
LiTM: A Lightweight Deterministic Software
Transactional Memory System

Yu Xia, Xiangyao Yu, William Moses, Julian Shun, Srinivas Devadas
MIT CSAIL

{yuxia,yxy,wmoses,jshun,devadas}@mit.edu

Abstract
Deterministic software transactional memory (STM) is a use-
ful programming model for writing parallel codes, as it im-
proves programmability (by supporting transactions) and de-
buggability (by supporting determinism). This paper presents
LiTM, a new deterministic STM system that achieves both
simplicity and efficiency at the same time. LiTM implements
the deterministic reservations framework of Blelloch et al.,
but without requiring the programmer to understand the in-
ternals of the algorithm. Instead, the programmer writes the
program in a transactional fashion and LiTM manages all data
conflicts and automatically achieves deterministic parallelism.
Our experiments on six benchmarks show that LiTM outper-
forms the state-of-the-art framework Galois by up to 5.8× on
a 40-core machine.

Keywords Deterministic Parallelism, Software Transactional
Memory

1 Introduction
A transaction is a sequence of operations that must succeed or
fail as a whole. Transactions offer a powerful abstraction for
parallel programming as they enable programmers to wrap
sequences of operations in regions that execute atomically,
and not have to worry about concurrency issues. Software and
hardware transactional memory techniques are an active topic
of research, where the goal is to provide programmability,
while maintaining good performance and scalability. Transac-
tions are also used in database management systems, where
they bring useful and easy-to-understand ACID properties
(Atomicity, Consistency, Isolation, and Durability).

One disadvantage of transactions, however, is the nature
of non-determinism — even the strongest isolation level, se-
rializability, allows transactions to be arbitrarily interleaved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PMAM’19 , February 17, 2019, Washington, DC, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6290-0/19/02. . . $15.00
https://doi.org/10.1145/3303084.3309487

This makes it challenging to reason about the correctness of
the parallel program, as well as making debugging difficult.

Deterministic parallelism [2, 18, 19] is a promising tech-
nique that can largely resolve this issue. A parallel program is
considered deterministic if each execution produces identical
results, regardless of platform- or execution-specific features
such as the number of processors being used or the scheduling
of threads. Determinism makes programming significantly
easier since a programmer only needs to consider a single
execution order instead of all possible interleavings of paral-
lel code. Debuggability is also improved since a bug can be
reproduced by simply re-executing the program, effectively
solving the notorious Heisenbug [7] issue where a bug man-
ifests itself differently in multiple executions of the same
program.

Supporting determinism in transaction processing has been
an active research area. Previous work has proposed to use de-
terminism to improve debuggability of STM systems [12, 13,
21]. These previous approaches, however, either suffer from
scalability bottlenecks [13, 21] or incur performance overhead
in conflict resolution [12]. For example in Galois, the state-of-
the-art deterministic STM, performance is compromised by
as much as 6× when determinism is turned on [12]. It is not
surprising that a deterministic program performs worse than
a non-deterministic one due to having a more constrained
execution. However, the dramatic performance overhead can
deter programmers from writing and using deterministic pro-
grams. Therefore, improving the performance of deterministic
transaction processing is crucial for its widespread adoption.

In this paper we design LiTM, a deterministic STM system
for multicores.1 LiTM follows the deterministic reservations
paradigm proposed by Blelloch et al. [1], but provides a more
convenient and natural interface. In contrast to [1], LiTM
hides the algorithm completely from the programmer, who
only needs to provide the content of the transactions instead
of analyzing the algorithms and supplying the correspond-
ing functions to handle the data conflicts manually. LiTM
takes as input a set of transactions, automatically groups them
into batches, analyzes their access patterns, detects conflicts,
applies changes, and re-executes aborted transactions in a
way that is transparent to the programmer. We also explore
variants of LiTM that can reduce memory usage.

1We have open-sourced the framework at https://github.com/yuxiamit/
LiTM.

