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Abstract

‘We introduce the concept of deadlock-free migration-based
coherent shared memory to the NUCA family of architec-
tures. Migration-based architectures move threads among
cores to guarantee sequential semantics in large multicores.
Using a execution migration (EM) architecture, we achieve
performance comparable to directory-based architectures
without using directories: avoiding automatic data repli-
cation significantly reduces cache miss rates, while a fast
network-level thread migration scheme takes advantage of
shared data locality to reduce remote cache accesses that
limit traditional NUCA performance.

EM area and energy consumption are very competi-
tive, and, on the average, it outperforms a directory-based
MOESI baseline by 1.3x and a traditional S-NUCA design
by 1.2x. We argue that with EM scaling performance has
much lower cost and design complexity than in directory-
based coherence and traditional NUCA architectures: by
merely scaling network bandwidth from 256 to 512 bit flits,
the performance of our architecture improves by an addi-
tional 13%, while the baselines show negligible improve-
ment.

1 Background

Current trends in microprocessor design clearly indicate an
era of multicores for the 2010s. As transistor density con-
tinues to grow geometrically, processor manufacturers are
already able to place a hundred cores on a chip (e.g., Tilera
Tile-Gx 100), with massive multicore chips on the horizon;
many industry pundits are predicting 1000 or more cores by
the middle of this decade [1]. Will the current architectures
and their memory subsystems scale to hundreds of cores,
and will these systems be easy to program?

The main barrier to scaling current memory architec-
tures is the off-chip memory bandwidth wall [1, 2]: oft-
chip bandwidth grows with package pin density, which
scales much more slowly than on-die transistor density [3].
Today’s multicores integrate very large shared last-level
caches on chip to reduce the number of off-chip memory
accesses [4]; interconnects used with such shared caches,
however, do not scale beyond relatively few cores, and the
power requirements of large caches (which grow quadrat-
ically with size) exclude their use in chips on a 1000-core
scale—for example, the Tilera Tile-Gx 100 does not have a

large shared cache.

For massive-scale multicores, then, we are left with
relatively small per-core caches. Since a programming
model that relies exclusively on software-level message
passing among cores is inconvenient and so has limited
applicability, programming complexity considerations de-
mand that the per-core caches must present a unified ad-
dressing space with coherence among caches managed au-
tomatically at the hardware level.

On scales where bus-based mechanisms fail, the tra-
ditional solution to this dilemma is directory-based cache
coherence: alogically central directory coordinates sharing
among the per-core caches, and each core cache must ne-
gotiate shared (read-only) or exclusive (read/write) access
to each line via a complex coherence protocol. In addition
to protocol complexity and the associated design and veri-
fication costs, directory-based coherence suffers from three
other problems: (a) directory sizes must equal a signifi-
cant portion of the combined size of the per-core caches,
as otherwise directory evictions will limit performance [5];
(b) automatic replication of shared data significantly de-
creases the effective total on-chip cache size because, as the
core counts grow, a lot of cache space is taken by replicas
and fewer lines in total can be cached, which in turn leads
to sharply increased off-chip access rates; and (c) frequent
writes to shared data can result in repeated cache invalida-
tions and the attendant long delays due to the coherence
protocol.

Two of these shortcomings have been addressed by
S-NUCA [6] and its variants [7]. These architectures unify
the per-core caches into one large shared cache, in their
pure form keeping only one copy of a given cache line
on chip and thus steeply reducing off-chip access rates
compared to directory-based coherence. In addition, be-
cause only one copy is ever present on chip, cache co-
herence is trivially ensured and a coherence protocol is
not needed. This comes at a price, however, as accessing
data cached on a remote core requires a potentially expen-
sive two-message round-trip: where a coherence protocol
would take advantage of spatial and temporal locality by
making a copy of the block containing the data in the local
cache, S-NUCA must repeat the round-trip for every access
to ensure sequential memory semantics. Various NUCA
and hybrid proposals have therefore leveraged data migra-
tion and replication techniques previously explored in the



NUMA context (e.g., [8]) to move private data to its owner
core and replicate read-only shared data among the shar-
ers at the operating system (OS) level [9, 2, 10] or aided
by hardware [11, 12, 13], but while these schemes improve
performance on some kinds of data, they still do not take
full advantage of spatio-temporal locality and require either
coherence protocols or repeated remote accesses to access
read/write shared data.

To address this limitation and take advantage of avail-
able data locality in a memory organization where there
is only one copy of data, we propose to allow computa-
tion threads to migrate from one core to another at a fine-
grained instruction level. When several consecutive ac-
cesses are made to data assigned to a given core, migrat-
ing the execution context allows the thread to make a se-
quence of local accesses on the destination core rather than
pay the performance penalty of the corresponding remote
accesses. While computation migration, originally consid-
ered in the context of distributed multiprocessor architec-
tures [14], has recently re-emerged at the single-chip mul-
ticores level, e.g., [15, 16, 17], for power management and
fault-tolerance, we are unique in using migrations to pro-
vide memory coherence. We also propose a hybrid archi-
tecture that includes support for SNUCA-style remote ac-
cess.

