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Abstract: A Physical Unclonable Function (PUF) 

uniquely identifies identically manufactured silicon devices.  

To derive keys, a stability algorithm is required. Unlike 

conventional error correction used in communication 

systems, a PUF stability algorithm has a dual mandate of 

accounting for environmental noise while minimally 

disclosing keying material; the latter, security, aspect is 

generally not a concern for conventional error correction 

use cases.  For the purpose of comparison, we classify 

PUF stability algorithms into three Syndrome coding 

methods: Code-Offset; Index-Based Syndrome; Pattern 

Vector.  We analyze and compare these methods with a 

focus on security and reliability properties, including a 

comparison of relevant security assumptions as well as a 

comparison of relevant ASIC PUF reliability data.   

Keywords: Physical Unclonable Function (PUF); Key 

Generation; Syndrome Coding; Security Properties 

Introduction 
Over the past decade, the concept of net-enabled operations 

has become a cornerstone for our national-defense posture.  

The underlying assumption of this vision is the availability 

of robust, reliable, secure information and communications 

infrastructures.  Silicon-based Physical Unclonable 

Functions (PUFs) serve as a critical design primitive to 

secure these microelectronics systems [3].  The idea is to 

use unclonable manufacturing variations that not even a 

device manufacturer can control or reproduce (within 

tolerances of lithography and fabrication equipment) to 

authenticate a microelectronic device based on its “birth 

characteristics,” similar to how biometrics can be used to 

identify a human being.  This silicon manufacturing 

variation, similar to human biometric (e.g., fingerprint, iris 

scan), has readings that are noisy when digitized and 

represented as 1s and 0s.  No two repeated readings are 

guaranteed to be the same bit-for-bit, but they are similar 

enough such that identity authentication can be achieved to 

a sufficient degree of confidence.   These identifying 

silicon signatures take advantage of atomic and sub-atomic 

level manufacturing variations that, however, vary with a 

change in environmental condition (e.g., voltage, 

temperature, aging) between a provisioning condition and a 

regeneration condition.  To use manufacturing variation 

material to derive cryptographic keys, a stability algorithm 

is required.  These stability algorithms have a form of error 

correction or error processing capability, and require 

Syndrome (aka Helper Data) to return a regenerated 

response in a bit-exact fashion to a response snapshot taken 

during provisioning.  To date, to our best knowledge, there 

have been three primary methods of Syndrome coding: 

Code-Offset [2]; Index-Based Syndrome [14]; and Pattern 

Vector [8].  For the first time in open literature, we analyze, 

compare and contrast these methods, and include an 

analysis of security properties and as well as summarizing 

reliability data from PUF ASIC implementations.   
 

The remainder of the paper is organized as follows.  We 

first give an overview of Physical Unclonable Functions 

(PUFs) and PUF Key Generation.  The subsequent sections 

focus on the stability algorithm and discuss the three 

primary methods as identified above for Syndrome coding.  

We then discuss security properties.  Finally, we conclude 

with a survey of PUF Key Generation reliability data from 

PUF ASIC implementations. 

Introduction to Physical Unclonable Functions 
The use of Physical Unclonable Functions (PUFs) as a 

silicon-unique root of trust was first published by 

researchers at MIT [3], enabling authentication based on 

chip-unique responses as well as generation of chip-unique 

cryptographic keys.  Multiple silicon-based PUF circuits 

have since been realized.  An arbiter-based PUF was 

prototyped in an ASIC [5].  A ring-oscillator PUF was 

built and tested in [12].  Use of initial SRAM state as a 

PUF was explored and tested in [13].  These are the main 

first representatives of the three major forms of PUFs that 

are commonly discussed today in open literature. 

