

Security and Reliability Properties of Syndrome Coding Techniques
Used in PUF Key Generation

 Meng-Day (Mandel) Yu Srinivas Devadas Ingrid Verbauwhede
 David M’Raїhi
 {myu, david}@verayo.com devadas@mit.edu ingrid.verbauwhede@esat.kuleuven.be

 Verayo, Inc. MIT ESAT/SCD-COSIC, KU Leuven
 San Jose, CA, USA Cambridge, MA, USA Leuven, Belgium

Abstract: A Physical Unclonable Function (PUF)

uniquely identifies identically manufactured silicon devices.

To derive keys, a stability algorithm is required. Unlike

conventional error correction used in communication

systems, a PUF stability algorithm has a dual mandate of

accounting for environmental noise while minimally

disclosing keying material; the latter, security, aspect is

generally not a concern for conventional error correction

use cases. For the purpose of comparison, we classify

PUF stability algorithms into three Syndrome coding

methods: Code-Offset; Index-Based Syndrome; Pattern

Vector. We analyze and compare these methods with a

focus on security and reliability properties, including a

comparison of relevant security assumptions as well as a

comparison of relevant ASIC PUF reliability data.

Keywords: Physical Unclonable Function (PUF); Key

Generation; Syndrome Coding; Security Properties

Introduction
Over the past decade, the concept of net-enabled operations

has become a cornerstone for our national-defense posture.

The underlying assumption of this vision is the availability

of robust, reliable, secure information and communications

infrastructures. Silicon-based Physical Unclonable

Functions (PUFs) serve as a critical design primitive to

secure these microelectronics systems [3]. The idea is to

use unclonable manufacturing variations that not even a

device manufacturer can control or reproduce (within

tolerances of lithography and fabrication equipment) to

authenticate a microelectronic device based on its “birth

characteristics,” similar to how biometrics can be used to

identify a human being. This silicon manufacturing

variation, similar to human biometric (e.g., fingerprint, iris

scan), has readings that are noisy when digitized and

represented as 1s and 0s. No two repeated readings are

guaranteed to be the same bit-for-bit, but they are similar

enough such that identity authentication can be achieved to

a sufficient degree of confidence. These identifying

silicon signatures take advantage of atomic and sub-atomic

level manufacturing variations that, however, vary with a

change in environmental condition (e.g., voltage,

temperature, aging) between a provisioning condition and a

regeneration condition. To use manufacturing variation

material to derive cryptographic keys, a stability algorithm

is required. These stability algorithms have a form of error

correction or error processing capability, and require

Syndrome (aka Helper Data) to return a regenerated

response in a bit-exact fashion to a response snapshot taken

during provisioning. To date, to our best knowledge, there

have been three primary methods of Syndrome coding:

Code-Offset [2]; Index-Based Syndrome [14]; and Pattern

Vector [8]. For the first time in open literature, we analyze,

compare and contrast these methods, and include an

analysis of security properties and as well as summarizing

reliability data from PUF ASIC implementations.

The remainder of the paper is organized as follows. We

first give an overview of Physical Unclonable Functions

(PUFs) and PUF Key Generation. The subsequent sections

focus on the stability algorithm and discuss the three

primary methods as identified above for Syndrome coding.

We then discuss security properties. Finally, we conclude

with a survey of PUF Key Generation reliability data from

PUF ASIC implementations.

Introduction to Physical Unclonable Functions
The use of Physical Unclonable Functions (PUFs) as a

silicon-unique root of trust was first published by

researchers at MIT [3], enabling authentication based on

chip-unique responses as well as generation of chip-unique

cryptographic keys. Multiple silicon-based PUF circuits

have since been realized. An arbiter-based PUF was

prototyped in an ASIC [5]. A ring-oscillator PUF was

built and tested in [12]. Use of initial SRAM state as a

PUF was explored and tested in [13]. These are the main

first representatives of the three major forms of PUFs that

are commonly discussed today in open literature.

