch-
ing context [8], [10]. Changhee et al. [8] study loosely-
coupled helper threads in multicores but limit their
scope to prefetching. Lau et al. [10] present a Partner
core framework where the Partner core is a different
(typically weaker) type of core. We assume the same
microarchitecture for both the App and Partner core.
[10] mentions several possible application domains—not
including dynamic optimization—and also performs a
case study on prefetching.

2 SYSTEM ARCHITECTURE

helper_thread.o

Trace cache

Trace cache tag table

Optimizer working set

Application

working set

LD

Unit

app.o

ST

Unit
XFer

Fetch

Application Core Partner Core
L1 trace cache

H

A

CB

FED G

1 0

1

1

2

Optimized trace or ACK6

H’A’ C’ F’

Matching entry was found!

PartneràApp channel
7

AppàPartner channel

4
S
ta

rt
 P

C

B
ra

nch
es

A 011Start PC: A

Branches (BR): 011

Length: 3

Hot path message

H’A’
Seen enough

times?
C’ F’

Trace Cache Tags Trace Cache

~19 Bytes 512 Bytes

(128 instructions)

3

Application running
natively on App core

5

Hot path FSM

PC for A C. Blocks

Compensation

Blocks

ACK- or -

1

Fig. 1: An end-to-end example showing our system
optimizing the small loop shown in 1 .

Our system changes program execution at run-time
only and works with unmodified program binaries. We
will assume a MIPS-like ISA for the rest of the paper,
although the ideas presented do not impose this. Once
an application is loaded onto the App core, the operating
system spawns a fixed Helper thread on the Partner core.
Alternatively, the Partner core code can be stored in non-
volatile read-only memory on the chip where it can be
deployed to different cores as needed.

To guide the reader we show an end-to-end example
in Figure 1, that we will refer back to throughout the rest
of the section. The major components of the system are
the App and Partner cores, communication channels be-
tween the cores (3 , 6 in the figure), the Hot Path Finite
State Machine (HP-FSM) which profiles the applications
running on the App core (2), and the L1 trace cache
which allows for traces to be fetched on the App core
(7).

The channels connecting App and Partner cores can
be implemented using an unmodified, general-purpose
NoC. Each channel is modeled as an in-order, first-
in-first-out buffer with latency, buffer depth, and flow

control. The communication channels are lossless: any
message successfully written to a channel will eventually
be received at the other end.

2.1 2 Hot Path FSM (HP-FSM)

The HP-FSM, on the App core, starts the trace creation
process by creating digests of which paths are “hot” in
the application. Each digest (called a hot path message,
or HPM) consists of the start PC for the hot path,
a bit vector (BR) representing taken/not-taken branch
directions on the path, and a length field indicating the
number of valid branch direction bits. The HP-FSM runs
alongside the application and starts a new message when
the App core:

(1) is not executing in a trace and takes a branch whose
target address is less than the current PC (a backwards
branch).

(2) is not executing in a trace and executes a jump-link
(function call) instruction.

(3) is executing in a trace and exits from that trace
(after an early or regular exit).

These start conditions are all hints that the application
is executing a hot path, as discussed in [5].

Once a message starts, other start-of-trace events are
ignored until the current message is complete. This
“greedy” behavior allows the HP-FSM to be imple-
mented with just enough memory to buffer the current
message. If the HP-FSM encounters a loop, the path
encoded in the message is effectively an unrolled version
of the loop. When a new message begins, the current
App core PC is written to a dedicated register and the
BR register is reset. For subsequent branch instructions,
taken/not-taken bits are shifted into BR in the order that
those branches appear in the instruction stream.

The HP-FSM completes its current message when the
number of branches in the hot path reaches a statically
determined branch limit, or when the App core starts
executing from a trace. Messages completed before the
branch limit has been reached (called short messages)
prevent code from being unreachable because of mis–
aligned traces.

2.2 3 App→ Partner Channel

The App→Partner channel transports completed HPMs
from the App to Partner core. With our HPM structure
(PC, BR, and the length field), each HPM is < 64 bits
and will likely be broken into several flits, depending on
network width.

To prevent filling the network with HPMs, we use
Partner core-controlled flow control to limit the number
of HPMs written to the network at a time. After the HP-
FSM writes a single HPM to the network, it will not
write another HPM until the Partner core has sent back
an ACK, indicating that it has received the last HPM.1
In addition to reducing network congestion and guar-
anteeing that the Partner core will always immediately
consume HPMs at its network ingress, the ACK scheme
prevents the Partner core from reading “stale” HPMs [5].