Specifically, in this paper we:

1. introduce the idea of using instruction-level execu-
tion migration (EM) to ensure memory coherence and
sequential consistency in directoryless multicore sys-
tems with per-core caches;

2. combine execution migration (EM) with NUCA-style
remote memory accesses (RA) to create a directo-
ryless shared-memory multicore architecture which
takes advantage of data locality;

3. utilize a provably deadlock-free hardware-level mi-
gration algorithm [18] to move threads among the
available cores with unprecedented efficiency and
generalize it to be applicable to the EM/RA hybrid.

2 Migration-based memory coherence

The essence of traditional distributed cache management in
multicores is bringing data to the locus of the computation
that is to be performed on it: when a memory instruction
refers to an address that is not locally cached, the instruc-
tion stalls while either the cache coherence protocol brings
the data to the local cache and ensures that the address can
be safely shared or exclusively owned (in directory proto-
cols) or a remote access is sent and a reply received (in
S-NUCA).

Migration-based coherence brings the computation to
the data: when a memory instruction requests an address
not cached by the current core, the execution context (ar-
chitecture state and TLB entries) moves to the core that
is home for that data. As in traditional NUCA architec-
tures, each address in the system is assigned to a unique

core where it may be cached: the physical address space in
the system is partitioned among the cores, and each core is
responsible for caching its region.

Because each address can be accessed in at most one
location, many operations that are complex in a system
based on a cache coherence protocol become very simple:
sequential consistency and memory coherence, for exam-
ple, are ensured by default. (For sequential consistency to
be violated, multiple threads must observe multiple writes
in different order, which is only possible if they disagree
about the value of some variable, for example, when their
caches are out of sync. If data is never replicated, this situ-
ation never arises.) Atomic locks work trivially, with mul-
tiple accesses sequentialized on the core where the lock ad-
dress is located.

In what follows, we first discuss architectures based
purely on remote accesses and purely on migration, and
then combine them to leverage the strengths of both.

2.1 Basic remote-access-only (RA) architecture

In the remote-access (RA) architecture, equivalent to tra-
ditional S-NUCA, all non-local memory accesses cause a
request to be transmitted over the interconnect network, the
access to be performed in the remote core, and the data (for
loads) or acknowledgement (for writes) be sent back to the
requesting core: when a core C executes a memory access
for address A, it must

1. compute the home core H for A (e.g., by masking the
appropriate bits);
2. if H = C (a core hit),
(a) forward the request for A to the cache hierarchy
(possibly resulting in a DRAM access);
3. if H # C (a core miss),

(a) send a remote access request for address A to

core H,
(b) when the request arrives at H, forward it to H’s

cache hierarchy (possibly resulting in a DRAM

access),
(c) when the cache access completes, send a re-

sponse back to C,
(d) once the response arrives at C, continue execu-

tion.

To avoid interconnect deadlock,! the system must en-
sure that all remote requests must always eventually be
served. This is accomplished by using an independent vir-
tual network for cache to home core traffic and another for
cache to memory controller traffic. Next, within each such
subnetwork, the reply must have higher priority than the
request. Finally, network messages between any two nodes
within each subnetwork must be delivered in the order in
which they were sent.

Tn the deadlock discussion, we assume that events not involving the
interconnect network, such as cache and memory controller internals, al-
ways eventually complete, and that the interconnect network routing algo-
rithm itself is deadlock-free or can always eventually recover from dead-
lock.
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Figure 1. In the hybrid EM/RA architecture, memory accesses to addresses not assigned to the local core cause the execution
context to be migrated to the core, or may result in a remote data access.

2.2 Basic execution-migration-only (EM) architecture

In the execution-migration-only variant (EM), all non-local
memory accesses cause the executing thread to be migrated
to the core where the relevant memory address resides and
executed there.

What happens if the target core is already running an-
other thread? One option is to allow each single-issue core
to round-robin execute several threads, which requires du-
plicate architectural state (register file, TLB); another is to
evict the executing thread and migrate it elsewhere before
allowing the new thread to enter the core. Our design fea-
tures two execution contexts at each core: one for the core’s
native thread (i.e., the thread originally assigned there and
holding its private data), and one for a guest thread. When
an incoming guest migration encounters a thread running
in the guest slot, this thread is evicted to its native core.

Thus, when a core C running thread 7 executes a
memory access for address A, it must

1. compute the home core H for A (e.g., by masking the
appropriate bits);
2. if H = C (a core hit),
(a) forward the request for A to the cache hierarchy
(possibly resulting in a DRAM access);

3. if H # C (a core miss),
(a) interrupt the execution of the thread on C (as for

a precise exception), )
(b) migrate the microarchitectural state to H via the

on-chip interconnect: o
i. if H is the native core for T, place it in the

native context slot;
ii. otherwise:
A. if the guest slot on H contains another

thread T, evict 7' and migrate it to its
native core N’/
B. move T into the guest slot for H;
(c) resume execution of 7 on H, requesting A from
its cache hierarchy (and potentially accessing
DRAM).

Deadlock avoidance requires that the following se-
quence always eventually completes:

1. migration of 7 from C — H,

2. possible eviction of T’ from H — N',

3. possible cache — DRAM request H — M, and
4. possible DRAM — cache response M — H.