1

https://doi.org/10.1145/3303084.3309487
https://github.com/yuxiamit/LiTM
https://github.com/yuxiamit/LiTM

PMAM’19 , February 17, 2019, Washington, DC, USA Y. Xia, X. Yu, W. Moses, J. Shun, and S. Devadas

Our evaluation on a 40-core machine demonstrates that
LiTM can achieve up to 9.4× performance improvement over
the sequential versions of the algorithms. Compared to the
state-of-the-art deterministic STM framework Galois [12],
LiTM achieves up to 5.8× speedup. Compared to hand-optimized
parallel baselines [14], which require significantly more effort
to program, LiTM incurs a modest overhead of at most 3×.

This paper makes the following contributions:

• We design the LiTM deterministic STM system, which
provides a simple yet powerful abstraction for program-
mers to write highly efficient parallel programs.

• We implement six applications in LiTM: maximal inde-
pendent set, maximal matching, spanning forest, PageR-
ank, random permutation, and list contraction.

• We compare LiTM’s performance against hand-optimized
serial and parallel baselines, including Galois, a state-
of-the-art deterministic parallel programming frame-
work. We show that LiTM can outperform Galois by
up to 5.8×, and incurs modest overhead over the hand-
optimized baselines.

The rest of the paper is organized as follows. Section 2
discusses the background and motivation for LiTM. Section 3
presents the protocol of LiTM. In Section 4, we evaluate LiTM
on six applications and compare them against existing im-
plementations. Finally, we present related work in Section 5,
describe avenues for future work in Section 6, and conclude
the paper in Section 7.

2 Background
In this section, we discuss deterministic reservations, the tech-
nique that motivates LiTM. We also discuss the limitations of
the protocol, which LiTM seeks to resolve.
2.1 Deterministic Reservations
Deterministic reservations [1] is a framework to write inter-
nally deterministic parallel programs comprised of multiple
iterates. It guarantees that the program outcome is identical
even when the iterates are executed in different orders. The
key technique behind the framework is a way to determin-
istically resolve conflicts based on the predefined priorities
of iterates, while allowing them to be executed in parallel. If
there are any conflicts between iterates, the higher priority it-
erate takes precedence. This is achieved by having each iterate
reserve its accessed data elements by writing its own priority
into a reservation array only when its priority is higher than
the current iterate reserving on the same data. Regardless
of the order in which a data element is reserved, the iterate
with the highest priority will reserve it in the end. Random
numbers used in the programs must be deterministic across
multiple runs [10].

For efficiency, the deterministic reservations framework
orders the iterates by their priorities and processes them in
multiple batches. In each batch, the framework first runs a
reserve() function for each iterate in the batch in parallel.

Algorithm 1: MIS using LiTM.
1 enum {InMIS, NotInMIS} States;
2 DVector Flags = {NotInMIS, NotInMIS, . . . , NotInMIS} # size n
3 Function T.runTxn()
4 for ngh in T.vertex.neighbors do
5 if Flags[ngh] == InMIS then
6 Flags[T.vertex] = NotInMIS
7 return

8 Flags[T.vertex] = InMIS

Algorithm 2: MIS using deterministic reserva-
tions.

1 enum {Undecided, InMIS, NotInMIS} States
2 char Flags[] = {Undecided, Undecided, ..., Undecided} # size n
3 int reservation[] = {∞,∞, ...,∞} # size n
4 Function reserve(i)
5 for ngh in vertices[i].neighbors do
6 if Flags[ngh] == InMIS then
7 Flags[i] = NotInMIS
8 return false # bypass the commit phase

9 # writeMin(&x , i) atomically sets x to min(x , i)
10 writeMin(&reservation[i], i)
11 return true

12 Function commit(i) # returns whether the iterate commits
13 for ngh in vertices[i].neighbors do
14 if (Flags[ngh] == Undecided and reservation[ngh] < i)

or Flags[ngh] == InMIS then
15 reservation[i] = ∞

16 return false

17 Flags[i] = InMIS
18 return true

It reserves all of the data elements that the iterate accesses.
Then, in parallel the framework runs a commit() function for
each iterate to check whether it has successfully reserved all
elements, and if so, applies the iterate’s changes to shared
memory, and otherwise, moves the iterate to the next batch
and re-processes it later. Inside these two functions, data
conflicts are handled manually by the programmer. The algo-
rithm continues processing iterates in batches until no more
remain. It has been shown that deterministic reservations
can achieve very competitive performance compared to other
approaches [1].
2.2 Example on Maximal Independent Set
We use maximal independent set (MIS) as an example appli-
cation to demonstrate how deterministic reservations works
and also to point out its limitations.