1. Also, if the HP-FSM tries to inject an HPM into the channel when
the channel is full for other reasons, the HP-FSM drops the HPM and
resets.

2.3 4 - 5 Trace expansion & optimization
The Helper thread reads incoming HPMs from the net-
work, decides when a hot path is worth expanding
into a trace, and constructs/sends traces back to the
App core. The Helper thread maintains two statically-
sized software structures: a trace (T)Cache tag table and
a trace (T)Cache. One TCache entry of size trace size
instructions is allocated for each tag table entry to cache
its corresponding trace.

The TCache tag table is fully-associative with least-
recently-used (LRU) replacement. Table entries are in-
dexed by {PC, BR}, allowing the Helper thread to track
multiple program paths originating from the same start
PC. Each tag table entry contains an expanded flag and
an occurrence count (explained below).

To start, the Helper thread polls2 the App→Partner
channel until a HPM arrives, at which point the Helper
thread performs the following actions:

(1) Lookup {PC, BR} in the TCache tag table. If the
entry is not present, evict (if the tag table is full) an
entry and allocate a new entry with occurrence count = 1
and expanded = false. If the entry is present (4), incre-
ment its occurrence count. If occurrence count = occurrence
threshold and expanded = false, reset occurrence count to
1 and proceed with steps 2-4 below. If occurrence count =
occurrence threshold and expanded = true, reset occurrence
count and skip to step 4. If none of the above conditions
hold, the Helper thread writes an ACK message to the
network (or stalls until the network has enough space
to allow this action to proceed) and then returns to the
initial message polling state.

(2) Trace expansion. Expand the HPM into a contigu-
ous sequence of instructions, forming a trace. The Helper
thread copies instructions from the App core’s instruc-
tion address space into the TCache, starting at the start
PC (5) and using BR to decide whether to follow each
branch. If the Helper thread reads an indirect function
return (e.g., jr in MIPS) it stops expanding the trace
unless a matching call-and-link (e.g., jal) has appeared
at some point earlier in the trace from which the PC
target can be derived. Traces are always prematurely
terminated at other indirect branches (e.g., jalr); we
found these instructions to be rare in our benchmarks.

(3) Trace pre-processing. Remove direct jumps and
matching call/return pairs from the trace and change
branch directions so that “not-taken” keeps control flow
on the trace. For each branch instruction, create a soft-
ware compensation block at the end of the trace which
jumps back to the application if the branch is taken.

(4) Write the full contents of the trace, along with its
starting PC, to the network (see next section) and return
to message polling behavior. The full software routine
takes approximately 2500 cycles.

2.4 6 Partner→ App Channel
The Partner→ App channel transports traces and ACKs
from the Partner core to the App core. Each ACK con-
sists of a single flit. Each trace consists of the trace’s
start PC followed by the trace itself (each instruction
takes up one flit and each trace may be hundreds of
instructions). While the Helper thread is writing the trace
on the Partner→App channel, it cannot do other work.

2. Alternatively, the Partner core can go to sleep when it starts to
poll, and wakeup via interrupt when a message arrives.

Furthermore if the Partner→App channel fills, the Helper
thread stalls until space is available, since the trace is
not functionally correct if any portion of a trace is lost
in transit. We note that stalling the Partner core does not
degrade application performance as it will not block the
App core.

Like the Partner core in the case of the App→Partner
channel, the App core will always consume any network
flits (either an ACK or trace) as soon as they are available
at the App core network ingress.

2.5 7 Trace Execution on the App Core
Upon arriving at the App core, ACK messages are con-
sumed and traces are moved to a structure called the L1
trace cache, or L1 TCache. Conceptually, the L1 TCache
is the first level cache for the Helper thread’s software
TCache.

For this work, we implement the L1 TCache using one
of the ways in the L1 instruction (I)Cache (Figure 2). To
minimize dedicated hardware cost, trace lookups within
the dedicated ICache way are made in a direct-mapped
fashion that uses (mostly) the same logic already in place
to support each way in a set-associative ICache. Each
trace in the trace way occupies a fixed amount of space
equal to trace size (Section 2.3). When the tag array for
the trace way hits, (1) a small FSM (implemented as a
set/reset latch) forces all subsequent ICache accesses to
read from the trace way, (2) the PC register is loaded with
offsets that point to the start of the trace in the ICache
data array and (3) the entire ICache tag array plus the
data arrays for the other cache ways shut off via clock
gating. While inside of a trace, normal PC increment
logic is used to index into the trace way and no tag array
lookups are made (note that all branches along a trace
are PC-relative). When a jump instruction, the sole end-
of-trace condition, is executed, the PC is reset to a normal
instruction address and the ICache tag array plus other
data arrays are re-enabled.

