System-level Optimizations for Memory Access in the
Execution Migration Machine (EM?)

Keun Sup Shim Mieszko Lis Myong Hyon Cho Omer Khan Srinivas Devadas

Massachusetts Institute of Technology

Abstract. In this paper, we describe system-level optimizations for the Execu-
tion Migration Machine (EM?), a novel shared-memory architecture to address
the memory wall and scalability issues for large-scale multicores. In EM2, data
is never replicated and threads always migrate to the core where data is statically
stored. This enables EM? not only to provide cache coherence without any com-
plex protocols or expensive directories, but also to better utilize on-chip cache and
thus experience much lower cache miss rate. However, it may incur significant ex-
ecution migrations for shared data, which increases memory latency and network
traffic, and thus, keeping migration rates low is a key under EM?. We present
systematic application optimization techniques to address this problem for EM?
suitable for a compiler/OS implementation. Applying these optimizations man-
ually to parallel benchmarks from the SPLASH-2 suite, we dramatically reduce
the average migration rate for EM? by 53%, which directly improves parallel
completion time by 34% on average. This allows EM? to perform competitively
compared to a traditional cache-coherent architecture, on a conventional electri-
cal network.

1 Introduction

The current trends in microprocessor design clearly indicate an era of multicores for the
2010s. As transistor density continues to grow exponentially, processor manufacturers
are able to place a hundred cores (e.g., Tilera’s Tile-Gx 100) on a chip with massive
multicore chips on the horizon. Many industry pundits are predicting 1000 or more
cores by the middle of this decade [5]. Will the current architectures (especially the
memory sub-systems) scale to hundreds of cores, and will these systems be easy to
program? Current memory architecture mechanisms do not scale to hundreds of cores
because multicores are critically constrained by the off-chip memory bandwidth wall [5,
12]: the key constraint is the package pin density, which will not scale with transistor
density [1]. Multicores to date have integrated larger caches on chip to reduce the num-
ber of off-chip memory accesses. Private caches, however, require cache coherence, and
shared caches do not scale beyond a few cores [25].

Exposing the core-to-core communication to software for managing coherence and
consistency between caches has limited applicability; therefore, hardware must provide
some level of shared memory support to ease programming complexity. Snoop-based
cache coherence does not scale beyond hundreds of cores. Directory-based hardware

cache coherence requires complex states and protocols for efficiency; worse, directory-
based protocols can contribute to the already costly delays of accessing off-chip mem-
ory because data replication and directory storage limits the efficient use of cache re-
sources. S-NUCA [18] and its variants reduce off-chip memory access rates by unifying
per-core caches into one large shared cache; accesses to memory cached in a remote
core cross the interconnect and incur the associated round-trip latencies. The Execution
Migration Machine (EM?) [17], a general purpose shared memory architecture, instead
migrates the computation’s execution context to the core where the memory is (or is al-
lowed to be) cached and continues execution there. Although moving execution context
has a higher cost than moving data, EM? can outperform data migration architectures
not only because memory accesses to a remote core require only one-way latencies in-
stead of round-trip latencies, but also because successive memory accesses to the same
remote cache—a frequent pattern under many modern applications with data locality—
will result in one execution migration followed by a series of inexpensive local memory
accesses.

The possible disadvantage of EM?2, however, is that since EM? restricts caching of
each address to a single core, a large portion of data being shared within an applica-
tion may cause significant migrations, which will increase both memory access latency
and network load. In this paper, we extend the data alignment and replication tech-
niques previously investigated in NUMA context (e.g., [27]) to the temporal dimension
in order to improve migration rates and improve the overall performance under EM?.
Specifically:

1. We propose a limited-scope read-data replication optimization to reduce migra-
tion rates for an EM? architecture: when a shared address is read many times by
several threads and seldom written, the proposed scheme allows temporary data
copying to reduce the number of migrations. By taking advantage of the program-
mer’s application-level knowledge, our replication can be applied to not only read-
only pages but also read-write pages, and removes the process of page collapse
(eliminating replicas on a write for read-write pages), which is a time-consuming
requirement for page replication in NUMA architectures [27].