In a graph, an independent set is a set of vertices with no
edge connecting any pair of them. A maximal independent
set is an independent set such that if any other vertex joins
the set, independence is violated.

Algorithm 1 shows how MIS can be implemented using
transactions (this is also the code to implement MIS in LiTM).
Initially, all vertices are assigned to not be in the MIS using

2

PMAM’19 , February 17, 2019, Washington, DC, USA

the NotInMIS flag (line 2). For each vertex, the runTxn()
function is executed. If any neighbor of the vertex is already
in the MIS (lines 4-5), by definition, the current vertex cannot
be selected in the set, and hence the transaction returns leaving
the vertex out of the MIS (line 6–7). Otherwise, the current
vertex is added to the MIS on line 8 with the InMIS flag.

To implement this application in the deterministic reser-
vations framework, a programmer writes two functions, re-
serve() and commit(), as shown in Algorithm 2.2 Both func-
tions take the iterate number i as input. The iterate uses i as
its priority, with a smaller value being higher priority. Ini-
tially, all vertices are given an undecided status (line 2), and
the memory locations for performing reservations are initial-
ized to ∞ (line 3). In the reserve function, if any neighbor of
the vertex of interest has been selected, the current vertex is
marked as not in the MIS (NotInMIS) and the function returns
and tells the framework to bypass the commit phase (lines
5–8). Otherwise, the current vertex might be in the set and
is therefore reserved using the writeMin() function, which
atomically updates reservation[i] with i if its previous value
is greater than i (line 10).

In the commit function, if any neighbor of the vertex is in
the MIS (InMIS), or undecided (Undecided) but reserved by a
higher-priority transaction, the reservation is cleared and the
current transaction has to abort (i.e., return false) in this batch
(lines 13–16). Otherwise, the vertex is marked as InMIS and
the transaction commits (lines 17–18).

LiTM inherits the same spirit of processing iterates in two
phases. However, LiTM does not require the programmer to
write the two functions manually. Instead, the programmer
can provide the sequential logic of the code as a transaction
(i.e., like in Algorithm 1), and LiTM automatically coordi-
nates the transactions. The programmer does not need to deal
with concurrency issues in LiTM. The details of the LiTM
protocol will be discussed in Section 3.

3 The LiTM Protocol
The goal of LiTM is to implement the deterministic reserva-
tions framework without requiring a programmer to provide
the reserve and commit functions. Instead, the programmer
writes a transaction, and LiTM automatically extracts the
codes for reserve and commit functions based on the pro-
vided transaction. We discuss the API of LiTM in Section 3.1,
the data structures used in LiTM in Section 3.2, the detailed
protocol in Sections 3.3 to 3.6, design parameter selection in
Section 3.7, and design variants in Section 3.8.
3.1 API of LiTM
In LiTM, the programmer writes the logic of transactions.
The shared data structures are declared as special types, so
that the system can capture read and write operations to them.

2We note that there is a faster MIS implementation using an algorithm-
specific optimization in [1]. We do not present it here because the optimiza-
tion is not general across applications. Later we will use it as the hand-
optimized baseline in Section 4.

Algorithm 3: The overall logic of LiTM — The
reserve, commit, and cleanup phases are highlighted
in different colors. foreach loops are executed by all
threads in parallel in any order.