When the App core indexes into the trace way tag
array to see if it is time to enter a new trace, the entire
application PC must be compared against the candidate start of
trace PC. Because the start-of-trace location in the ICache
data array does not necessarily correspond to where the
first instruction in the trace would normally be mapped,
it is not sufficient to perform a tag check on only the PC
tag (upper) bits. To prevent false positives, we store the
rest of each trace’s start PC in a direct-mapped structure
that is indexed in parallel with the tag arrays during the
fetch process (see Figure 2).

Aside from the dedicated table, the entire design adds
several gate delays to the fetch stage critical path (for
muxing and priority logic), saves power by shutting off
tag and data array lookups while the App core executes
inside of a trace, and reduces non-trace ICache capacity
by one way.

3 RESULTS
We discuss the dedicated hardware overhead and power
usage of our framework. A complete evaluation of our
system can be found in in [5]. There we show how the
Partner core can be decoupled from the App core with-
out seriously degrading quality of results. Notably, the
number of dynamic instructions executed from within
traces (called trace coverage in related work) is resilient
to effects such as varying network and Helper Thread

To Issue path

Normal PC selection

logic

PC

Was previous

instruction

a jump?

+

4

Way 1

Tags

Way 2

Tags

Way 3

Tags

Way 4

Tags

Extra

Tag Bits

(14 Byte

Capacity)

Trace hit

Hit?Hit?Hit?

Trace hit

Hit? Hit?

Priority decoder

Way enable signals

{PC[5:2], 7'b0}

In trace

{PC[5:2], 7'b0}

In trace
S

R

PC[31:13]
PC[12:6]

PC[5:2]
W

a
y
 1

:

in
s
tr

u
c
ti
o

n
s

W
a

y
 2

:

in
s
tr

u
c
ti
o

n
s

W
a

y
 3

:

in
s
tr

u
c
ti
o

n
s

W
a

y
 4

:
tr

a
c

e
s

Fig. 2: A dedicated-way, single-cycle L1 TCache design (grey structures are added to support our system). To determine
a trace hit, the tag PC[31 : 13] is checked in the unmodified tag array for the trace way while PC[12 : 6] is compared
in the “Extra Tag Bits” table.

latency. Trace coverage’s latency tolerance allows power-
saving techniques such as frequency scaling to be utilized
with minimal coverage and performance impact. [5] also
evaluates the performance of the system and shows
that when the system is utilized as a traditional trace
cache [4], speedup is on par with a single-core baseline,
making our system a viable platform for further dynamic
optimizations.

3.1 Dedicated Hardware Overhead
Our system’s two main structures are the HP-FSM and
the L1 TCache. The HP-FSM requires ∼ 9 Bytes for PC,
branch directions and FSM state. In the dedicated-way
L1 TCache design (Section 2.5), 7 extra tag bits must
be stored to make complete PC comparisons for the
trace way, which requires 14 Bytes given a 16-entry L1
TCache (see Figure 2). While there are small additional
overheads–such as the flag that indicates that we are in
a trace–in total the system requires less than 50 Bytes of
custom storage.

3.2 Power Usage
Table 1 summarizes the power usage of our 2-core frame-
work, our framework with the Partner core operating
at .1× the clock frequency of the App core (2-CORE,
SLOW), and a 1-core baseline without our framework.
Details on the power derivation, and a discussion about
the implications of the results, can be found in [5]. The
7% improvement in power dissipation is largely due to
a more energy-efficient instruction fetch stage.