Introduction to PUF Key Generation
PUF Key Generation comprises of two steps: Provisioning

and Regeneration. During the Provisioning process (Figure

1), a response is generated from a PUF, and a Syndrome is

generated then stored for later use. The Syndrome can be

stored in a public fashion but is generally assumed to be

integrity protected. During a Regeneration process (Figure

2), the PUF is queried and a noisy response is regenerated;

it is noisy due to environmental differences between the

Regeneration and Provisioning conditions, e.g., as

variations in temperature, voltage, and/or aging affect the

way the response is derived. The Syndrome is read in. A

Stability Algorithm (e.g., an error correction decoder) reads

in both the Syndrome information as well as the noisy

response, to re-derive in a bit-exact fashion the stable PUF

bits. The stable PUF bits are further processed or used by

downstream cryptographic functions such as key derivation

functions, hash functions, block ciphers such as AES,

public-key based algorithms such as RSA, etc.

While there may be other forms of Syndrome “Helper

Data” information generated during Provisioning and used

during Regeneration, such as a random value used for

universal hash functions, we focus our attention on the

portion that is strictly used to reconcile the PUF noise

between the two queries in a manner such that the same

Stable PUF Bits (B) can be generated over and over again.

We will provide in the following sections an analysis and

comparison of security properties as well as reliability

properties. The simplified diagrams in Figures 1 and 2

reflect this focus.

Classes of Stability Algorithms
Now we discuss classes of stability algorithms, i.e.,

Syndrome coding techniques, to account for PUF noise, so

as to allow a PUF to regenerate the same, bit-exact stable

bits despite environmental changes. For the purpose of

comparisons, we categorize them into three primary ones:

Code-Offset [2]; Index-Based Syndrome [14]; and Pattern

Vector [8]. The publications [2], [14], [8], respectively, are

the first representatives of each of the three main methods,

while noting that there are derivative methods under this

categorization framework, e.g., layering Soft Decision

information on top of Code-Offset [6] or oscillator ordering

encoding on top of Code-Offset [7], or using Index-Based

Syndrome in a redundant and “complementary” manner to

improve soft decision decoding properties [4].

We note that in a conventional modem connection, for

every data byte transmitted, a parity bit may be attached for

error detection. The parity bit reduces amount of

uncertainty in the data byte to no more than 7 bits. While

in a conventional communication system, such information

leakage is generally not a concern, this is a central concern

for PUF Key Generation. Thus, instead of applying

conventional error correction directly to account for PUF

noise, a Syndrome coding scheme is applied. An effective

algorithm needs to simultaneously address stability as well

as security concerns. In next section, we describe security

properties of the three Syndrome coding schemes, and in

section following reliability properties.

Security Properties
Code-Offset. In Code-Offset, the Syndrome bits generated

correspond to the XOR mask for a sequence of PUF output

bits required to form a valid error correction codeword.

The entropy loss due to the Syndrome bits corresponds to

the maximum number of Syndrome bits λ exposed [2]. As

such, the number of Syndrome bits should be kept small;

no entropy remains under this framework if the number of

Syndrome bits exceeds the min-entropy of the PUF output

bits used. Let us assume a linear code example, with an {n,

k, t} error correction code of block size n, data bits of

length k, and error correction capability of t bits. The PUF

generates n bits, and after syndrome encoding, n – k bits of

Syndrome is outputted. Here, entropy loss λ = n - k. Let n’