2. We show that applying the above mentioned optimizations to a baseline EM? ar-
chitecture using a first-touch placement policy [21], lowers migration rates by 53%
across the set of selected benchmarks. This improves the application performance,
as measured by parallel completion time, by 34% on average. In contrast, our repli-
cation optimizations provide no benefits for cache-coherent systems because shared
data are blindly replicated under cache coherence protocols.

2 The EM? architecture

Traditional hardware cache coherence multicore architectures bring data to the locus
of the computation that is to be performed on it: when a memory instruction refers to
an address that is not locally cached, the instruction stalls while the cache coherence
protocol brings the data to the local cache and ensures that the address can be safely
shared or exclusively owned. EM?2, on the other hand, brings the computation to the
data: when a memory instruction requests an address not assigned to the current core,

the execution context (architecture state and TLB entries) moves to the core that is home
for that data. The physical address space in the system is divided among the cores, and
each core is responsible for caching its region of the address space; thus, each address
in the system is assigned to a unique core where it may be cached. (This assignment
can, for example, be done by the OS on a first-touch basis, and is independent of the
number of memory controllers). Since an address can be accessed in at most one loca-
tion, ensuring properties that are difficult in traditional cache-coherent systems—such
as sequential consistency and cache coherence—becomes simple. Under the same con-
straints of assigning each address to a unique core and not allowing local caching of
remote data, moving the computation to data instead of bringing data to the computa-
tion has benefits because: (a) the execution migration is a one-way protocol whereas
retrieving data requires round-trip latencies, and (b) for applications with data local-
ity, successive memory accesses to the same remote cache will turn into local accesses
under EM?, whereas they would be repeated remote accesses under a remote-access
design.

The cost of memory access within the EM? architecture is driven by the cost of
memory accesses to the cache or DRAM, and the cost of migrations due to a core miss.
A core miss is determined by computing the home core for a memory address. If the
core that originated the memory access is the home, it is a core hit, otherwise, a core
miss. The core miss cost incurred by the EM? architecture is dominated by transferring
an execution context to the home core for any given address. Per-migration bandwidth
requirements, although larger than those required by cache-coherent designs, are not
prohibitive by on-chip standards: in a 32-bit x86 processor, the relevant architectural
state amounts to about 1.5Kbits including the TLB [24]. Although on-chip electrical
networks today are not generally designed to carry that much data in parallel, on-chip
communication scales well; further, the network can be optimized because all transfers
have the same size and migrations are independent.

The per-memory-access cost can be expressed in terms of core hit and miss rates as

COStaccess = Tatecore_hit X COStmemory + Yat€core_miss X (COStmigration + COStn1emory)

where COStmemory = Yatecache_hit X COStcache + Yatecache_miss X COStdram-

While costy,qy, is relatively constrained, we can optimize performance by improving
the other variables. Assignment of addresses to the cores determines the performance
of an EM? design by influencing: (a) off-chip memory accesses required, and (b) pauses
in execution due to migrations. On the one hand, spreading frequently used addresses
evenly among the cores ensures that more addresses are cached in total, reducing cache
miss rates and, consequently, off-chip memory access frequency; on the other hand,
keeping addresses accessed by the same thread in the same core cache reduces migra-
tion rate and network traffic.

Prior work [17] shows that EM? improves rate.qche_ni; When compared to a direc-
tory based cache-coherent configuration. However, reducing costyigrarion May require a
high-bandwidth network, adding area as well as power to an already power constrained
package. An alternative is to reduce ratecore_miss, and that is the focus of this paper.

Access Migrate another

|
1
memory 1 yes thread back to

1 /,its originating core
Memory Address ves : # threads
. access —> Facheable | Exceeded?
in core A in core A? no |

/ no\

Migrate 1 Access
thread to 1 memory
home core :

Core originating Core where address
Network

memory access can be cached

Fig. 1. Memory accesses to addresses not assigned to the local core cause the execution context
to be migrated to the core.