Introduction to PUF Key Generation 
PUF Key Generation comprises of two steps:  Provisioning 

and Regeneration.  During the Provisioning process (Figure 

1), a response is generated from a PUF, and a Syndrome is 

generated then stored for later use.  The Syndrome can be 

stored in a public fashion but is generally assumed to be 

integrity protected.  During a Regeneration process (Figure 

2), the PUF is queried and a noisy response is regenerated; 

it is noisy due to environmental differences between the 

Regeneration and Provisioning conditions, e.g., as 

variations in temperature, voltage, and/or aging affect the 

way the response is derived.  The Syndrome is read in. A 

Stability Algorithm (e.g., an error correction decoder) reads 



 

in both the Syndrome information as well as the noisy 

response, to re-derive in a bit-exact fashion the stable PUF 

bits.  The stable PUF bits are further processed or used by 

downstream cryptographic functions such as key derivation 

functions, hash functions, block ciphers such as AES, 

public-key based algorithms such as RSA, etc.  
  

While there may be other forms of Syndrome “Helper 

Data” information generated during Provisioning and used 

during Regeneration, such as a random value used for 

universal hash functions, we focus our attention on the 

portion that is strictly used to reconcile the PUF noise 

between the two queries in a manner such that the same 

Stable PUF Bits (B) can be generated over and over again.  

We will provide in the following sections an analysis and 

comparison of security properties as well as reliability 

properties.  The simplified diagrams in Figures 1 and 2 

reflect this focus.   

 

 

 
 

 

      
 

 

Classes of Stability Algorithms 
Now we discuss classes of stability algorithms, i.e., 

Syndrome coding techniques, to account for PUF noise, so 

as to allow a PUF to regenerate the same, bit-exact stable 

bits despite environmental changes. For the purpose of 

comparisons, we categorize them into three primary ones: 

Code-Offset [2]; Index-Based Syndrome [14]; and Pattern 

Vector [8].  The publications [2], [14], [8], respectively, are 

the first representatives of each of the three main methods, 

while noting that there are derivative methods under this 

categorization framework, e.g., layering Soft Decision 

information on top of Code-Offset [6] or oscillator ordering 

encoding on top of Code-Offset [7], or using Index-Based 

Syndrome in a redundant and “complementary” manner to 

improve soft decision decoding properties [4]. 
 

We note that in a conventional modem connection, for 

every data byte transmitted, a parity bit may be attached for 

error detection.  The parity bit reduces amount of 

uncertainty in the data byte to no more than 7 bits.  While 

in a conventional communication system, such information 

leakage is generally not a concern, this is a central concern 

for PUF Key Generation.  Thus, instead of applying 

conventional error correction directly to account for PUF 

noise, a Syndrome coding scheme is applied.  An effective 

algorithm needs to simultaneously address stability as well 

as security concerns.  In next section, we describe security 

properties of the three Syndrome coding schemes, and in 

section following reliability properties. 

Security Properties 
Code-Offset.  In Code-Offset, the Syndrome bits generated 

correspond to the XOR mask for a sequence of PUF output 

bits required to form a valid error correction codeword.  

The entropy loss due to the Syndrome bits corresponds to 

the maximum number of Syndrome bits λ exposed [2].  As 

such, the number of Syndrome bits should be kept small; 

no entropy remains under this framework if the number of 

Syndrome bits exceeds the min-entropy of the PUF output 

bits used.  Let us assume a linear code example, with an {n, 

k, t} error correction code of block size n, data bits of 

length k, and error correction capability of t bits.  The PUF 

generates n bits, and after syndrome encoding, n – k bits of 

Syndrome is outputted.  Here, entropy loss λ = n - k.  Let n’ 