designate the minimum entropy (min-entropy) of the n-bit

PUF output. With a λ bit loss, the residual entropy (secrecy

remaining from the starting k bits) is n’ - λ. Under this

security framework that is information-theoretic, there is no

secrecy left if n’ <= λ. Therefore, the amount of secrecy

left depends on the min-entropy of the PUF once the error

correction coding scheme and associated parameters are

chosen. We note that even under the assumption that PUF

outputs are independent and identically distributed (i.i.d.),

if PUF output bits are biased, PUF min-entropy can be

reduced to the point where there is no secrecy remaining in

the system if certain error correction codes are used. As an

extreme example, if a PUF has a 0.5152 bias (out of every

10000 bits there are 5152 1s on the average and the rest 0s),

if a 33x repetition code is used, every single bit is leaked

out, statistically speaking [14]. Alternatively, in a less

extreme case, if a 9x repetition code is used, 1 bit is leaked

out of every 5.6 bits encoded [14]. This is because if a

single random bit is generated (from an RNG, or a PUF),

and that bit is repeated 33 times (or 9 times) and bit-wise

XORed with an equal number of PUF output bits, the PUF

bias leak gets amplified in the resulting XOR Syndrome

mask. For a repetition of r, this corresponds to a {n=r, k =

1, t} code. The residual entropy is r’ – (r - 1), which can go

negative (no secrecy left) for r’ <= r - 1, and is highly

sensitive to PUF bias. We note that the Code-Offset

Stability
Algorithm

Stable PUF Bits (B)

Response
PUF

Down-stream Crypto Logic
KDF, Hash, AES, RSA, etc.

Syndrome

Figure 1: Provisioning

Stability
Algorithm

Stable PUF Bits (B)

Noisy
Response PUF

Down-stream Crypto Logic
KDF, Hash, AES, RSA, etc.

Syndrome

Figure 2: Regeneration

implementation in [7] properly accounts for the entropy

loss based on the framework in [2] while most prior works

such as [1], which focused on efficient implementation as

opposed to security, did not explicitly account for the

entropy loss.

Index-Based Syndrome. In the Index-Based Syndrome

scheme, the Syndrome output bits are divided into

Syndrome Words; each is an index lookup into a sequence

of PUF output bits [14]. In the canonical example, a “1” bit

or a “0” bit randomly generated (not necessarily from a

PUF) can be encoded as a “max” or a “min” value in the

distribution of a stream of PUF output bits that contain

“soft-decision” or confidence information. The scheme is

not subject to the requirement that there is no secrecy

remaining if n’ <= λ under the assumption that PUF output

bits can be regarded as independent and identically

distributed (i.i.d.), which is a common assumption. Under

such an assumption, even if the PUF responses are heavily

biased, the Syndrome does not impose additional min-

entropy leakage on the secret bits, which is not the case for

Code-Offset. Additionally, there is an inherent coding gain

in the scheme, reducing the downstream error correction

requirements, and reducing / eliminating repetition coding

which can be, as demonstrated previously, problematic

from a security standpoint. Under a PUF i.i.d. assumption,

Index-Based Syndrome can be proven to be information-

theoretically secure in that the Syndrome bits do not induce

additional average min-entropy leakage. Since i.i.d. is

difficult to verify in practice, [15] attempted to equate

independence with unlearnability, e.g., making sure there

are more unknowns in the manufacturing variation

parameters than equations leaked via syndrome. Index-

Based Syndrome has been analyzed for Oscillator PUFs

[16] as well as analyzed with Memory PUFs [4]. Its main

advantages lie in its high coding gain (reduced error

correction complexity and reduced need for leaky repetition

coding), as well as a decoupling PUF output bias

characteristics (for an i.i.d. PUF) from security

considerations for a more modular design methodology.

Pattern Vector. In the Pattern Vector approach, a sequence

of randomly generated “1” or “0” bits is recovered using a

PUF response Pattern Vector corresponding to a challenge

offset that is not readily known to an adversary. Assuming

a PUF with a challenge seed that is used to derive 1024

subsequent challenges, generating 1024+512 bits, let us

encode a single 10-bit secret value. We use a response size

of 512 bits; there are 2
10

 challenge offsets which can be

used to encode the 10-bit secret. The security of this

scheme relies on machine learning assumptions. From [9],

one can infer that an 8-XOR 128-stage PUF is out of reach

for present day machine learning attacks from a CPU time

standpoint and requires >> 0.5 Million Challenge and

Response Pairs (CRPs). To generate a single key, only a

limited number of response bits (<<0.5M) are used, and the

attacker does not know the challenges corresponding to

these response bits. The advantage of this scheme is that

no complex error correction is required. Instead of relying

on a PUF i.i.d. assumption (as in Index-Based Syndrome),

a machine learning assumption based on a limited response

set and uncertain challenge offset is used. The uncertain

challenge offset is used to derive the key; the adversary

does not have precise knowledge of the challenge that maps

to each response bit, with up to 10 bits uncertainty per

string of 512 bits in the previous example.