2.1 Data placement

Because under EM? each physical address resides in only one core and any attempt
to access it will result in a migration to that core, the mapping of virtual addresses to
physical addresses directly affects migration rates and cache utilization, and, conse-
quently, memory access performance. The OS performs the mapping using the existing
virtual memory mechanism: when a virtual address is first accessed and thus should be
mapped to a physical page, it chooses where the relevant page should reside by mapping
the virtual page to a physical address range assigned to a specific core.

In this paper, we use the ORIGINAL scheme, a variant of first-touch [21], where
pages are mapped to the accessing thread’s originating core on the first access, and
remain there for the entire duration of the execution. The ORIGINAL scheme performs
well because it aims to keep each thread on its originating core for as much of its run-
ning time as possible by taking advantage of data access locality, effectively reducing
the migration rate while keeping the threads spread among cores.

2.2 Migration Framework

Figure 1 shows a slight variant of the migration framework of [17]. On a core miss (at
say core A), the hardware initiates an execution migration transparent to the operating
system. The execution context traverses the on-chip interconnect and, upon arrival at
the home core (say core B), is loaded into the core B and the execution continues. In a
single-threaded core, the thread running on the core B is evicted and migrated back to
its originating core.

While this ensures that multiple threads are not mapped to the same core and re-
quires no extra hardware resources to store multiple contexts, the context evicted from
core B may well have to migrate back to core B at its next memory access. For this rea-
son, we allow each core to hold multiple execution contexts, and resorting to evictions
only when the number of hardware contexts running at the target core would exceed
available resources. Results from [17] show that a 2-way multithreaded core microar-
chitecture (similar to [2]) provides sufficient performance by hiding the serialization
effects of multiple threads contending for a core.

3 System-level Optimizations for EM?

For non-trivially parallel applications, application optimization for a specific memory
architecture is paramount in achieving the fastest possible performance, since it results
in dramatic improvements in memory access latencies, a critical determinant of overall
application performance. Although any shared-memory application can run on EM?
without any modifications, applications resulting in significant migrations may suffer in
performance since they will both increase the memory access latency and the network
traffic.

In this section, we present OS- and application-level optimization techniques that
significantly improve application performance by dramatically reducing migration rates
for EM2. We then show how these techniques apply in real application code by analyz-
ing example benchmarks from the SPLASH-2 suite.

3.1 Optimization techniques

Per-thread heap memory allocation In most implementations, malloc () uses a shared
heap to allocate memory to any requesting threads without regard to page bound-

aries: consecutive segments are assigned to different threads in the order in which the

malloc() calls were invoked. Under EM? this can result in a kind of false sharing:

private data used by separate threads are likely to end up on the same physical page and

the threads will unnecessarily contend for that core.

When optimizing applications for EM?, our goal is then to ensure that all thread-
local data allocated using malloc () can be mapped to the thread that allocated them.
With the ORIGINAL data placement scheme (described in Section 2.1), the address-to-
core mapping occurs at a page granularity, and we can guarantee correct thread mapping
by ensuring that malloc () calls in separate threads allocate memory from separate
pages.

Operating system and library support for this optimization has two components: (a)
ensure that malloc () and friends allocate data for separate threads in different pages,
and (b) optionally allow the programmer to specify the thread to which the memory
should belong. The first part is entirely transparent to the programmer, and consists of
replacing the central dynamic memory management structure (say a free list) by a set
of equivalent per-thread structures, and allocating data for each thread from its own
pool. The second component exposes additional system details to the programmer, but
works well in the common case where memory is first allocated in one thread and later
different, disjoint regions are used in other threads (possibly spawned after memory has
been allocated and initialized). This requires modifying the memory allocation (e.g.,
malloc()) and thread spawning (e.g., pthread_create()) library functions to take
an additional parameter to identify the core where the memory should be mapped: for
malloc (), this applies to the allocated memory, while in pthread_create () it applies
to the newly created thread stack.