As with the remote-access-only variant from Sec-
tion 2.1, cache < memory controller traffic (steps 3 and 4)
travels on one virtual network with replies prioritized over
requests, and migration messages travel on another. Be-
cause DRAM — cache responses arrive at the requesting
core, a thread with an outstanding DRAM request cannot
be evicted until the DRAM response arrives; because this
will always eventually happen, however, the eviction will
eventually be able to proceed. Eviction migrations will al-
ways complete if (a) each thread 7’ has a unique native
core N’ which will always accept an eviction migration,?
and (b) eviction migration traffic is prioritized over migra-
tions caused by core misses. Since core-miss migrations
can only be blocked by evictions, they will also always
eventually complete, and the migration protocol is free of
deadlock. Finally, to avoid migration livelock, it suffices to
require each thread to complete at least one CPU instruc-
tion before being evicted from a core.

Because combining two execution contexts in one
single-issue core may result in round-robin execution of
the two threads, when two threads are active on the core
they both experience a serialization effect: each thread is
executing only 50% of the time. Although this seems like
a relatively high overhead, observe that most of the time
threads access private data and are executing on their na-
tive cores, so in reality the serialization penalty is not a
first-order effect.

2In an alternate solution, where 7’ can be migrated to a non-native
core such as T’s previous location, a domino effect of evictions can re-
sult in more and more back-and-forth messages across the network and,
eventually, deadlock.
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Figure 2. (a) A single-issue five-stage pipeline with efficient context migration; differences from a single-threaded pipeline are
shaded. (b) For a context transfer, the register file of the originating core is unloaded onto the router, transmitted across the
network and finally loaded onto the home core’s register file via the router.

2.3 Hybrid architecture (EM/RA)

In the hybrid migration/remote-access architecture, each
core-miss memory access may either perform the access
via a remote access as in Section 2.1 or migrate the current
execution thread as in Section 2.2. The hybrid architecture
is illustrated in Figure 1.

For each access to memory cached on a remote core,
a decision algorithm determines whether the access should
migrate to the target core or execute a remote access.
Because this decision must be taken on every access, it
must be implementable as efficient hardware. In this pa-
per, therefore, we consider and evaluate a simple heuris-
tic scheme: the DISTANCE scheme. If the migration des-
tination is the native core, the distance scheme always mi-
grates; otherwise, it evaluates the hop distance to the home
core. It migrates execution if the distance exceeds some
threshold d else it makes a round-trip remote cache access.

In order to avoid deadlock in the interconnect, mi-
grations must not be blocked by remote accesses and vice
versa; therefore, a total of three virtual subnetworks (one
for remote accesses, one for migrations, and one for mem-
ory traffic) are required. At the protocol level, evictions
must now also wait for any outstanding remote accesses to
complete in addition to waiting for DRAM — cache re-
sponses.

2.4 Migration framework

The novel architectural component we introduce here is
fast, hardware-level migration of execution contexts be-
tween two cores via the on-chip interconnect network.
Since the core miss cost is dominated by the remote
access cost and the migration cost, it is critical that the mi-
grations be as efficient as possible. Therefore, unlike other
thread-migration approaches (such as Thread Motion [19],
which uses special cache entries to store thread contexts
and leverages the existing cache coherence protocol to mi-
grate threads), our architecture migrates threads directly

over the interconnect network to achieve the shortest pos-
sible migration latencies.

Per-migration bandwidth requirements, although
larger than those required by cache-coherent and remote-
access-only designs, are not prohibitive by on-chip stan-
dards: in a 32-bit x86 processor, the relevant architectural
state amounts, including TLB, to about 1.5Kbits [19]. In
some cases, one may want to migrate additional state, such
as branch prediction state and floating point registers, and
therefore, we consider both a 1.5 Kbit and 4 Kbit context in
Section 4.4.

Figure 2 shows the differences needed to support ef-
ficient execution migration in a single-threaded five-stage
CPU core. When both context slots (native and guest) are
filled, execution round-robins between them to ensure that
all threads can make progress. Register files now require
wide read and write ports, as the migration logic must be
able to unload all registers onto the network or load all reg-
isters from the network in relatively few cycles; to enable
this, extra muxing logic connects the register files directly
with the on-chip network router. The greater the available
network bandwidth, the faster the migration. As with tradi-
tional S-NUCA architectures, the memory subsystem itself
is connected to the on-chip network router to allow for ac-
cesses to the off-chip memory controller as well as for reads
and writes to a remote cache (not shown in the figure).

2.5 Data placement

The assignment of addresses to cores affects the perfor-
mance of EM/RA in three ways: (a) because context migra-
tions pause thread execution and therefore longer migration
distances will slow down performance; (b) because remote
accesses also pause execution and longer round trips will
also limit performance; and (c) indirectly by influencing
cache performance. On the one hand, spreading frequently
used addresses evenly among the cores ensures that more
addresses are cached in total, reducing cache miss rates
and, consequently, off-chip memory access frequency; on



the other hand, keeping addresses accessed by the same
thread in the same core cache reduces migration rate and
network traffic.

As in standard S-NUCA architectures, the operating
system controls memory-to-core mapping via the existing
virtual memory mechanism: when a virtual address is first
mapped to a physical page, the OS chooses where the rele-
vant page should be cached by mapping the virtual page
to a physical address range assigned to a specific core.
Since the OS knows which thread causes a page fault,
more sophisticated heuristics are possible: for example, in
a first-touch-style scheme, the OS can map the page to the
thread’s native core, taking advantage of data access local-
ity to reduce the migration rate while keeping the threads
spread among cores.