Comparisons. In the table below, we list different

assumptions we make about a PUF to derive security for

each scheme. Code-Offset is secure if there is sufficient

min-entropy in the PUF response bits; we want security

parameter >= n’ – λ (e.g., security parameter = 128 for a

128-bit key). Index-Based Syndrome is secure if PUF

output bits can be regarded as independent, for example,

using disjoint PUF components. In Index-Based

Syndrome, having first order bias alone does not affect

security (unlike Code-Offset even in an i.i.d. setting).

Syndrome size does not matter from a security proof

standpoint, but requires response independence. For

Pattern Vector, the security framework is based on machine

learning assumptions given limited amount of information

available for the adversary, e.g., limited number of

response bits and uncertainty in challenge offset; as an

example, we want bits to learn the system >> syndrome

size, the latter is generally linear and >> security parameter.

TABLE I. PUF SECURITY ASSUMPTIONS

 Assumption Example

Code Offset Sufficient PUF min-entropy

security parameter

>=

n’ – syndrome size

Index-Based

Syndrome
i.i.d. PUF response bits

security parameter

>>

independent manu. var.

unknowns

(regardless of syndrome

size)

Pattern

Vector

PUF resistant to machine

learning attacks

(given limited response bits,

challenge offset uncertainty)

bits needed to learn sys

>>

syndrome size

(syndrome size >>

security parameter)

Reliability Properties
Table II contains a summary of published results on PUF

reliability associated with PUF Key Generation. The Code-

Offset representative available in open literature that tested

the most extreme environmental conditions corresponds to

[10]. Under the assumption that an error correction

scheme can correct up to a quarter of the PUF bits being

noisy (flipped) as reported in [10], there is a stability safety

margin of 24% in that 24% of the error correction

capability remain unused under the Temperature and the

Voltage ranges shown in the first row of Table II. The test

comprised of 68 PUF devices (4 PUFs on each of 17

distinct devices). The Index-Based Syndrome

representative is [16], which contains V/T corner testings,

and has a stability safety margin in excess of 50%,

attributed to the high coding gains inherent in Index-Based

Syndrome, prior to any conventional error correction

techniques being applied. The test set comprised of 133

PUF devices (7 PUFs on each of 19 distinct devices).

Since aging results were not presented in this particular

publication, accelerated aging results were obtained from

[15] which also used Index-Based Syndrome. For the

Pattern Vector representative [8], only temperature testing

was performed and with better than parts per billion (ppb)

reliability. The scheme works reliably so long as normal

PUF authentication, based on a Hamming threshold value,

works reliably. Test set comprised of 10 PUF devices (1

PUF on each of 10 distinct devices).

TABLE II. PUF KEY GENERATION ENVIRONMENTAL

TESTING AND RELIABILITY

 Temperature
Volt-

age

V/T

Corners

Aging
Reliability

Code

Offset
-40ºC to 80ºC ±10% n/a

4.7

equivalent

years @

40oC

24%

Stability

Margin

Index-

Based

Synd.

-55ºC to

125ºC
±20% 4-corners

20

equivalent

years @

55oC

50%+

Stability

Margin

Pattern

Vector
-25ºC to 85ºC n/a n/a n/a << 1 ppb

Conclusions
Since the first PUF Key Generation architecture was

proposed in the context of a secure processor [11], several

PUF Key Generation implementations have been realized

and several Syndrome coding schemes developed to

address the dual mandate of security and reliability. We

have categorized the approaches and summarized the

security assumptions. The reliability results published to

date show that each of the approaches is capable of

achieving fairly high level of reliability under a relatively

wide range of conditions. Future work includes further

elaboration of security assumptions and threat models, and

derivation of possibly improved Syndrome coding

schemes.