TABLE 1: System Power in Milliwatts.
Total App App Partner L2 Net-

Core Fetch Core work
2-CORE 151 67 25 75 9 ∼ 0
2-CORE, SLOW 80 67 26 4 9 ∼ 0
1-CORE 86 77 33 0 9 0

4 CONCLUSION
In this work we presented light-weight and low-
overhead mechanisms to enable dynamic optimization
on homogeneous multicores. To deliver competitive
quality of results, our system relies on the fact that
dynamic optimization is loosely-coupled by nature. We
showed how this property makes the system resilient to
the Partner core’s operating frequency. We predict that
these properties also allow for a flexible Helper thread
implementation which can allow a variety of dynamic
optimizations without any hardware modifications to
our framework. We leave implementing compiler-style

optimization passes inside the Helper Thread to future
work. As the world adopts multicore, we believe that this
flexibility that comes for free in a dynamic optimization
setting makes dynamic optimization an attractive use for
spare silicon, especially in situations when parallelism
delivers diminishing returns.

REFERENCES
[1] V. Bala, E. Duesterwald, S. Banerjia. Dynamo: A transparent dynamic opti-

mization system. Proceedings of the conference on Programming language
design and implementation (PLDI), 2000.

[2] M. DeVuyst, D. M. Tullsen, S. W. Kim. Runtime parallelization of legacy code
for a transactional memory system. Proceedings of the International Confer-
ence on High Performance and Embedded Architectures and Compilers
(HiPEAC), 2011.

[3] E. Duesterwald, V. Bala. Software Profiling for Hot Path Prediction: Less is
More Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2000.

[4] J. A. Fisher Trace Scheduling: A Technique for Global Microcode Compaction
IEEE Transactions on Computers, July 1981.

[5] C. W. Fletcher, R. Harding, O. Khan, S. Devadas. A Frame-
work to Accelerate Sequential Programs on Homogeneous Multicores
Computation Structures Group Memo CSG-Memo-510, June 2013.
http://csg.csail.mit.edu/pubs/memos/Memo-510/memo510.pdf

[6] S. Galal, M. Horowitz. Energy-Efficient Floating-Point Unit Design IEEE
Transactions on Computers, 2011.

[7] B. Hertzberg, K. Olukotun. Runtime Automatic Speculative Parallelization.
Proceedings of the International Symposium on Code Generation and
Optimization (CGO), 2011.

[8] C. Jung, D. Lim, J. Lee, Y. Solihin. Helper thread prefetching for loosely-
coupled multiprocessor systems. Proceedings of the Parallel and Distributed
Processing Symposium (IPDPS), 2006.

[9] A. B. Kahng, Bin Li, Li-Shiuan Peh, K. Samadi. ORION 2.0: A fast and
accurate NoC power and area model for early-stage design space exploration.
Design, Automation and Test in Europe Conference and Exhibition, 2009.

[10] E. Lau, J. E. Miller, I. Choi, D. Yeung, S. Amarasinghe, A. Agarwal.
Multicore Performance Optimization Using Partner Cores. Proceedings of the
USENIX workshop on hot topics in parallelism (HOTPAR), 2011.

[11] S. J. Patel, S. S. Lumetta. Replay: A Hardware Framework for Dynamic
Optimization. IEEE transactions on computers, Vol. 50, No. 6, June 2001.

[12] S. J. Patel, T. Tung, S. Bose, M. M. Crum. Increasing the Size of Atomic
Instruction Blocks using Control Flow Assertions. Proceedings of the Interna-
tional Symposium on Microarchitecture (MICRO), 2000.

[13] J. Renau. SESC simulator. http://sesc.sourceforge.net/index.html, 2002.
[14] E. Rotenberg, S. Bennett, J. Smith. Trace Cache: a Low Latency Approach to

High Bandwidth Instruction Fetching. Proceedings of the Annual Interna-
tional Symposium on Microarchitecture (MICRO), 1996.

[15] Standard Performance Evaluation Corporation. SPEC CPU benchmark suite.
http://www.spec.org/osg/cpu2006.

[16] S. Thoziyoor, N. Muralimanohar, N. P. Jouppi CACTI 5.0
http://www.hpl.hp.com/research/cacti/

[17] C. Wang, Y. Wu, E. Borin, S. Hu, W. Liu, D. Sager, T. Ngai, J. Fang.
Dynamic parallelization of single-threaded binary programs using speculative
slicing. Proceedings of the International Conference on Supercomputing
(ICS), 2009.

[18] J. Yang, K. Skadron, M. L. Soffa, K. Whitehouse. Feasibility of Dynamic
Binary Parallelization. Proceedings of the USENIX Workshop on Hot Topics
in Parallelism (HOTPAR), 2011.

[19] W. Zhang, B. Calder, D. Tullsen. An event-driven multithreaded dynamic
optimization framework. Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques (PACT), 2005.