1 # txns: list of transactions to be executed.
2 Function run(txns)
3 batch = txns.pop(batch_size)
4 while not batch.empty() do
5 next_batch = []

6 foreach T in batch do
7 T.runTxn()

8 foreach T in batch where T.WS , ∅ do
9 can_commit = run_commit_phase(T)

10 if not can_commit then
11 next_batch.append(T)

12 batch = next_batch +

txns.pop(batch_size - next_batch.size())

Specifically, LiTM supports a special DVector type as a shared
array. In Algorithm 1, for example, the Flags structure has
the type of DVector with its base type as chars. Section 3.4
shows how LiTM handles reads and writes to a DVector.
3.2 Data Structures in LiTM
The following data structures are required in LiTM to perform
the reserve and commit functions.

Lock Table (LT) is used to perform reservations. It is im-
plemented as a hash table, where each entry in LT contains
the priority (which is of integer type) of a transaction that
reserves the data element that maps to the LT entry. The num-
ber of entries in LT does not have to equal the total number
of data elements. If the LT is too small, hash collisions may
occur, leading to more transaction aborts and performance
degradation, but the execution is still functionally correct.

Read and Write Sets (RS and WS). RS (WS) of a trans-
action T keeps the pointers (pointers and values) of each data
element that T reads (writes). These two sets are updated
during the reserve phase and later used in the commit phase
to check whether T has successfully reserved all elements
it has touched so that it is able to commit. For a committed
transaction, the values in the WS are copied to the DVectors.
3.3 Overall logic of LiTM
Algorithm 3 shows the overall logic of LiTM for executing a
set of ordered transactions. The execution contains multiple
batches, each broken down into three separate phases. The
reserve and commit phases correspond to the two functions in
the deterministic reservations algorithm. The cleanup phase
tidies up relevant data structures between different batches.

LiTM begins by taking a prefix of batch_size transactions
as a batch (line 3). If the number of remaining transactions
is less than batch_size, the batch will contain all remaining
transactions. The following three phases are performed as
long as there are still transactions remaining (line 4).

3

PMAM’19 , February 17, 2019, Washington, DC, USA Y. Xia, X. Yu, W. Moses, J. Shun, and S. Devadas

Algorithm 4: The reserve phase — Read and write
operation to the ith element in a DVector.

1 Function DVector.read(T, i)
2 addr = &DVector._values[i]
3 T.RS.insert(addr)
4 if addr in T.WS then
5 return T.WS[addr]

6 return DVector._values[i]

7 Function DVector.write(T, i, val)
8 addr = &DVector._values[i]
9 T.WS.insert(addr, val)

10 # begin atomic section
11 if T.priority < LT[hash(addr)] then
12 # Smaller numbers mean higher priorities
13 LT[hash(addr)] = T.priority

14 # end atomic section

During the reserve phase, the runTxn() function is executed
for each transaction in the batch. This function is the transac-
tion logic defined by the programmer (see Algorithm 1 for an
example). runTxn() performs reservations and updates the RS
and WS. More details will be in Section 3.4.

The commit phase begins after all transactions in the batch
have finished the reserve phase. If a transaction T from the
batch is read-only, i.e., having an empty WS, T can simply
commit as if it happens logically at the beginning of the batch.
Skipping the commit phase for read-only transactions is an
optimization that can reduce the RS storage as well as improve
performance, while retaining determinism. For a read-write
transaction T , the run_commit_phase(T) is executed, which
checks whether T is able to commit or not. More detailed
discussion will be presented in Section 3.5. If T is not able to
commit in the current batch, it is appended to next_batch in a
deterministic way and will be reprocessed in the next batch.

Finally, the cleanup phase assembles the next batch of
transactions by taking the remainder of the current batch, and
another prefix from the input transactions.
3.4 Reserve Phase
During the reserve phase, the runTxn() function of each trans-
action is executed, wherein the DVectors are accessed. For
each read or write operation to a DVector element, the logic
in Algorithm 4 is executed. For a read by transaction T , the
address of the accessed element is inserted into T’s RS (line
3). If it is in T’s WS, the value in the WS is returned (line 5),
otherwise, the value stored in the DVector is returned (line 6).