Restructuring data for private sharing In addition to overlapping sections of heap-
allocated memory, data structures allocated contiguously by the programmer contain
swathes of data private to different threads; for example, the WATER benchmark allo-
cates an array of molecules processed separately by different threads:

*VAR —{ MOLO | MOL1 | MOL2 | MOL 3 eoe

Thread 0 Thread 1

—in this case, unless the molecule boundaries coincide with EM? page boundaries,
false sharing will occur.

To improve EM? performance, the relevant data structure must be restructured (in-
deed, this is the same technique used to eradicate cache-line-level false sharing in the
LU_CONTIGUOUS version of the LU benchmark). In most cases, this kind of transforma-
tion can only be done by the programmer, as the typical compiler would not, in general,
be able to determine that different sections of the data structure are accessed by separate
threads.

Read sharing and limited replication Some shared application data are written only
once (or very few times) and read many times in multiple threads. In a cache-coherent
architecture, this data will be replicated automatically in all user caches by the co-
herence protocol; under EM?Z, however, each data element will stay in the core it was
mapped to, and threads not running on that core will have to migrate there for access.

For example, several matrix transformation algorithms contain at their heart the
pattern reflected by the following pseudocode:

barrier();
for (...) {

D1 = D2 + D3;
}

barrier();

where D1 “belongs” to the running thread but D2 and D3 are owned by other threads and
stored on other cores; this induces a pattern where the thread must migrate to load D2,
then migrate to load D3, and then again to write the sum to D1.

This observation suggests an optimization strategy for EM?: during time periods
when shared data is read many times by several threads and not written, make tempo-
rary local copies of the data and compute using the local copies:

barrier();
// copy D2 and D3 to local L2, L3
for (...) {
DI = 12 + L3;
}

barrier();

While a cache coherence protocol will do this blindly to all data regardless of how often
it is read or written (and thus suffers high write-driven invalidation rates in benchmarks
like RADIX), in EM? the programmer applies this technique judiciously using our pro-
filing tool. The PIN-based profiler keeps track of the number of execution migrations
for each code line, which tells the programmer which data are causing most migrations,
and thus, better to be replicated. Since these local copies are guaranteed to be only read

within the barriers by the programmer, there is no need to invalidate replicated data
under our replication optimization.

In our proof-of-concept SPLASH-2 benchmark refinements we applied this opti-
mization by hand, and the copy process incurred many back-and-forth migrations. The
number of these migrations can be significantly reduced by adding an architecture-level
memory copy operation. Unlike string instructions present in some architectures (e.g.,
movsb and friends on x86) which are executed by the CPU, however, this operation
would occur at the memory controller and would not involve any network traffic be-
yond the request itself and completion acknowledgement.

Architecturally, such an instruction would result in a message to the relevant DRAM
controller requesting the transfer, and an acknowledgement-wait stall state if an instruc-
tion attempted to access the fresh copy of the data. If both memory ranges resided in
the same memory controller, the copy would be internal to the controller and involve
no traffic; if, on the other hand, the copied address ranges were mapped to two separate
memory controllers, an efficient network-level block transfer would be used directly be-
tween the controllers. Finally, the memory controller would signal the requesting CPU
core that the transfer has completed and accesses to the target memory range may pro-
ceed. In either case, the resulting network traffic would be significantly less than the
many migrations required by “vanilla” EM? to complete the copy.

Because this architectural extension is not required for EM? functionality, however,
the results we present here do not assume such an operation, and any data copy opera-
tions incur migrations as the copying threads bounce between the two relevant cores.

Specific benchmarks With these optimizations, we modified a set of SPLASH-2 bench-
marks (FFT, LU, OCEAN, RADIX, RAYTRACE, and WATER) in order to reduce migration
rate under the EM? architecture. Although we only describe our modifications for LU
and WATER here, we have applied the same techniques for the rest of the benchmarks.

