
Security Challenges and Opportunities in Adaptive
and Reconfigurable Hardware

Victor Costan and Srinivas Devadas
Computer Science and Artificial Intelligence Laboratory (CSAIL)

Massachusetts Institute of Technology, Cambridge, MA
victor@costan.us, devadas@csail.mit.edu

Abstract—We present a novel approach to building hardware
support for providing strong security guarantees for computa-
tions running in the cloud (shared hardware in massive data
centers), while maintaining the high performance and low cost
that make cloud computing attractive in the first place. We
propose augmenting regular cloud servers with a Trusted Com-
putation Base (TCB) that can securely perform high-performance
computations. Our TCB achieves cost savings by spreading
functionality across two paired chips. We show that making
a Field-Programmable Gate Array (FPGA) a part of the TCB
benefits security and performance, and we explore a new method
for defending the computation inside the TCB against side-
channel attacks.

I. INTRODUCTION

Cloud computing can bring great cost reductions by leverag-
ing economies of scale inherent in data center setup. However,
the security implications of executing sensitive computations
on shared hardware make cloud computing infeasible for
applications such as medical and financial data processing.

Current “cloud” infrastructures are not secure because:
• The cloud provider has access to all the computation and

data on a cloud server.
• A successful hypervisor attack can expose all computa-

tion and data to other parties sharing the hardware.
• Information leaked via side channels is available to the

cloud provider, as well as to any party sharing the hard-
ware. For example, [1] outlines how shared caches can
be exploited to extract RSA and AES keys in Amazon’s
cloud.

We propose solving the challenges above with specially
designed hardware, packaged as an add-on for cloud servers
(figure 1), like nVidia’s Tesla GPU cards. Cloud applications
would separate the computation logic, targeting the secure
hardware, from the code responsible for I/O and coordina-
tion, which runs on untrusted server hardware, such as x86
processors. This seems like an extra burden for developers,
but we note that logical separation of I/O from computation
is a prerequisite for their overlapped execution, which is
in turn necessary for achieving high-performance in regular
applications [2]. Section II provides an example of logic
separation for the case of secure cloud storage.

This paper introduces three major insights for implementing
the secure add-on. Section III shows how to reduce the
TCB’s cost by splitting its functionality into a P (processing)
chip with high processing power and volatile memory, and

CPU

RAM

QPI / FSB

Southbridge

S chip
USB

Cloud clients
Ethernet card

P chip

PCI-X x16

Fig. 1. Cloud server augmented with a TCB. TCB components (the S and
P chips) have double borders. Everything else is untrusted.

an S (state) chip with secure NVRAM. Section IV argues
that FPGAs are excellent candidates for the P chip, and
discusses using their reconfiguration ability for secure high-
performance computation. Section V explores a method of
protecting against timing and power side-channel attacks that
is applicable to many classes of sensitve computation.

A. Chain of Trust

We provide an overview of the chain of trust used to assert
the security of computation peformed on a remote server. We
closely follow the Trusted Platform Model (TPM) [3].

At manufacturing, the S chip generates an endorsement key
pair (PubEK,PrivEK). PubEK is signed by the manufacturer,
producing the chip’s endorsement certificate (ECert). The
manufacturer acts as a CA, and its certificate is a promise
that the associated PrivEK will not be revealed outside the
S − P chip pair. (The pairing of these chips is a subject of
Section III.)

When the cloud server connects to a client, it presents its
ECert. The client software checks the CA key against its
trusted list, and uses PubEK to encrypt a session key, which
becomes the shared secret between the client and the trusted
hardware on the server.

II. EXAMPLE: SECURE CLOUD STORAGE

This section provides an example of breaking up an ap-
plication into a component that runs on trusted hardware,
and a component that runs on untrusted hardware. We focus
on implementing a single application, secure storage, but the
approach presented here generalizes to other high-performance
applications.

For brevity, we assume a single-server system that exposes
a single large virtual disk to all its clients via a block-
oriented API. Our simplifications are acceptable because all
well-known file systems are layered on top of block devices.

We discuss the implications of providing integrity guarantees,
focusing on freshness (reads reflect the most recent write),
which is impossible to do with untrusted software alone [4].