References
1. C. Bösch, J. Guajardo, A.-R. Sadeghi, J. Shokrollahi,

P. Tuyls, “Efficient Helper Data Key Extractor on

FPGAs,” Workshop on Cryptographic Hardware and

Embedded Systems (CHES), 2008, LNCS vol. 5154,

pp. 181-197.

2. Y. Dodis, L. Reyzin, A. Smith, ‘‘Fuzzy Extractors:

How to Generate Strong Keys from Biometrics and

Other Noisy Data,’’ Eurocrypt, 2004.

3. B. Gassend, D. Clarke, M. van Dijk, S. Devadas,

“Silicon Physcal Random Functions,” ACM Computer

and Communication Security (CCS) Conference, 2002.

4. M. Hiller, D. Merli, F. Stumpf, “Complementary IBS:

Application Specific Error Correction for PUFs,”

IEEE Int’l Symposium on Hardware-Oriented Security

and Trust (HOST), 2012.

5. D. Lim, ‘‘Extracting Secret Keys from Integrated

Circuits,’’ Master’s thesis, EECS, MIT, 2004.

6. R. Maes, P. Tuyls, I. Verbauwhede, “A Soft Decision

Helper Data Algorithm for SRAM PUFs,” IEEE Int’l

Symposium on Information Theory (ISIT), 2009.

7. R Maes, A. Herrewege, I. Verbauwhede, “PUFKY: A

Fully Functional PUF-based Cryptographic Key

Generator,” Workshop on Cryptographic Hardware

and Embedded Systems (CHES), 2012, LNCS vol.

7428, pp. 302-319.

8. Z. Paral, S. Devadas, “Reliable and Efficient PUF-

based Key Generation Using Pattern Matching,” IEEE

Int’l Symposium on Hardware-Oriented Security and

Trust (HOST), 2011.

9. U. Rȕhrmair, F. Sehnke, J. Sȍlter, G. Dror, S.

Devadas, J. Schmidhuber, “Modeling Attacks on

Physical Unclonable Functions,” ACM Conference on

Computer and Communications Security (CCS), 2010.

10. G. Selimis, M. Konijnenburg, M. Ashouei, J. Huisken,

H. de Groot, V. van der Leest, G-J. Schrijen, M. van

Hulst, P. Tuyls, “Evaluation of 90nm 6T-SRAM as

Physical Unclonable Function for Secure Key

Generation in Wireless Sensor Nodes,” IEEE Int’l

Symposium on Circuits and Systems (ISCAS) 2011.

11. G. Suh, “AEGIS: A Single-Chip Secure Processor,”

Ph.D. dissertation, MIT, 2005.

12. G. Suh, S. Devadas, “Physical Unclonable Functions

for Device Euthentication and Secret Key Generation,”

Design Automation Conference (DAC), 2007.

13. Y. Su, J. Holleman, B. Otis, “A 1.6pJ/bit 96% Stable

Chip ID Generating Circuit Using Process Variations,”

IEEE Int’l Solid-State Circuits Conf. (ISSCC), 2007.

14. M. Yu, S. Devadas, "Secure and Robust Error

Correction for Physical Unclonable Functions," IEEE

Design and Test of Computers, Special Issue on

Verifying Physical Trustworthiness of ICs and

Systems, vol. 27, no. 1, pp. 48-65, Jan./Feb. 2010.

15. M. Yu, D. M’Raїhi, R. Sowell, S. Devadas,

“Lightweight and Secure PUF Key Storage Using

Limits of Machine Learning,” Workshop on

Cryptographic Hardware and Embedded Systems

(CHES), 2011, LNCS vol. 6917, pp. 358-373.

16. M. Yu, R. Sowell, A. Singh, D. M’Raїhi, S. Devadas,

“Performance Metrics and Empirical Results of a PUF

Cryptographic Key Generation ASIC,” IEEE Int’l

Symposium on Hardware-Oriented Security and Trust

(HOST), 2012.

 .