LU : In the original version optimized for cache coherence (LU_.CONTIGUOUS),
which we used as a starting point for optimization, the matrix to be operated on is
divided into multiple blocks in such a way that all data points in a given block—which
are operated on by the same thread—are allocated contiguously. Each block is also
already page-aligned, as shown below:

Global matrix **a —>| *p0 | *pl

*p2|*p3| LX)

| Block 0 | | Block 1 | | Block 2 | | Block 3 |

Blocks are hage—aligned

Therefore no data restructuring is required to reduce false sharing.
During each computation phase, however, each thread repeatedly reads blocks owned
by other threads, but writes only its own thread; e.g., in the LU source code snippet

for (k=0; k<dimk; k++) {
for (j=0; j<dimj; J++) |
alpha = -b[k+j*strideb];
for (i1=0; i<dimi; 1i++)

clitj*stridec] += alpha*al[itk*strideal;

}

since the other threads’ blocks (a and b) are mapped to different cores than the current
thread’s own block (c), nearly every access triggers a migration.

Since blocks a and b are read-only data within this function and the contents are
not updated by other threads in the scope, we can apply the method of limited local
replication as described in Section 3.1. In the modified version, a thread copies the
necessary blocks—a and b in the example above—to local variables (which are also
page-aligned to avoid false-sharing); the computation then only accesses local copies,
eliminating migrations once the replication is done. We similarly replicate global read-
only data such as the number of threads, matrix size, and the number of blocks per
thread.

WATER : In the original code, the main data structure (VAR) is a 1D array of molecules
to be simulated, and each thread is assigned a portion of this array to work on:

*VAR—’| MOL 0 | MOL 1 | MOL 2 | MOL 3 | s

Thread 0 Thread 1

The problem with this data structure is that, as all molecules are allocated contiguously,
molecules processed by different threads can share the same page and this false sharing
can induce unnecessary migrations.

To address this, we modify the VAR data structure as follows:

**VAR —-| *p0 | *pl | *n2 | *p3 |

| MOL 0 || MOL 1 || MOL 2 || MOL 3 I

>
Molecules are page-aligned

By recasting VAR as an array of pointers, we can page-align all of the molecules, entirely
eliminating false-sharing among them; this guarantees that, under EM?, a thread never
needs to migrate to access a molecule assigned to it.

In addition, WATER can also be optimized by locally replicating read-only data. For
each molecule, the thread computes some intermolecular distances to other molecules,
which requires read accesses to the molecules owned by other threads:

CSHIFT() {
XL[0] = XMA-XMB; XL[1] = XMA-XB[0]; XL[2] = XMA-XB[2];
XL[3] = XA[0]-XMB; XL[4] = XA[2]-XMB; XL[5] = XA[0]-XB[0];
XL[6] = XA[0]-XB[2]; XL[7] = XA[2]-XB[0];

}

Here, XMB and XB are parts of molecules owned by other threads, while XMA, XA, and XL
belong to the thread that calls this function. Since all threads are synchronized before
and after this step, and the other threads’ molecules are not updated, we can safely make

a read-only copy in the local memory of the caller thread. Thus, after initially copying
XMB and XB to thread-local data, the remainder of the computation induces no further
migrations.

4 Methods

We use Pin [4] and Graphite [23] to model the EM? architecture. Pin enables runtime
binary instrumentation of parallel programs, including the SPLASH-2 [28] benchmark
sets we use for evaluation, while Graphite models a tile-based core, memory subsystem,
and network, as well as ensures functional correctness.

The settings used for the various system configuration parameters are summarized
in Table 1. In experiments comparing EM? against cache coherence, the parameters for
both were identical, except for (a) the memory directories which are not needed for EM?
and were set to sizes recommended by Graphite on basis of the total cache capacity in
the simulated system, and (b) the 2-way multithreaded cores which are not needed for
cache coherent system.