The storage application runs controller code responsible
for network communication, disk I/O, and scheduling on
an untrusted platform, and relies on the TCB to guarantee
integrity and freshness.

h1234 = h(h12||h34)

h12 = h(h1||h2)

h1 = h(B1)

B1

h2 = h(B2)

B2

h34 = h(h3||h4)

h3 = h(B3)

B3

h4 = h(B4)

B4

Root node

Fig. 2. Merkle Tree for a disk with 4 blocks. Tree leaves contain the
cryptographic hashes of corresponding blocks. Inner nodes hash the contents
of their children. The root node’s hash can be used to recursively verify the
entire tree, and its content is stored in the P and S chips.

The system guarantees integrity and freshness by maintain-
ing a Merkle tree [5] (figure 2) over the data blocks. The tree
content updates are computed by the P chip. The tree’s root
hash is stored in the P chip’s SRAM during a power cycle, and
in the S chip across power cycles. For performance, the P chip
also caches tree nodes. The caching strategy is implemented
in untrusted software running on the server OS.

The P chip is trusted to verify the clients’ read operations
using the Merkle tree, and to update the tree to reflect write op-
erations. The P chip caches tree nodes in its SRAM. The cache
policy is implemented in the controller, and can be changed
quickly to reflect the client applications’ access patterns. This
section describes the cache management protocol and argues
that a malicious controller cannot impact the freshness and
integrity guarantees.

Entry Node Hash Verified Left Right
0 1 cdaf. . . Y Y Y
1 5 a1b2. . . Y N N
2 2 e935. . . Y Y Y
3 4 b54c. . . Y N N
4 7 9348. . . N N N
5 3 71f3. . . Y N N
6 6 bb72. . . N N N

1

2

4

B1

5

B2

3

6

B3

7

B4

Fig. 3. P’s cached view of the Merkle tree. Nodes 6 and 7 are loaded in
the cache, but not verified, so the P chip cannot be used to sign reads for
B3 and B4. It can sign reads for B1 and B2.

The SRAM cache is made up of entries mapping to Merkle

tree nodes (figure 3). An entry contains the node number1, the
hash stored in the node, and the following status bits:

• V is set if the node’s hash has been verified to be correct.
• L and R are set if the node’s left, respectively, right child

is loaded in the cache and its V line is correct.
To guarantee freshness, the P chip ensures that a node is

stored in the cache at most once. To achieve this without a
full search on each insertion, we don’t allow evicting nodes
whose children are cached. L and R are used to enforce this
restriction.

Therefore, the controller loads an entry by providing the
new node number and hash, as well as the entry holding the
parent of the node being evicted. The P chip uses this to clear
the parent’s L or R flag, if the evicted node was verified. After
a load, the controller verifies an entry by providing numbers
for the entries holding the node’s parent and sibling. The P
chip verifies that the parent’s V flag is already set, and that
L and R flags match the children’s V flags, to avoid duplicate
entries for a node. If verification succeeds, the V flag is set on
the children entries, and L and R are set on the parent entry.

Clients are assured of the correctness of their operations by
HMACs produced by the P chip. For a read, the controller
supplies the P chip with the entry holding the block’s Merkle
leaf. The P chip checks that the entry has V set, and pro-
duces an HMAC over the block number, block hash, and a
client-generated nonce. When writing a block, the controller
provides the entry numbers for all the nodes on the path from
the block’s Merkle leaf to the root, as well as the entries for
the nodes’ siblings. The P chip checks that all the entries are
verified, and verifies that the nodes make a path from the leaf
to the root. If the checks (which are critical to the freshness
guarantee) succeed, the P chip updates the cache entries on
the update path, and outputs the new hashes, along with a
HMAC acknowledging the write. The controller updates the
on-disk copy of the Merkle tree, and uses the HMAC to assure
the client of the write’s durability.

III. TWO CHIPS ARE CHEAPER THAN ONE

Straightforward approaches to securing high-performance
computation that put a CPU and NVRAM in one secure
package yield impractical solutions because feature size in
non-volatile memory designs (currently 130nm) trails feature
size in high-performance CPU designs (currently 32nm). Com-
bining the two designs on a single die calls for a more complex
manufacturing process and reduces wafer yield, resulting in
unreasonably high per-unit costs.