In EM/RA architectures, data placement is key, as it
determines the frequency and distance of remote accesses
and migrations. Although placement has been studied ex-
tensively in the context of NUMA architectures (e.g., [8])
as well as more recently in NUCA context (e.g., [2]), we
wish to concentrate here on the potential of the EM/RA
architecture and implement none of them directly. Instead,
we combine a first-touch data placement policy [20], which
maps each page to the first core to access it, with judicious
profiling-based source-level modifications to our bench-
mark suite (see Section 3.3 and [21]) to provide placement
and replication on par or better than that of available auto-
matic methods.

3 Methods

3.1 Architectural simulation

We use Pin [22] and Graphite [23] to model the proposed
execution migration (EM), remote-access (RA) and hybrid
(EM/RA) architectures as well as the cache-coherent (CC)
baseline. Pin enables runtime binary instrumentation of
parallel programs, including the SPLASH-2 [24] bench-
marks we use here; Graphite implements a tile-based mul-
ticore, memory subsystem, and network, modeling perfor-
mance and ensuring functional correctness.

The default settings used for the various system con-
figuration parameters are summarized in Table 1; any devi-
ations are noted when results are reported. In experiments
comparing EM/RA architectures against CC, the parame-
ters for both were identical, except for (a) the memory di-
rectories which are not needed for EM/RA and were set to
sizes recommended by Graphite on basis of the total cache
capacity in the simulated system, and (b) the 2-way mul-
tithreaded cores which are not needed for cache-coherent
baseline.

To exclude differences resulting from relative
scheduling of Graphite threads, data were collected using
a homogeneous cluster of machines.

3.2 On-chip interconnect model
Experiments were performed using Graphite’s model of an

electrical mesh network with XY routing with 256-bit flits.
Since modern network-on-chip routers are pipelined [25],

and 2- or even 1-cycle per hop router latencies [26] have
been demonstrated, we model a 2-cycle per hop router de-
lay; we also account for the appropriate pipeline latencies
associated with loading and unloading a packet onto the
network. In addition to the fixed per-hop latency, con-
tention delays are modeled using a probabilistic model sim-
ilar to the one proposed in [27].

3.3 Application benchmarks

Our experiments used a set of SPLASH-2 benchmarks: FFT,
LU_CONTIGUOUS, OCEAN_CONTIGUOUS, RADIX, RAY-
TRACE, and WATER-N2. For the benchmarks for which
versions optimized for cache coherence exist (LU and
OCEAN [28, 24]), we chose the versions that were most
optimized for directory-based cache coherence. It is im-
portant to note that these benchmarks have been extensively
optimized to remove false sharing and improve working set
locality, fitting our requirement for the best-case loads for
directory coherence.

Application benchmarks tend not to perform well in
RA architectures with simple striped data placements [2],
and sophisticated data placement and replication algo-
rithms like R-NUCA [2] are required for fair compar-
isons. We therefore used the modified SPLASH-2 bench-
marks presented in [21] that represent a reference place-
ment/replication scheme through source-level transforma-
tions that are limited to rearranging and replicating the
main data structures. As such, the changes do not alter the
algorithm used and do not affect the operation of the cache
coherence protocol. In fact, the modified benchmarks are
about 2 % faster than the originals when run on the cache-
coherent baseline.

Each application was run to completion using an in-
put set that matched the number of cores used, e.g., we used
4,000,000 keys for RADIX sort benchmark, a 4x increase
over the recommended input size. For each simulation run,
we tracked the total application completion time, the par-
allel work completion time, the percentage of memory ac-
cesses causing cache hierarchy misses, and the percentage
of memory accesses causing migrations. While the total
application completion time (wall clock time from applica-
tion start to finish) and parallel work completion time (wall
clock time from the time the second thread is spawned until
the time all threads re-join into one) show the same general
trends, we focused on the parallel work completion time as
a more accurate metric of average performance in a realistic
multicore system with many applications.

3.4 Directory-based cache coherence baseline selec-
tion

In order to choose a directory-based coherence (CC) base-
line for comparison, we considered the textbook protocol
with Modified/Shared/Invalid (MSI) states as well as two
alternatives: on the one hand, data replication can be com-
pletely abandoned by only allowing modified or invalid
states (MI); on the other hand, in the presence of data repli-
cation, off-chip access rates can be lowered via protocol



Table 1. System configurations used

Parameter Settings

Cores 256 in-order, 5-stage pipeline, single-issue cores
2-way fine-grain multithreading

L1 instruction/L1 data/L.2 cache per core
Electrical network

32/16/64 KB, 4/2/4-way set associative
2D Mesh, XY routing, 2 cycles per hop (+ contention), 256b flits

1.5 Kbits execution context size (similar to [19])

Context load/unload latency: [

pkt size
it size

-‘ =6 cycles

Context pipeline insertion latency = 3 cycles

Data Placement scheme
Coherence protocol

FIRST-TOUCH, 4 KB page size
Directory-based MOESI, Full-map distributed directories = 8

Entries per directory = 32768, 16-way set associative

Memory 30GB/s bandwidth, 75ns latency
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(a) parallel completion time under different CC protocols, nor-
malized to MOESI

(b) cache miss rates under CC and EM/RA at various
cache sizes

Figure 3. (a) Although parallel completion time for different coherence protocols varies somewhat across the benchmarks
(notably, the high directory eviction rate in FFT leads to rampant invalidations in MSI and MOESI and favors MI), generally
MOESI was the most efficient protocol and MI performed worst. (b) Cache hierarchy miss rates at various cache sizes show
that, by eschewing replication, the EM/RA architecture achieves cache miss rates much lower than the CC baseline at all cache

sizes. (Settings from Table 1.)

extensions such as an owned and exclusive states (MOESI)
combined with cache-to-cache transfers whenever possible.