Parameter Settings

Number of cores 256, each with 2 threads, 1 issue-slot

L1/L2 data cache per core 16 KB/64 KB

Network Mesh, 1 cycle per hop, 128 bit flits, XY Routing
Data placement scheme ORIGINAL, VM page size 4KB

Coherence protocol Directory-based full-map MSI

Memory 30GB/s bandwidth, 75ns latency

Table 1. System configurations used

4.1 On-chip interconnect

Experiments were performed using Graphite’s model of an electrical mesh network
with XY routing. Each packet on the network is partitioned into fixed size flits, and we
use the flit size of 128-bits for the electrical network. Since modern network-on-chip
routers are pipelined [10], we argue that modeling a 1-cycle per hop router latency [20]
is reasonable for the on-chip network; we account for the appropriate pipeline latencies
associated with delivering a packet. In addition to the fixed per-hop latency, contention
delays are modeled; the queuing delays at the router are estimated using a probabilistic
model similar to the one proposed in [19].

4.2 Measurements

Our experiments used a set of SPLASH-2 benchmarks: FFT, LU, OCEAN, RADIX, RAY-
TRACE, and WATER. Each application was run to completion and used the recom-
mended input set for the number of cores used, except as otherwise noted. For each
simulation run, we tracked the total application completion time, the parallel work
completion time, the percentage of memory accesses causing cache hierarchy misses,
and the percentage of memory accesses causing migrations. While the total applica-
tion completion time (wall clock time from application start to finish) and parallel work

completion time (wall clock time from the time the second thread is spawned until the
time all threads re-join into one) show the same general trends, we focused on the paral-
lel work completion time as a more accurate metric of average performance in a realistic
multicore system with many applications.

5 Evaluation

0.7
B Pre- M Post-optimization

0.6
0.5
0.4
0.3
g . L
0.1
" i
N S

A
& N
3 é/?“

Migrations per memory accss

Q\+ (50 ,\Q& (9(0

Fig. 2. EM? migration rates before and after the proposed optimizations. Because of better data
distribution and judicious replication, migration rates drop significantly.

Figure 2 shows the effects of applying the optimizations described in Section 3.
Distributing data on page boundaries to avoid false sharing, combined with judicious
local replication of frequently used read-only data, combine to improve the average
migration rate from 32% to 15% for the benchmarks we optimized for EM?—a ca. 2 x
improvement.

Although migration rate is not the only determinant of overall performance under
EM?, reducing the number of memory accesses that trigger migrations lowers the over-
all memory access time and significantly improves parallel completion times (Figure 3).

Figure 3 shows the overall parallel completion times for all benchmarks before and
after our optimization. Before specifically optimizing the applications for EM?, the EM?
architecture was on the average outperformed by the cache coherence system; this is
not very surprising, as most of these benchmarks have been specifically written with
cache coherence systems in mind, and our choice of a network with 128 bit flit size.
(Increasing network bandwidth beyond 128 bits benefits EM? much more than cache
coherence [17].) After applying our optimizations, however, EM? on average performs
competitively compared to the cache coherence system due to the significant drops in
migration rates.

6 Related Work

Implicitly moving data to computation has been explored in great depth with many
years of research on cache coherence protocols, and has become textbook material [13].

Q
% M Pre- M Post-optimization
= 5
]
28,
Be
§23
Q.
T8
T L2
: |
2 1 - . L
L -
g ¥ & ¢ &

Fig. 3. In comparison to the directory-based, MSI cache-coherent system (CC), EM? performed
2 x worse on average before optimizations. After optimizations, EM2 performs competitively
on average due to the significant drops in migration rates. The CC runs and the pre-optimization
EM? runs used the original, cache-coherence-optimized SPLASH-2 benchmarks, while the post-
optimization EM? runs used EM?-optimized benchmark versions. EM? optimizations may
worsen performance under CC and hence we used the original benchmarks for all CC simula-
tions.