We avoid this problem by splitting up the TCB into two
chips. The ideal P (processing) chip (figure 4) is a tamper-
proof FPGA with small feature size and no NVRAM, and
section IV argues for the merit of this solution. For some
applications, the P chip might be a high-speed multi-core CPU
augmented with a cryptographic engine and a secure enclosure.
The S (state) chip (figure 5) is a resource-constrained secure
processor with NVRAM under a large feature size, such

1according to the BFS-traversal order, starting at 1 for the root

Command Buffers PCI-X Transceiver Result Buffers

RSA Engine PUF AES Engine

FPGA Configurator Supervisor Logic Circuit Verifier

User Circuit User Circuit User Circuit

Fig. 4. The P chip does heavy-weight computations. It doesn’t have
NVRAM, and cannot maintain state across power cycles.

NVRAM USB Transceiver I/O Buffers

AES Engine RSA Key Generator Embedded CPU

Fig. 5. The S chip maintains state across power cycles. It has a few kB of
RAM and NVRAM, and a 2 MIPS CPU.

as a smart-card chip. The S chip is only responsible for
holding state across power cycles, and is not on the high-
performance computing path. We use a Physical Unclonable
Function (PUF) [6] to bind the P chip to the S chip.

The S chip stores the system state across reboots, and loads
it into the P chip when the cloud server is powered up.
We achieve secure communication (guaranteed privacy and
integrity) over an untrusted channel by pairing the S chip with
the P chip during manufacturing. This pairing is essential to
the security of the system – so far, most attacks on the TPM
exploit the untrusted bus between the TPM and the CPU.

The pairing assumes a PUF on the P chip, which generates
a symmetric encryption key. The PUF requires a syndrome
(error correction information) to reliably re-generate the sym-
metric key. The syndrome doesn’t leak information about the
key [7] [8], so it can be stored in plain text, as long as the
boot process checks its integrity.

The pairing is done at manufacturing time, as follows:
1) P chip queries its PUF to generate a symmetric key SK

and a syndrome ECC.
2) S chip generates (PrivEK,PubEK), outputs PubEK.
3) Manufacturer signs PubEK, generates ECert, and sends

it to the P chip.
4) P chip verifies the manufacturer’s CA key in ECert

against the key in its ROM, and outputs SK encrypted
with PubEK, ECC, and its HMAC [9] HMACSK(ECC).

5) Manufacturer provides the P chip output to the S chip
and stores the ECC.

6) S chip decrypts SK with PrivEK, stores it in NVRAM,
and uses it to verify the HMAC of ECC. Upon success,
it outputs a signature σPrivEK(ECC).

7) Manufacturer packages the S and P chips, with the
public state ECert (containing PubEK), ECC, and
σPrivEK(ECC).

The manufacturing process requires integrity guarantees in
the channel between the S chip and the certificate issuer,
similar to the TPM model. The channel between the S
chip and the P chip is completely untrusted. For packaging
convenience, the public state can be stored in the S chip’s
NVRAM, even though it does not require security guarantees.

When the cloud server boots, the system state is transmitted
from the S chip to the P chip according to the following
process:

1) Server OS presents the public state ECC, σPrivEK(ECC),
and ECert to the P chip.

2) P chip checks the manufacturer key in ECert against the
key in its ROM, and verifies ECC against σPrivEK(ECC)
using PubEK in ECert. Upon success, ECC is fed into
the PUF to recover SK.

3) P chip generates a boot nonce n, outputs n and its
HMAC HMACSK(n).

4) Server OS provides the P chip’s output to the S chip.
5) S chip verifies the HMAC, then outputs the system state

s (typically a cryptographic hash), PrivEK encrypted
under SK, and HMACSK(s||n).

6) Server OS provides the S chip’s output to the P chip,
together with ECert. The P chip checks that PrivEK
corresponds to PubEK, and verifies the HMAC.

7) P chip decrypts PrivEK using SK, and loads the system
state s in its RAM.

The above process is secure against any attack on the server
software that controls the communication channel between the
P chip and the S chip.

IV. SECURING HIGH-PERFORMANCE COMPUTATION

In this section we argue that, given the right software infras-
tructure, FPGAs are better suited for secure high-performance
cloud computing than secure processors such as [10] or GPUs,
and we propose FPGAs as excellent candidates for P chips.

Today’s cloud architectures use Intel x86 processors, which
lets developers reuse current code and toolchains. However,
general-purpose CPUs were not designed for multi-tenancy,
whose security requirements clash with performance enhance-
ments such as cache sharing. Graphical Processing Units
(GPUs) are gaining adoption for cloud computing, due to
the speed and power efficiency advantages that they bring to
massively parallel computations. GPUs were not designed for
cloud environments either, and virtualization attempts seem
to be limited to time multiplexing [11]. FPGAs offer more
flexibility than GPUs, and the flexibility can be used to obtain a
better power-performance ratio [12]. Furthermore, FPGAs can
support space-sharing, in addition to time-sharing, via partial
reconfiguration using the methods in [13].