To evaluate the impact of these variations, we com-
pared the performance for various SPLASH-2 benchmarks
under MSI, MI, and MOESI (using parameters from Ta-
ble 1). As shown in Figure 3a, MI exhibits by far the
worst memory latency: although it may at first blush seem
that MI removes sharing and should thus improve cache
utilization much like EM/RA, in actuality eschewing the
S state only spreads the sharing—and the cache pollution
which leads to capacity misses—over time when compared
to MSI and MOESI. At the same time, MI gives up the
benefits of read-only sharing and suffers many more cache
evictions: its cache miss rates were 2.3 X greater than un-
der MSI. The more complex MOESI protocol, meanwhile,
stands to benefit from using cache-to-cache transfers more
extensively to avoid writing back modified data to off-chip
RAM, and take advantage of exclusive cache line owner-
ship to speed up writes. Our analysis shows that, while
cache-to-cache transfers result in many fewer DRAM ac-
cesses, they instead induce significantly more coherence
traffic (even shared reads now take 4 messages); in addi-
tion, they come at a cost of significantly increased proto-
col, implementation and validation complexity. Neverthe-

less, since our simulations indicate (Figure 3a) that MOESI
is the best-performing coherence protocol out of the three,
we use it as a baseline for comparison in the remainder of
this paper.

Finally, while we kept the number of memory con-
trollers fixed at 8 for all architectures, for the cache-
coherence baseline we also examined several ways of dis-
tributing the directory among the cores via Graphite simu-
lations: central, one per memory controller, and fully dis-
tributed. On the one hand, the central directory version
caused the highest queueing delays and most network con-
gestion, and, while it would require the smallest total direc-
tory size, a single directory would still be so large that its
power demands would put a significant strain on the 256-
core chip (power demands scale quadratically with SRAM
size). On the other end of the spectrum, a fully distributed
directory would spread congestion among the 256 cores,
but each directory would have to be much larger to allow
for imbalances in accesses to cache lines in each directory,
and DRAM accesses would incur additional network la-
tencies to contact the relatively few memory controllers.
Finally, we considered the case of 8 directories (one for
each of the 8 memory controllers), which removed the need
for network messages to access DRAM and performed as



well as the best-case fully distributed variant. Since the
8-directory configuration offered best performance and a
good tradeoff between directory size and contention, we
used this design in our evaluation.

3.5 Remote-access NUCA baseline selection

To compare against an RA architecture baseline, we con-
sidered two approaches: the traditional S-NUCA approach
where the L1 and L2 caches are shared (that is, a local
L1 or L2 may cache only a subset of the address space),
and a hybrid NUCA/coherence approach where private L1
caches are maintained via a coherence protocol. Although
the hybrid variant offers some relief from remote accesses
to frequently used locations, the L1 caches must keep very
large full-map directories (significantly larger than total
cache on the core [2]!): if the directories are too small, the
L1’s will suffer frequent invalidations due to directory evic-
tions and the combined performance will revert towards
a remote-access-only design. Based on these considera-
tions we chose to compare our hybrid architecture to a fully
shared L1/L2 remote-access-only baseline.

3.6 Cache size selection

We ran our SPLASH-2 simulations with a range of cache
sizes under both an execution-migration design and the
cache-coherent baseline. While adding cache capacity im-
proves cache utilization and therefore performance for both
architectures, cache miss rates are much lower for the
migration-based approach and, with much smaller on-chip
caches, EM/RA achieves significantly better results (Fig-
ure 3). When caches are very large, on the other hand,
they tend to fit most of the working set of our SPLASH-2
benchmarks and both designs almost never miss the cache.
This is, however, not a realistic scenario in a system con-
currently running many applications: we empirically ob-
served that as the input data set size increases, larger and
larger caches are required for the cache-coherent baseline
to keep up with the migration-based design. To avoid bias
either way, we chose realistic 64 KB L2 data caches as our
default configuration because it offers a reasonable perfor-
mance tradeoff and, at the same time, results in 28 Mbytes
of on-chip total cache (not including directories for CC).

3.7 Instruction cache

Since the thread context transferred in an EM architecture
does not contain instruction cache entries, we reasoned that
the target core might not contain the relevant instruction
cache lines and a thread might incur an instruction cache
miss immediately upon migration. To evaluate the potential
impact of this phenomenon, we compared L1 instruction
cache miss rates for EM and the cache-coherent baseline in
simulations of our SPLASH-2 multithreaded benchmarks.
Results indicated an average instruction cache miss
rate of 0.19% in the EM design as compared to 0.27% in
the CC baseline. The slight improvement seen in EM is due
to the fact non-memory instructions are always executed on
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Figure 4. For our benchmarks, under our EM/RA designs
the cache miss rates are on the average 3.2x lower be-
cause storing each cache line in only one location elimi-
nates many capacity and coherence-related evictions and
effectively increases the availability of cache lines.

the core where the last memory access was executed (since
only another memory reference can cause a migration else-
where), and so non-memory instructions that follow refer-
ences to shared data are cached only on the core where the
shared data resides.