Meanwhile, page replication and migration have been extensively evaluated in the con-
text of multiprocessor NUMA architectures. Verghese et al [27] propose OS supported
dynamic page migration and replication to alleviate the problem of large remote ac-
cess latencies in CC-NUMA architectures. In these NUMA systems, both interconnect
and memory latencies were high and an OS-level approach provided sufficient perfor-
mance; with today’s fast on-chip interconnects, however, operating system interrupts
are relatively much slower, and quick, low-overhead mechanisms are needed for good
performance. Moreover, our replication optimization differs from prior NUMA research
in that, using our profiling tool, we choose data to replicate by the access pattern that
causes significant migrations and not by the number of sharers, because our focus is to
reduce migration rates under EM? In addition, while the page replication in CC-NUMA
requires the page collapse process to eliminate replicas on a write, the optimizations we
present do not require this invalidation process since the replicated data are guaranteed
to be only read in a limited scope by the programmer.

More recent research has explored data distribution and migration among on-chip
NUCA caches [18] with traditional and hybrid cache coherence schemes. OS-level and
OS-assisted software approaches [9, 12, 3, 6] leverage the operating system to map data
to caches near where threads using it are scheduled (on the same core for private ad-
dresses and geographically close for shared data) and optionally replicate read-only
pages. Other schemes add hardware support for page migration support [8, 26] or repli-
cation of recently used cache lines [29]. In general, only read-only pages are shared;
in contrast, the optimizations we present here take advantage of the programmer’s
application-level knowledge to allow replication of read-write shared data during pe-
riods when it is not being written.

The idea of computation migration was originally considered in the context of dis-
tributed multiprocessor architectures [11], and has recently re-emerged in single-chip
multicores for threads [22, 16] as well as thread segments [7]; compiler transformations

for migration support have also been considered [15]. EM? [17] differs from these in
that data sharing is completely abandoned (and therefore cache coherence protocols
are not needed), and migration is required to provide memory coherence rather than
employed to speed up access to cached data.

Finally, because of the complexity of coherence protocols and unscalable directory
memory requirement, many recent many-core architectures (e.g., Intel’s Single-chip
Cloud Computer (SCC) [14]) rely on the message passing programming model instead
of the shared memory model and give up on providing coherence support beyond soft-
ware cache coherence. Message passing models, however, present the programmer with
very low-level abstractions and, as they are relatively difficult to program, have his-
torically been limited to specialized niche applications like scientific computing and
telecommunications. In this paper, therefore, we have focused our optimization efforts
on EM?, a simple and scalable shared-memory architecture.

7 Conclusions and future work

In this manuscript, we have introduced a set of system-level optimizations to improve
memory access latency for an EM? architecture: we chose a page-to-core mapping strat-
egy, outlined several optimization techniques, and evaluated their effects on benchmarks
from the SPLASH-2 suite. Our results show that these optimizations significantly reduce
migration rates, which effectively improves the performance, enabling an EM? archi-
tecture to perform competitively compared to a traditional cache coherent system.

Our future research directions include automating the techniques presented here via
a combination of low-overhead compiler, operating system, and/or architecture imple-
mentations; we believe a combination of the three will be critical in overcoming the
limitations of previously explored migration/replication techniques. Furthermore, we
will also consider how these optimizations can be applied to other application domains
with different memory access patterns (e.g., streaming applications).

References

1. Assembly and packaging. International Technology Roadmap for Semiconductors, 2007.

2. R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and B. smith. The Tera
Computer System, 1990.

3. M. Awasthi, K. Sudan, R. Balasubramonian, and J. Carter. Dynamic hardware-assisted
software-controlled page placement to manage capacity allocation and sharing within large
caches. In HPCA, pages 250-261, 2009.

4. M. M. Bach, M. Charney, R. Cohn, E. Demikhovsky, T. Devor, K. Hazelwood, A. Jaleel,
C. Luk, G. Lyons, H. Patil, and A. Tal. Analyzing parallel programs with pin. Computer,
43:34-41, 2010.

. S. Borkar. Thousand core chips: a technology perspective. In DAC, pages 746-749, 2007.

6. S. Boyd-Wickizer, R. Morris, and M. F. Kaashoek. Reinventing scheduling for multicore
systems. In HotrOS, 2009.

7. K. Chakraborty, P. M. Wells, and G. S. Sohi. Computation spreading: employing hardware
migration to specialize CMP cores on-the-fly. In ASPLOS, pages 283-292, 2006.