FPGAs can be used in P chips by following the Trusted
Execution Module (TEM) [14] architecture. Computation with
high security requirements or with a high degree of parallelism
would be entrusted to the P chip. The example in section
II uses the P chip for SHA-1 hashing, which has a very
efficient FPGA implementation. The computation, expressed
as a partial FPGA personality matrix, and the input data are
partially encrypted with the S − P chip pair’s PubEK, which
provides privacy and integrity guarantees where needed (see
[14] for details). In addition to the FPGA, the P chip’s secure
enclosure contains a supervisor controller, with the same role
as Xilinx’s ACE controller and the TEM’s firmware. The
supervisor controller is connected to the off-chip bus, and

contains cryptographic engines and logic for verifying the in-
tegrity of a partially encrypted computation package, ensuring
that the computation circuit specified by the personality matrix
is verifiably secure, and deploying the circuit to a part of
the FPGA. After the computation completes, the supervisor
moves the computation’s result off-chip and reclaims the
FPGA resources. To simplify allocation, FPGA resources can
be equally divided into a number of discrete chunks which
would be atomically allocated to circuits, similarly to the way
that Amazon cloud users must specify their resource usage
when reserving Virtual Machines.

The main challenge in the supervisor controller, from a
security standpoint, is ensuring that circuits sharing the FPGA
cannot perform side-channel attacks against each other, or
against the super controller in the same chip package. We
propose the software approach of constraining the circuits
allowed by the server to a subset than can be verified to be
secure by a straightforward algorithm that does not unduly
increase TCB complexity. A key observation is that, assuming
two FPGA circuits are completely disjoint, the only way
one of them can learn side-channel information about the
other is by measuring timing variations induced by heat
dissipation. Therefore, the constraints for verifiably secure
circuits should forbid any constructions that may be used for
such measurements. For example, a method for computing the
maximum clock speed for a circuit consisting of combinational
sub-circuits and registers can be used to verify that the circuit
will operate without dependencies at a certain clock speed.
The circuit compiler can be required to include additional
information to help verification, such as a partition of the
circuit into combinational sub-circuits and registers, together
with timing specifications for each sub-circuit. It is helpful to
notice that the area allocated to a circuit is available during the
verification process, and can be used to temporarily deploy a
high-speed processor, or any other construction that is useful
to the verification algorithm.

V. MITIGATING SIDE-CHANNEL ATTACKS

The previous section discusses side-channel attacks that
result out of multiplexing a FPGA chip. This section tackles
more traditional attacks, performed outside the FPGA chip.
We focus on timing and power analysis attacks, as they can be
performed by malicious cloud tenants who might compromise
the server hypervisor and gain access to the bus between the
CPU and the FPGA, and to temperature sensors near the FPGA
chip. We observe that current methods for eliminating side-
channel information, surveyed below, downgrade a circuit’s
performance on any input to the performance of the worst-
case input. We claim that it is possible to reduce the overhead
of protecting against side-channel attacks, while maintaining
strong security guarantees, by noticing that it is sufficient to
have circuit power and time consumption be indistinguishable
from the power and time consumption for random input, for
a computationally bound adversary.

Power analysis became popular after the introduction of
Differential Power Analysis (DPA) [15] [16], which provides

more insight into a computation than timing attacks such as
[17]. Sound techniques for thwarting DPA include specially
designed logic gates that consume a constant amount of power
per cycle [18], and decoupling the computation circuit from
the power source via a circuit that hides the real power
consumption [19]. “Data whitening”, described in [16], is a
popular heuristic approach for obfuscating the power signal by
peforming most of the computations on transformed versions
of the secret data (e.g., XORing the data with a random
number). These techniques add overheads of 2-4x to the
circuit’s area and throughput.