designate the minimum entropy (min-entropy) of the n-bit 

PUF output.  With a λ bit loss, the residual entropy (secrecy 

remaining from the starting k bits) is n’ - λ.  Under this 

security framework that is information-theoretic, there is no 

secrecy left if n’ <= λ.  Therefore, the amount of secrecy 

left depends on the min-entropy of the PUF once the error 

correction coding scheme and associated parameters are 

chosen.  We note that even under the assumption that PUF 

outputs are independent and identically distributed (i.i.d.), 

if PUF output bits are biased, PUF min-entropy can be 

reduced to the point where there is no secrecy remaining in 

the system if certain error correction codes are used.  As an 

extreme example, if a PUF has a 0.5152 bias (out of every 

10000 bits there are 5152 1s on the average and the rest 0s), 

if a 33x repetition code is used, every single bit is leaked 

out, statistically speaking [14].  Alternatively, in a less 

extreme case, if a 9x repetition code is used, 1 bit is leaked 

out of every 5.6 bits encoded [14].  This is because if a 

single random bit is generated (from an RNG, or a PUF), 

and that bit is repeated 33 times (or 9 times) and bit-wise 

XORed with an equal number of PUF output bits, the PUF 

bias leak gets amplified in the resulting XOR Syndrome 

mask.  For a repetition of r, this corresponds to a {n=r, k = 

1, t} code.  The residual entropy is r’ – (r - 1), which can go 

negative (no secrecy left) for r’ <= r - 1, and is highly 

sensitive to PUF bias.  We note that the Code-Offset 
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implementation in [7] properly accounts for the entropy 

loss based on the framework in [2] while most prior works 

such as [1], which focused on efficient implementation as 

opposed to security, did not explicitly account for the 

entropy loss.   
 

Index-Based Syndrome.  In the Index-Based Syndrome 

scheme, the Syndrome output bits are divided into 

Syndrome Words; each is an index lookup into a sequence 

of PUF output bits [14].  In the canonical example, a “1” bit 

or a “0” bit randomly generated (not necessarily from a 

PUF) can be encoded as a “max” or a “min” value in the 

distribution of a stream of PUF output bits that contain 

“soft-decision” or confidence information.  The scheme is 

not subject to the requirement that there is no secrecy 

remaining if n’ <= λ under the assumption that PUF output 

bits can be regarded as independent and identically 

distributed (i.i.d.), which is a common assumption.  Under 

such an assumption, even if the PUF responses are heavily 

biased, the Syndrome does not impose additional min-

entropy leakage on the secret bits, which is not the case for 

Code-Offset.  Additionally, there is an inherent coding gain 

in the scheme, reducing the downstream error correction 

requirements, and reducing / eliminating repetition coding 

which can be, as demonstrated previously, problematic 

from a security standpoint.  Under a PUF i.i.d. assumption, 

Index-Based Syndrome can be proven to be information-

theoretically secure in that the Syndrome bits do not induce 

additional average min-entropy leakage.  Since i.i.d. is 

difficult to verify in practice, [15] attempted to equate 

independence with unlearnability, e.g., making sure there 

are more unknowns in the manufacturing variation 

parameters than equations leaked via syndrome.  Index-

Based Syndrome has been analyzed for Oscillator PUFs 

[16] as well as analyzed with Memory PUFs [4].  Its main 

advantages lie in its high coding gain (reduced error 

correction complexity and reduced need for leaky repetition 

coding), as well as a decoupling PUF output bias 

characteristics (for an i.i.d. PUF) from security 

considerations for a more modular design methodology.    
 

Pattern Vector.  In the Pattern Vector approach, a sequence 

of randomly generated “1” or “0” bits is recovered using a 

PUF response Pattern Vector corresponding to a challenge 

offset that is not readily known to an adversary.  Assuming 

a PUF with a challenge seed that is used to derive 1024 

subsequent challenges, generating 1024+512 bits, let us 

encode a single 10-bit secret value.  We use a response size 

of 512 bits; there are 2
10

 challenge offsets which can be 

used to encode the 10-bit secret.   The security of this 

scheme relies on machine learning assumptions. From [9], 

one can infer that an 8-XOR 128-stage PUF is out of reach 

for present day machine learning attacks from a CPU time 

standpoint and requires >> 0.5 Million Challenge and 

Response Pairs (CRPs).  To generate a single key, only a 

limited number of response bits (<<0.5M) are used, and the 

attacker does not know the challenges corresponding to 

these response bits.  The advantage of this scheme is that 

no complex error correction is required.  Instead of relying 

on a PUF i.i.d. assumption (as in Index-Based Syndrome), 

a machine learning assumption based on a limited response 

set and uncertain challenge offset is used.  The uncertain 

challenge offset is used to derive the key; the adversary 

does not have precise knowledge of the challenge that maps 

to each response bit, with up to 10 bits uncertainty per 

string of 512 bits in the previous example. 
 