8. M. Chaudhuri. PageNUCA: selected policies for page-grain locality management in large
shared chip-multiprocessor caches. In HPCA, pages 227-238, 2009.

9

10.

11.

12.

13.

14.

15.

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

. S. Cho and L. Jin. Managing distributed, shared L2 caches through OS-Level page allocation.

In MICRO, pages 455-468, 2006.

W. J. Dally and B. Towles. Principles and practices of interconnection networks. Morgan
Kaufmann, 2003.

H. Garcia-Molina, R. Lipton, and J. Valdes. A massive memory machine. [EEE Trans.
Comput., C-33:391-399, 1984.

N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Reactive NUCA: near-optimal
block placement and replication in distributed caches. In ISCA, pages 184—195, 2009.

J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach. Mor-
gan Kaufmann, 4th edition, September 2006.

J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H. Wilson,
N. Borkar, G. Schrom, E. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella, P. Salihundam, V. Er-
raguntla, M. Konow, M. Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel, K. Henriss,
T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. Van Der Wijngaart, and T. Mattson. A 48-
Core TA-32 message-passing processor with DVFS in 45nm CMOS. In ISSCC, pages 108
-109, Feb. 2010.

W. C. Hsieh, P. Wang, and W. E. Weihl. Computation migration: enhancing locality for
distributed-memory parallel systems. In PPOPP, pages 239-248, 1993.

M. Kandemir, F. Li, M. Irwin, and S. W. Son. A novel migration-based NUCA design for
chip multiprocessors. In SC, pages 1-12, 2008.

. O.Khan, M. Lis, and S. Devadas. EM?: A Scalable Shared-Memory Multicore Architecture.

MIT-CSAIL-TR-2010-030, 2010.

C. Kim, D. Burger, and S. W. Keckler. An Adaptive, Non-Uniform Cache Structure for
Wire-Delay Dominated On-Chip Caches. In ASPLOS, 2002.

T. Konstantakopulos, J. Eastep, J. Psota, and A. Agarwal. Energy scalability of on-chip
interconnection networks in multicore architectures. MIT-CSAIL-TR-2008-066, 2008.

A. Kumar, P. Kundu, A. P. Singh, L.-S. Peh, and N. K. Jha. A 4.6tbits/s 3.6ghz single-cycle
noc router with a novel switch allocator. In in 65nm CMOS, ICCD, 2007.

M. Marchetti, L. Kontothanassis, R. Bianchini, and M. Scott. Using simple page placement
policies to reduce the cost of cache fills in coherent shared-memory systems. In I/PPS, 1995.
P. Michaud. Exploiting the cache capacity of a single-chip multi-core processor with execu-
tion migration. In HPCA, pages 186—195, 2004.

J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio, J. Eastep, and
A. Agarwal. Graphite: A distributed parallel simulator for multicores. In HPCA, pages 1-12,
2010.

K. K. Rangan, G. Wei, and D. Brooks. Thread motion: fine-grained power management for
multi-core systems. In ISCA, pages 302-313, 20009.

S. Rusu, S. Tam, H. Muljono, D. Ayers, J. Chang, R. Varada, M. Ratta, and S. Vora. A 45nm
8-core enterprise Xeon(®) processor. In A-SSCC, pages 9-12, 2009.

K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, R. Balasubramonian, and A. Davis. Micro-
pages: increasing DRAM efficiency with locality-aware data placement. SIGARCH Comput.
Archit. News, 38(1):219-230, 2010.

B. Verghese, S. Devine, A. Gupta, and M. Rosenblum. Operating system support for im-
proving data locality on cc-numa compute servers. SIGPLAN Not., 31(9):279-289, 1996.

S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The SPLASH-2 programs: characteri-
zation and methodological considerations. In ISCA, pages 24-36, 1995.

M. Zhang and K. Asanovi¢. Victim replication: maximizing capacity while hiding wire delay
in tiled chip multiprocessors. In ISCA, pages 336-345, 2005.