We assume a side-channel attack model similar to [20], gen-
eralized to all kinds of side-channels. Side-channel information
is leaked by consuming a resource such as time and power,
or by emitting an undesirable byproduct, such as radiation,
noise, or heat. We focus on resource consumption, and note
that emissions can be modeled in a similar manner. We further
assume that a sensitive operation consists of a sequence of
not necessarily identical rounds, where each round’s resource
consumption depends on public input data and a subset of
the secret data. The attacker’s knowledge of the algorithm
and implementation allows her to produce tuples of inputs
that cause the circuit’s consumption to vary across a set of
possibilities for one or a few rounds, while the consumption
across all the other rounds is identical for all the inputs in the
tuple. Mapping inputs in the tuple to the specific behaviors
reveals partial information about the secret, which is fed into
further attacks. For example, [21] uses the fact that the modular
exponentiation in RSA private-key decryption only involves a
multiplication for rounds where the corresponding bit in the
private exponent is set to mount a timing attack, and [22]
exploits differences in the power usage of a multiplier to infer
correlations between an AES key and the ciphertext.

Assuming an optimized implementation, reducing resource
consumption would be infeasible, so the only method for
removing information from the resource consumption signal
is to spend additional resources. We explore adaptive circuits,
where the amount of spent resources can be modified dy-
namically. Time can be adaptively spent by storing results in
intermediate buffers before releasing them off-chip, and by
reducing the clock speed or stoping computation altogether
for short periods of time. Power can be adaptively spent by
the construction in [19], by adjusting the target value for the
capacitator discharge cycle. Our key insight is that a side-
channel observer cannot learn any information as long as each
round’s resource consumption probability distribution is com-
putationally indistinguishable from the probability distribution
of running that specific round of computation on random
inputs. Current side-channel defenses attempt to guarantee that
resource consumption is independent of the input, which is
a stronger form of the requirement above, as it essentially
makes the consumption probability distribution identical for
all inputs.

We propose an add-on module that interfaces between the
circuit performing sensitive information and the outside world,
with the ability to spend a variable amount of resources (adap-

tive power sink, output buffers and clock control). The module
has a controller for coordinating resource expenditure, which
is pre-loaded with average-case probability distributions for
power and time consumption of the sensitive circuit, and aims
to exhibit a resource consumption profile that matches that
probability, multiplied by a constant that accounts for over-
head. For each round, the controller invokes a random number
generator (RNG) to sample the pre-programmed probability
distribution, which decides the target power consumption. If
the computation circuit’s consumption is below the target level,
the controller can accumulate resources into a deposit of slack
resources, which can be depleted to make up for situations
when the circuit’s consumption is above the target level.

It is important to assure ourselves that an attacker cannot
generate inputs that cause extreme resource consumption, such
as inducing a worst-case consumption for all the rounds in
the computation. Informally, an attacker that is able to put
together such an input already has the secret information that
the side-channel attack is intended to reveal. Attackers with no
prior information on the secret can generate tuples of inputs
as described above but, given a single generated input, the
attacker should not be able to assert that the input will result
in significantly different overall power consumption, compared
to random input. Therefore, we can reasonably model per-
round resource consumption as independent random variables,
and reason that for a large number of rounds, their aggregate
will resemble a normal distribution, which yields good bounds
on the expected size of the deposit of slack resources that
the controller will have to build up. This approximation only
works for a large number of rounds, so the controller will
exhibit high resource consumption in the first few rounds, to
build up the deposits of slack resources.

VI. CONCLUSION

This paper introduces a new approach to building a low-cost
Trusted Computing Base (TCB) for high-performance cloud
computing, by pairing a chip with high processing power (the
P chip) with a low-power secure processor with NVRAM
that can carry state across power cycles (the S chip), such as
a smartcard. We have shown a mechanism for securely pairing
the chips, so that a P chip will always retrieve its state from the
same S chip after booting. We argued that the ideal plaform for
the P chip is an FPGA, as it can securely host circuits from
mutually distrusting tenants. We explored a generic method
for protecting the computations inside a P chip against side-
channel attacks at lower costs than traditional methods by
producing a time and power consumption signature reflecting
the average-case input.

ACKNOWLEDGEMENTS

This work was supported in part by Northrop-Grumman and
in part by Quanta corporation. We thank Eran Tromer and
Nickolai Zeldovich for useful discussions during the course
of this work.

REFERENCES

[1] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get
off of my cloud: exploring information leakage in third-party compute
clouds,” in Proceedings of the 16th ACM conference on Computer and
communications security. ACM, 2009, pp. 199–212.