For a write by transaction T , both the address and the new
value of the element are inserted the T’s WS (line 9). Then
the write is reserved in the LT by atomically replacing the
corresponding entry with T’s priority if the existing priority
is lower (the value is larger) (line 10–14). Updating the value
in the shared data structure is delayed until the commit phase.

Both the read() and write() functions in Algorithm 4 are
deterministic. Each read always returns the value at the start
of the batch (since there are no modifications to shared data

Algorithm 5: The commit phase – implementation
of the run_commit_phase(T) function.

1 Function run_commit_phase(T)
2 # Check whether T successfully reserved all elements
3 for addr in T .RS ∪ T .WS do
4 if T.priority < LT[hash(addr)] then
5 return false

6 # Copy elements in the WS to DVectors
7 for (addr, val) in T.WS do
8 memcpy(addr, &val, sizeof(val))

9 return true

Committed Aborted Unprocessed

current batch

next batch

Figure 1. The deterministic execution of batches of trans-
actions.
structures yet). After the batch, the state of the LT is always
the same, regardless of the order in which the transactions are
scheduled — an element is always reserved by the transaction
with the highest priority that writes to the element.
3.5 Commit Phase
The run_commit_phase(T) function is the main logic in the
commit phase, which is defined in Algorithm 5. LiTM first
checks whether a transaction T has successfully reserved all
of the elements that it accesses during the reserve phase by
comparing T’s priority with the priority stored in the LT. If
any element is reserved by another transaction with a higher
priority, T is not able to commit and has to be moved to
the next batch. If all elements are reserved by T , T’s WS
is copied back to the shared DVectors. The execution in the
commit phase is deterministic because the states in the LT
are deterministic and only the highest-priority transaction can
reserve and hence possibly update a particular element.
3.6 Cleanup Phase
After all transactions within a batch finish the reserve and
commit phases, transactions that cannot commit due to con-
flicts are moved to the next batch. The job of the cleanup
phase is to pack these transactions and obtain more transac-
tions from the input so that the next batch has the desired size.
Figure 1 depicts the idea of the cleanup phase. The additional
transactions are always obtained by taking a prefix of the
unprocessed transactions. Given that the current batch is de-
terministically executed, the next batch is also deterministic.
3.7 Parameter Selection
The parameter space of LiTM mainly consists of the batch
size and the lock table size. A small batch size corresponds

4

PMAM’19 , February 17, 2019, Washington, DC, USA

to less exploitable parallelism during the reserve and commit
phases, and more overhead during the cleanup phase. A large
batch size can better amortize the cost of cleaning up. If the
batch size is too large, however, the maintained local RS
and WS can consume significant space. Large batches may
also increase the conflict rate of transactions within a batch,
increasing the abort rate and hurting performance.

The lock table size has a similar tradeoff. A small lock
table leads to more hash collisions and increased number of
aborts. A large lock table that is too large may not fit in cache
leading more expensive data accesses from main memory.

Fortunately, as we show in Section 4.4, LiTM can achieve
very close to the best performance for a large range of batch
sizes and lock table sizes. Therefore, the programmer does not
need to devote significant effort to tuning these parameters.
3.8 Variants
In this subsection we discuss some of the design choices and
potential variants of LiTM.

Handling of the WS. In Algorithm 4, we used an abstract
set for the write set data structure. A straightforward im-
plementation of a set is an array, which is what we use in
our implementation. However, in transactions that frequently
writes to a few places, an array that always appends values
at the end may cause a hot element to be duplicated, hurting
space efficiency. In this case a small hash table is better as it
ensures that only the latest values are recorded in the WS.

Repeated Execution (RE). In Algorithm 4, LiTM tracks
the entire read set for each transaction to check for conflicts
during the commit phase. However, for transactions that have
a large read set, this can lead to a large memory footprint. An
alternative design is to re-execute the transactions during the
commit phase to re-calculate the read set for conflict detection.
The re-execution checks the reservations on-the-fly. However,
since the system does not know whether it is going to commit
or abort until the end of the transaction, all of the writes have
to be recorded locally instead of to the memory immediately.
So even with repeated execution, LiTM still keeps track of
the write sets. If the transaction aborts, the write set can be
dropped immediately.