3.8 Area and energy estimation

For area and energy, we assume 32nm process technol-
ogy and use CACTI [29] to estimate the area requirements
of the on-chip caches and interconnect routers. To esti-
mate the area overhead of extra hardware context in the 2-
way multithreaded core for EM, we used Synopsys Design
Compiler [30] to synthesize the extra logic and register-
based storage. We also use CACTI to estimate the dynamic
energy consumption of the caches, routers, register files,
and DRAM. The area and dynamic energy numbers used
in this paper are summarized in Table 2. We implemented
several energy counters (for example the number of DRAM
reads and writes) in our simulation framework to estimate
the total energy consumption of running SPLASH-2 bench-
marks for both CC and EM. Note that DRAM only models
the energy consumption of the RAM and the I/O pads and
pins will only add to the energy cost of going off-chip.

4 Results and analysis

4.1 Advantages over directory-based cache coherence

In the EM architecture, each address—even shared by mul-
tiple threads—is assigned to only one cache, leaving more
total cache capacity for other data. Because the additional
capacity arises from not storing addresses in many loca-
tions, cache miss rates naturally depend on the memory
access pattern of specific applications; we therefore mea-
sured the differences in cache miss rates for several bench-
marks between our EM/RA designs and the CC baseline.
(Note that the cache miss rates are virtually identical for
all our EM/RA designs). The miss rate differences in re-
alistic benchmarks, shown in Figure 4, are attributable to
two main causes. On the one extreme, the FFT bench-
mark does not exhibit much sharing and the high cache



Table 2. Area and energy estimates

Component # Total area Read energy Write energy Details
(mm?) (nJ/instance) (nJ/instance)

Register file 256 2.48 0.005 0.002 4-Rd, 4-Wr ports; 64x24 bits
EM Router 256 15.67 0.022 0.007 5-Rd, 5-Wr ports; 256x20 bits
RA/CC Router 256 7.54 0.011 0.004 5-Rd, 5-Wr ports; 128x20 bits
Directory cache 8 9.06 1.12 1.23 1 MB cache (16-way associative)
L2 Cache 256 26.65 0.086 0.074 64 KB (4-way associative)
L1 Data Cache 256 6.44 0.034 0.017 16 KB cache (2-way associative)
Off-chip DRAM 8 N/A 6.333 6.322 1GB RAM
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plication; at the same time, replication of the same data in
many per-core caches limits effective cache capacity. This
combination of capacity and coherence misses results in a
5% miss rate under MOESI; the EM/RA architecture elim-
inates the coherence misses and increases effective cache
capacity, and only incurs a 0.8% miss rate. The remain-
ing benchmarks fall in between these two extremes, with a
combination of directory evictions and read-write sharing
patterns.

Cache miss rates illustrate the core potential advan-
tage of EM/RA designs over CC: significantly lower off-
chip access rates given the same cache sizes. Although
miss rates in CC architectures can be reduced by increasing
the per-core caches, our simulation results (not shown here)
indicate that, overall, the CC design would need in excess
of 2x the L2 cache capacity to match the cache miss rates
of EM/RA.

4.2 Advantages over traditional directoryless NUCA
(RA)

Although RA architectures eschew automatic sharing of
writable data and significantly lower cache miss rates, their
main weakness lies in not being able to take advantage of
shared data locality: even if many consecutive accesses are
made to data on the same remote core, sequential consis-
tency requires that each be an independent round-trip ac-
cess. To examine the extent of this problem, we measured
the run length for non-local memory access: the number of
consecutive accesses to memory cached in a non-local core
not interrupted by any other memory accesses.

Figure 5 shows this metric for one of our benchmarks.
Predictably, the number of remote accesses with run length
of one (a single access to a remote core followed by access
to another remote core or the local core) is high; more sig-
nificantly, however, a great portion of remote memory ac-
cesses in both benchmarks shown exhibit significant core

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

Figure 5. Non-local memory accesses in our RA baseline
binned by the number of surrounding contiguous accesses
to the same remote core. Although, predictably, many re-
mote operations access just one address before accessing
another core, a surprisingly large number belong to streaks
of 40-50 accesses to the same remote core and indicate sig-
nificant data locality.