[2] N. Zeldovich, A. Yip, F. Dabek, R. Morris, D. Mazieres, and
F. Kaashoek, “Multiprocessor support for event-driven programs,” in
Proceedings of the USENIX 2003 Annual Technical Conference, 2003,
pp. 239–252.

[3] Trusted Computing Group, “Trusted Platform Module (TPM) Specifica-
tions,” https://www.trustedcomputinggroup.org/specs/TPM/.

[4] J. Li, M. Krohn, D. Mazières, and D. Shasha, “Secure untrusted data
repository (SUNDR),” Proceedings of the 6th conference on Symposium
on Opearting Systems Design & Implementation-Volume 6 table of
contents, pp. 9–9, 2004.

[5] R. Merkle, “A certified digital signature,” in manuscript, 1979.
[6] G. E. Suh and S. Devadas, “Physical unclonable functions for device

authentication and secret key generation,” in Proceedings of the 44th
Conference on Design Automation, 2007.

[7] Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data,” in Advances in
Cryptology - Eurocrypt 2004, 2004.

[8] M.-D. M. Yu and S. Devadas, “Secure and robust error correction for
physical unclonable functions,” IEEE Design and Test of Computers,
vol. 27, pp. 48–65, 2010.

[9] H. Krawczyk, M. Bellare, and R. Canetti, “RFC 2104: HMAC: Keyed-
Hashing for Message Authentication,” Feb. 1997.

[10] G. Suh, C. O’Donnell, and S. Devadas, “AEGIS: A single-chip secure
processor,” Information Security Technical Report, vol. 10, no. 2, pp.
63–73, 2005.

[11] V. Gupta, A. Gavrilovska, K. Schwan, H. Kharche, N. Tolia, V. Talwar,
and P. Ranganathan, “Gvim: Gpu-accelerated virtual machines,” in
Proceedings of the 3rd ACM Workshop on System-level Virtualization
for High Performance Computing. ACM, 2009, pp. 17–24.

[12] S. Che, J. Li, J. Sheaffer, K. Skadron, and J. Lach, “Accelerating
compute-intensive applications with GPUs and FPGAs,” in IEEE Sym-
posium on Application-Specific Processors. IEEE, 2008.

[13] O. Diessel, H. ElGindy, M. Middendorf, H. Schmeck, and B. Schmidt,
“Dynamic scheduling of tasks on partially reconfigurable FPGAs,” in
Computers and Digital Techniques, IEE Proceedings-, vol. 147, no. 3.
IET, 2000, pp. 181–188.

[14] V. Costan, L. F. G. Sarmenta, M. van Dijk, and S. Devadas, “The trusted
execution module: Commodity general-purpose trusted computing,” in
CARDIS, 2008.

[15] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances
in CryptologyCRYPTO99. Springer, 1999, pp. 789–789.

[16] T. Messerges, “Using second-order power analysis to attack DPA re-
sistant software,” in Cryptographic Hardware and Embedded System-
sCHES 2000. Springer, 2000, pp. 27–78.

[17] P. Kocher, “Timing Attacks on Diffie-Helman, RSA, DSS and Other
Systems,” in Proceedings of Advances in Cryptology–Crypto, vol. 96,
1996, p. 104.

[18] K. Tiri and I. Verbauwhede, “A logic level design methodology for a
secure DPA resistant ASIC or FPGA implementation,” in Proceedings
of the conference on Design, automation and test in Europe-Volume 1.
IEEE Computer Society, 2004, p. 10246.

[19] C. Tokunaga and D. Blaauw, “Securing Encryption Systems With
a Switched Capacitor Current Equalizer,” Solid-State Circuits, IEEE
Journal of, vol. 45, no. 1, pp. 23–31, 2010.

[20] M. Joye, P. Paillier, and B. Schoenmakers, “On second-order differential
power analysis,” Cryptographic Hardware and Embedded Systems–
CHES 2005, pp. 293–308, 2005.

[21] D. Brumley and D. Boneh, “Remote timing attacks are practical,” in
Proceedings of the 12th conference on USENIX Security Symposium-
Volume 12. USENIX Association, 2003, pp. 1–1.

[22] S. Ors, F. Gurkaynak, E. Oswald, and B. Preneel, “Power-Analysis
Attack on an ASIC AES implementation,” in Information Technology:
Coding and Computing, 2004. Proceedings. ITCC 2004. International
Conference on, vol. 2. IEEE, 2004, pp. 546–552.