Repeated execution also requires Algorithm 5 to be split
into two separate phases. Specifically, the check of read and
write sets (lines 3–5) has to be performed for all transactions
before the write sets are copied to the DVectors (lines 7–8).
This separation is required because a transaction needs to
read the original data during its repeated execution. Updating
the shared DVectors before all transactions finish repeated
execution would pollute the data.

An advantage of the repeated execution variant is its lower
memory footprint. In Section 4.5, we will show the memory
usage of this variant as well as the performance tradeoff.

4 Evaluation
In this section we compare the performance of LiTM with
several baselines using the Problem Based Benchmark Suite

Benchmark Input Files Input Size

Maximal Independent Set random
rMat
3DGrid

n = 108, m = 5 × 108
n = 108, m = 5 × 108
n = 108, m = 3 × 108

Maximal Matching random
rMat
3DGrid

n = 108, m = 5 × 108
n = 108, m = 5 × 108
n = 108, m = 3 × 108

Spanning Forest random
rMat
3DGrid

n = 108, m = 5 × 108
n = 108, m = 5 × 108
n = 108, m = 3 × 108

Pagerank random n = 108, m = 5 × 108

Random Permutation random n = 109

List Contraction random n = 109

Table 1. Benchmarks and Inputs. For the graph inputs, n is
the number of vertices andm is the number of edges.

(PBBS) [14, 15]. The experiments are performed on a single
machine running Ubuntu 14.04 LTS. The machine has four
Intel(R) Xeon(R) E7-4850 CPUs, with a total of 40 cores,
and 128 GB of main memory. We turned off hyper-threading
to get reliable measurements. When reporting the runtime of
experiments, we exclude the time for loading the input files.
4.1 Workloads
We used six benchmarks from PBBS. The benchmark names,
input files, and input sizes are summarized in Table 1. The
three input graphs are generated as follows:

Random Local Graphs (random): We generate random
local graphs where edges are sampled independently with
probability inversely proportional to the difference between
vertex IDs. The average node degree of the graph is set to 5.

Recursive-Matrix Graphs (rMat): The Recursive-Matrix
graphs [3] are synthetic graphs that model a power-law degree
distribution. Again, we set the average degree to 5.

3D Grid Graphs (3DGrid): 3D Grid Graphs are graphs
where n vertices are placed evenly on a 3-dimensional cube
with side-length n1/3, and each vertex has edges to its six
closest neighbors (two in each dimension).
4.2 Baseline Systems
PBBS Implementation. This is a suite of hand-optimized
codes released with the Problem Based Benchmark Suite by
Shun et al. [14, 15]. The PBBS implementations that we com-
pare with are all deterministic. In contrast to the algorithm
example we discussed in Algorithm 2, the PBBS implementa-
tions that we used for evaluation include application-specific
optimizations. They require the programmer to be fully aware
of the problem details as well as be skilled in parallel program-
ming. In contrast, LiTM is easier to use due to its transactional
interface. By being a general framework, we do not expect
LiTM to outperform the PBBS implementations. However,
later we will show that LiTM exhibits only a modest slow-
down compared to the hand-optimized codes.

LiTM Implementation. Our implementation of LiTM is
designed for multicore machines. The underlying parallel for-
loops can be compiled with either Cilk Plus [9] or OpenMP [4]

5

PMAM’19 , February 17, 2019, Washington, DC, USA Y. Xia, X. Yu, W. Moses, J. Shun, and S. Devadas

0 10 20 30 40
Number of Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Sp
ee

du
p

ov
er

 S
er

ia
l

PBBS
LiTM
Galois
Serial

(a) Random

0 10 20 30 40
Number of Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Sp
ee

du
p

ov
er

 S
er

ia
l

PBBS
LiTM
Galois
Serial

(b) rMat

0 10 20 30 40
Number of Threads

0

2

4

6

8

10

12

14

Sp
ee

du
p

ov
er

 S
er

ia
l

PBBS
LiTM
Galois
Serial

(c) 3DGrid

Figure 2. Performance comparison on maximal independent set — Speedup normalized to the serial baseline with varying
thread count.