locality and come in streaks of 40-50 accesses. Although
core locality is not this dramatic in all applications, these
examples show precisely where a migration-based archi-
tecture shines: the executing thread is migrated to a remote
core and 40-50 now effectively “local” memory accesses
are made before incurring the cost of another migration.
To examine the real improvement potential offered by
extending RA with efficient execution migrations, we next
counted the core miss rates—the number of times a round-
trip remote-access or a migration to a remote core must be
made—for the RA baseline and our EM architecture.
Figure 6a shows core misses across a range of bench-
marks. As we’d expect from the discussion above (Sec-
tion 4.2), OCEAN_CONTIGUOUS and LU_CONTIGUOUS
show that migrations significantly lower core miss rates,
and most other benchmarks also improve. The outlier here
is FFT: most of the accesses it makes are to each thread’s
private data, and shared accesses are infrequent and brief.
Figure 6b shows how many overall core misses were
handled by remote accesses and migrations in several
EM/RA variants. In the EM/RA scheme that performed
best, namely, EM(distance=11), see Figure 7a, both migra-
tions and remote access play a significant role, validating
our intuition behind combining them into a hybrid archi-
tecture.
It is important to note that the cost of core misses is
very different under RA and under EM: in the first, each
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Figure 6. The potential for improvement over the RA baseline. (a) When efficient core-to-core thread migrations are allowed,
the number of memory accesses requiring transition to another core (core misses) significantly decreases. (b) The fraction of
core miss rates handled by remote accesses and migrations in various migration/remote-access hybrids shows that the best-
performing scheme, EM(distance=11), has significant migration and remote access components.

core miss induces a round-trip remote access, while in the
second it causes a one-way migration (the return migration,
if any, is counted as another core miss). Adding efficient
migrations to an RA design therefore offers significant per-
formance potential, which we examine next.

4.3 Opverall area, performance and energy

The EM/RA architectures do not require directories and as
can be seen from Table 2 are smaller than the CC baseline.

Figure 7a shows the parallel completion time speedup
relative to the CC baseline for various EM/RA schemes: a
remote-access-only variant, a migrations-only variant, and
a range of hybrid schemes where the remote-access vs. mi-
gration decision is based on on hop distance. Overall, per-
formance is very competitive with the cache coherent base-
line and the EM and best EM/RA design EM(distance=11)
show an average 1.3x and 1.25x improvement over the
CC baseline, respectively. EM/RA with too small (large) a
distance threshold does not perform as well because there
are too many (few) migrations. For the chosen context size
and hop latency, when distance > 11 migrations become
cheaper than data word round-trips resulting in the best per-
formance. Additionally, EM is 1.2x higher performance
than the RA baseline.

The benefits are naturally application-dependent:
as might be expected from Figure 4, the benchmarks
with the largest cache miss rate reductions (FFT and
OCEAN_CONTIGUOUS) offer the most performance im-
provements. At the other extreme, the WATER bench-
mark combines fairly low cache miss rates under CC with
significant read-only sharing, and is very well suited for
directory-based cache coherence; consequently, CC outper-
forms all EM/RA variants by a significant margin.

The result also shows the benefits of a combined
EM/RA architecture: in some benchmarks (e.g., RADIX,
LU_CONTIGUOUS, OCEAN_CONTIGUOUS), a migration-
only design significantly outperforms remote accesses,
while in others (e.g., WATER-N?) the reverse is true. On av-
erage, the best distance-based EM/RA hybrid performs bet-
ter than either EM or RA, and renders the EM/RA approach

highly competitive with directory-based MOESI cache co-
herence.

Since energy dissipated per unit performance will be
a critical factor in next-generation massive multicores, we
employed an energy model (cf. Section 3) to estimate the
dynamic energy consumed by the various EM/RA variants
and CC. On the one hand, migrations incur significant dy-
namic energy costs due to increased traffic in the on-chip
network and the additional register file per core; on the
other hand, dramatic reductions in off-chip accesses equate
to very significant reductions in DRAM access energy.

As illustrated in Figure 7b, energy consumption de-
pends on each application’s access patterns. For FFT, for
example, which incurs crippling rates of eviction inval-
idations, the energy expended by the CC protocol mes-
sages and DRAM references far outweighs the cost of en-
ergy used by remote accesses and migrations. On the
other extreme, the fairly random patterns of memory ac-
cesses in RAYTRACE, combined with a mostly private-data
and read-only sharing paradigm, allows CC to efficiently
keep data in the core caches and consume far less energy
than EM/RA. The high cost of off-chip DRAM accesses
is particularly highlighted in the WATER-N? benchmark:
although the trend in cache miss rates between CC and
EM/RA is similar for WATER-N? and RAYTRACE, the over-
all cache miss rate is markedly higher in WATER-N?; com-
bined with the associated protocol costs, the resulting off-
chip DRAM accesses make the CC baseline consume more
energy than the EM/RA architecture.

We note that our energy numbers for directory-based
coherence are quite optimistic, since we did not include
energy consumed by I/O pads and pins; this will result in
higher energy for off-chip accesses which CC makes more
of.

4.4 Performance scaling potential for EM designs

Finally, we investigated the scaling potential of the EM
architecture. We reasoned that, while directory-based co-
herence is limited by cache sizes and off-chip bandwidth
and RA performance is restricted by interconnect laten-
cies, EM can be improved by increasing interconnect band-
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Figure 8. EM performance scales with network bandwidth.
Assuming a modern 64-bit core with 32 general purpose
and 16 floating point registers, we calculated a thread con-
text of 4 Kbits (register files plus TLB state). EM still out-
performs CC by 1.1x on a 256 bit-flit network, but when
the on-chip network bandwidth is scaled to 512 bit-flit, EM
outperforms CC by 1.25x.

width (network link and router bandwidth can be scaled by
widening data paths, allowing more bits to be transferred
in a single cycle): with higher on-chip network bandwidth,
the main effect is that messages carrying the thread’s con-
text consume fewer cycles.