Comparisons.  In the table below, we list different 

assumptions we make about a PUF to derive security for 

each scheme.  Code-Offset is secure if there is sufficient 

min-entropy in the PUF response bits; we want security 

parameter >= n’ – λ (e.g., security parameter = 128 for a 

128-bit key). Index-Based Syndrome is secure if PUF 

output bits can be regarded as independent, for example, 

using disjoint PUF components.  In Index-Based 

Syndrome, having first order bias alone does not affect 

security (unlike Code-Offset even in an i.i.d. setting).  

Syndrome size does not matter from a security proof 

standpoint, but requires response independence.  For 

Pattern Vector, the security framework is based on machine 

learning assumptions given limited amount of information 

available for the adversary, e.g., limited number of 

response bits and uncertainty in challenge offset; as an 

example, we want bits to learn the system >> syndrome 

size, the latter is generally linear and >> security parameter.  

TABLE I.  PUF SECURITY ASSUMPTIONS 

  Assumption Example 

Code Offset Sufficient PUF min-entropy 

security parameter  

>=  

n’ – syndrome size 

Index-Based 

Syndrome 
i.i.d. PUF response bits 

 

security parameter  

>> 

independent manu. var. 

unknowns 

(regardless of syndrome 

size) 

Pattern 

Vector 

PUF resistant to machine 

learning attacks 

(given limited response bits, 

challenge offset uncertainty) 

bits needed to learn sys 

>> 

syndrome size 

(syndrome size >> 

security parameter) 

Reliability Properties 
Table II contains a summary of published results on PUF 

reliability associated with PUF Key Generation.  The Code-

Offset representative available in open literature that tested 

the most extreme environmental conditions corresponds to 

[10].   Under the assumption that an error correction 

scheme can correct up to a quarter of the PUF bits being 

noisy (flipped) as reported in [10], there is a stability safety 

margin of 24% in that 24% of the error correction 

capability remain unused under the Temperature and the 

Voltage ranges shown in the first row of Table II.  The test 

comprised of 68 PUF devices (4 PUFs on each of 17 

distinct devices).  The Index-Based Syndrome 

representative is [16], which contains V/T corner testings, 

and has a stability safety margin in excess of 50%, 



 

attributed to the high coding gains inherent in Index-Based 

Syndrome, prior to any conventional error correction 

techniques being applied.  The test set comprised of 133 

PUF devices (7 PUFs on each of 19 distinct devices).   

Since aging results were not presented in this particular 

publication, accelerated aging results were obtained from 

[15] which also used Index-Based Syndrome. For the 

Pattern Vector representative [8], only temperature testing 

was performed and with better than parts per billion (ppb) 

reliability.  The scheme works reliably so long as normal 

PUF authentication, based on a Hamming threshold value, 

works reliably.  Test set comprised of 10 PUF devices (1 

PUF on each of 10 distinct devices).        
   

TABLE II.  PUF KEY GENERATION ENVIRONMENTAL 

TESTING AND RELIABILITY 

  Temperature 
Volt-

age 

V/T 

Corners 

 

Aging 
Reliability 

Code 

Offset 
-40ºC to 80ºC ±10% n/a 

4.7 

equivalent 

years @ 

40oC 

24% 

Stability 

Margin 

Index-

Based 

Synd. 

-55ºC to 

125ºC 
±20% 4-corners 

20 

equivalent 

years @ 

55oC 

50%+ 

Stability 

Margin 

Pattern 

Vector 
-25ºC to 85ºC n/a n/a n/a << 1 ppb 

Conclusions 
Since the first PUF Key Generation architecture was 

proposed in the context of a secure processor [11], several 

PUF Key Generation implementations have been realized 

and several Syndrome coding schemes developed to 

address the dual mandate of security and reliability.  We 

have categorized the approaches and summarized the 

security assumptions.  The reliability results published to 

date show that each of the approaches is capable of 

achieving fairly high level of reliability under a relatively 

wide range of conditions.  Future work includes further 

elaboration of security assumptions and threat models, and 

derivation of possibly improved Syndrome coding 

schemes. 
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