0 10 20 30 40
Number of Threads

0

2

4

6

8

Sp
ee

du
p

ov
er

 S
er

ia
l

PBBS
LiTM
Galois
Serial

(a) Random

0 10 20 30 40
Number of Threads

0

2

4

6

8

Sp
ee

du
p

ov
er

 S
er

ia
l

PBBS
LiTM
Galois
Serial

(b) rMat

0 10 20 30 40
Number of Threads

0

1

2

3

4

5

6

7

Sp
ee

du
p

ov
er

 S
er

ia
l

PBBS
LiTM
Galois
Serial

(c) 3DGrid

Figure 3. Performance comparison on maximal matching — Speedup normalized to the serial baseline with varying thread
count.

0 10 20 30 40
Number of Threads

0

2

4

6

8

10

12

14

Sp
ee

du
p

ov
er

 S
er

ia
l

PBBS
LiTM
Galois
Serial

(a) Random

0 10 20 30 40
Number of Threads

0

2

4

6

8

10

12

Sp
ee

du
p

ov
er

 S
er

ia
l

PBBS
LiTM
Galois
Serial

(b) rMat

0 10 20 30 40
Number of Threads

0

2

4

6

8

10

12

14

Sp
ee

du
p

ov
er

 S
er

ia
l

PBBS
LiTM
Galois
Serial

(c) 3DGrid

Figure 4. Performance comparison on spanning forest — Speedup normalized to the serial baseline with varying thread
count.

(we use Cilk Plus for our experiments). The code base is com-
piled with the GNU Compiler Collection version 5.4.0 with
-O2 flag. Unless otherwise stated, the lock table size is the
number of vertices for the graph algorithms and number of
elements for the others, and the batch size is 500,000. We will
evaluate the sensitivity to these two parameters in Section 4.4.

Galois Implementation. The Galois implementation is
adapted from the default applications shipped with Galois
version 2.2.1, which is the latest version that has stable sup-
port for deterministic STM. The transactional interface in
Galois is more limited than that of LiTM. Galois requires
transactions to be cautious, namely, the transactions must

read everything it needs before writes anything. This limita-
tion makes Galois less expressive than LiTM, as we will show
later in Section 4.3. Galois offers special interfaces which
take advantage of the programmer’s hints. For example, if the
programmer is aware that the transactions do not have any
conflicts, he or she can use a special interface to turn off the
conflict detection in order to gain extra performance. Such
optimizations could also be applied to LiTM. To perform a
fair comparison, we use the versions with the general Galois
deterministic interface unless otherwise specified.

Serial Execution. We compare against a serial implemen-
tation of each benchmark without any framework overheads.

6

PMAM’19 , February 17, 2019, Washington, DC, USA

0 10 20 30 40
Number of Threads

0

5

10

15

20

Sp
ee

du
p

ov
er

 S
er

ia
l

Galois
LiTM
Serial

(a) PageRank

0 10 20 30 40
Number of Threads

0

1

2

3

4

Sp
ee

du
p

ov
er

 S
er

ia
l

LiTM
Serial
PBBS
Galois

(b) random permutation

0 10 20 30 40
Number of Threads

0

1

2

3

4

5

6

Sp
ee

du
p

ov
er

 S
er

ia
l

LiTM
Serial
PBBS
Galois

(c) list contraction

Figure 5. Performance comparison on PageRank, random permutation, and list contraction. — Speedup normalized to the
serial baseline with varying thread count.

Benchmark LiTM PBBS Galois

Maximal Independent Set 15 23 48
Maximal Matching 14 26 54
Spanning Forest 34 56 106
Pagerank 73 – 92
Random Permutation 20 27 32
List Contraction 13 22 32

Table 2. Code Length. — Number of lines of code of each
benchmark in each of the frameworks.