With this is mind, we evaluated our 256-core system
with a much larger context size of 4 Kbits and compared
EM against CC at our default 256 bit-flit network as well
as a higher bandwidth 512 bit-flit network. As illustrated
in Figure 8, the performance of EM dropped from a 1.3 %
advantage over CC (using 1.5 Kbits context size) toa 1.1x
advantage. When the network bandwidth was doubled to a
512 bit-flit size, EM outperformed CC by 1.25x. Since
scaling of network bandwidth is easy—although buffers
and crossbars must be made wider so area increases lin-
early, the fundamental design of the interconnect remains
constant and the clock frequencies are not appreciably af-
fected. Moreover, since the same amount of data must be
transferred, dynamic energy consumption does not grow
in tandem. Contrasted with the off-chip memory band-
width wall and quadratically growing power requirements
of large caches limiting directory-based architecture perfor-
mance, and the difficulty in reducing electrical network hop

counts limiting remote-access performance on the other
hand, an EM or EM/RA architecture offers an attractive
way to significantly increase performance at sublinear im-
pact on cost.

5 Related work
5.1 Thread migration

Migrating computation to the locus of the data is not itself a
novel idea. Hector Garcia-Molina in 1984 suggested mov-
ing execution to data in memory bound architectures [14].
Nomadic threads reduce the number of messages needed
to access data in multi-chip computers [31], and [32] uses
migration to improve spatial locality of distributed array
structures.

In recent years migrating execution context has re-
emerged in the context of single-chip multicores. Michaud
shows the benefits of using execution migration to improve
the overall on-chip cache capacity and utilizes this for mi-
grating selective sequential programs to improve perfor-
mance [15]. Computation spreading [17] splits thread code
into segments and assigns cores responsible for different
segments, and execution is migrated to improve code lo-
cality. Kandemir presents a data migration algorithm to
address the data placement problem in the presence of non-
uniform memory accesses within a traditional cache coher-
ence protocol [16]. This work attempts to find an optimal
data placement for cache lines. A compile-time program
transformation based migration scheme is proposed in [33]
that attempts to improve remote data access. Migration is
used to move part of the current thread to the processor
where the data resides, thus making the thread portion lo-
cal; this scheme allows programmer to express when mi-
gration is desired. Dataflow machines (e.g., [34])—and, to
some extent, out-of-order execution—are superficially sim-
ilar as they allow an activated instruction to be claimed by
any available execution unit, but cannot serve as a shared-
memory abstraction. The J-machine [35] ties processors
to on-chip memories, but relies on user-level messaging
and does not address the challenge of off-chip memory



bandwidth. Our proposed execution migration machine is
unique among the previous works because we completely
abandon data sharing (and therefore do away with cache
coherence protocols). In this paper we have proposed to
rely on execution migration to provide coherence and con-
sistency.

5.2 Remote-access NUCA and Directory Coherence

Remote memory access is performed in S-NUCA [6] and
its variants [7]: these architectures unify the per-core
caches into one large shared cache, in their pure form
keeping only one copy of a given cache line on chip and
thus steeply reducing off-chip access rates compared to
directory-based coherence; in addition, because only one
copy is ever present on chip, cache coherence is trivially
ensured without a coherence protocol. This comes at the
price of a potentially expensive two-message round-trip as
mentioned in the introduction. Various NUCA and hy-
brid proposals have therefore leveraged data migration and
replication techniques previously explored in the NUMA
context (e.g., [8]) to move private data to its owner core and
replicate read-only shared data among the sharers at the OS
level [9, 2, 10, 36] or aided by hardware [11, 12, 13], but
while these schemes improve performance on some kinds
of data, they still do not take full advantage of spatio-
temporal locality and require either coherence protocols
or repeated remote accesses to access read/write shared
data. In this paper, we use source-level transformations in
conjunction with a first-touch scheme to obtain good data
placements, and instruction-level thread migration to take
advantage of locality.

We have also compared against MOESI directory-
based coherence which is state-of-the-art and includes
cache to cache transfers to minimize off-chip memory ac-
cesses (e.g., [37], [38]). Some recent work has addressed
reducing directory sizes required for cache coherence in
large-scale multicores (e.g., [39], [40]). These schemes
typically tradeoff performance or protocol complexity for
reduced directory area.

6 Conclusion

In this paper, we have extended the family of directory-
less NUCA architectures by adding efficient, hardware-
level core-to-core thread migrations as a way to maintain
sequential consistency and memory coherence in a large
multicore with per-core caches. Taking advantage of lo-
cality in shared data accesses exhibited by many applica-
tions, migrations amortize the cost of remote accesses that
limit traditional NUCA performance. At the same time,
an execution migration design retains the cache utilization
benefits of a shared cache distributed among many cores,
and brings NUCA performance up to the level of directory-
based cache-coherent designs.

We have demonstrated that appropriately designed
execution migration (EM) and remote cache access (RA)
hybrid designs do not cause deadlock. We have explored

very straightforward hybrid EM/RA architectures in this
paper; future work involves the development of better-
performing migration predictors. Perhaps most promis-
ingly, we have shown that the performance of EM designs
is relatively easy to improve with low area cost, little power
overhead, and virtually no verification cost, allowing chip
designers to easily select the best compromise for their ap-
plication space.
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