Table 2 shows a summary of the code lengths of the im-
plementations listed above. We only count the lines in the
transaction payload, excluding comments and blank lines.
These line numbers show that the LiTM programming inter-
face is relatively simple.
4.3 Main Results
Figures 2–5 show the performance of LiTM, PBBS, Galois,
and the serial code on all of our benchmarks. We report
speedup numbers normalized to the serial baseline. For each
workload, we increase the number of threads from 1 to 40.
From the figures, we can see that LiTM scales well for all
the benchmarks studied. For maximal independent set, LiTM
achieves 24.7–28.5× speedup on 40 threads compared to
its single-threaded performance on the random graph (Fig-
ure 2(a)), recursive matrix graph (Figure 2(b)), and 3D grid
graph (Figure 2(c)). Compared to the serial baseline, LiTM
achieves a 6.5–7.0× speedup on 40 threads. LiTM is 2.3×
slower than the hand-optimized PBBS baseline on all 3 graphs.

For maximal independent set, deterministic Galois does not
scale well when the number of threads is larger than 20 due to
non-uniform memory access (NUMA) issues. This scalability
result is consistent with Galois’ performance reported in [12].

The results are similar for maximal matching and span-
ning forest. On the three input graphs, LiTM outperforms the
serial baseline by 4.1-4.7× and 5.1-6.5× for maximal match-
ing and spanning forest, respectively. Note that the Galois
performance reported in Figure 4 corresponds to the blocked-
asynchronous version3 shipped with Galois release 2.2.1. The

3Galois 2.2.1 comes with 3 versions of spanning forest. (1) ‘Demo’ is a
demonstrative baseline that only works on strongly connected graphs. (2)

algorithm is slightly different from the one used in PBBS,
where the Union-Find Set (UNS) is explicitly implemented on
the shared states. The Galois system provides a special node
type UnionFindNode to support a hand-optimized lock-free
UNS. From Figure 4 we can see that LiTM outperforms Ga-
lois by up to 1.9–2.4× at 40 threads. The fact that we did not
implement the exact same algorithm of spanning forest in Ga-
lois as in PBBS is due to a limitation of Galois’ programming
model, where a transaction has to perform all the reads it
needs before it writes to anything. The PBBS implementation
uses a typical union-find set that performs path compression
at the time of finding the root, resulting in reads and writes
being interleaved.

We also tested LiTM on three additional workloads: PageR-
ank, random permutation, and list contraction. Due to space
constraints, we only show their performance on random graphs
in Figure 5. We can see that LiTM scales well for all three
workloads, achieving 24.4×, 34.7×, and 33.6× speedup com-
pared to a single thread for PageRank, random permutation,
and list contraction, respectively. Compared to the serial base-
line, LiTM achieves a speedup of 9.4×, 2.5×, and 2.2×, re-
spectively. LiTM achieves 2.2–2.3× faster performance over
Galois’.4 For PageRank, Galois did not provide a version
using its general framework, but only a version with the
application-specific optimization of turning off conflict detec-
tion. As shown in Figure 5(a), the optimized Galois version
performs extremely well in our benchmark test for PageRank,
achieving over 21.6× speedup against the serial version. LiTM
is able to achieve about half of the performance using a more
general framework (with conflict detection).

Finally, we observe that the performance of LiTM, PBBS,
and Galois on a single thread is worse than the serial baseline
due to overheads in the frameworks and in parallel scheduling.

‘Asynchronous’ and (3) ‘Blocked-Asynchronous’ are two Kruskal-like algo-
rithms and the latter is claimed to be an improved version over the former.
4For Galois, we excluded the cost in computing the swapping destinations in
the random permutation workload because this process is not easily decou-
pled from the input processing, and so the performance of Galois shown in
Figure 5(b) is an upper bound.

7

PMAM’19 , February 17, 2019, Washington, DC, USA Y. Xia, X. Yu, W. Moses, J. Shun, and S. Devadas

105 106 107 108

Number of Vertices

0.0

2.5

5.0

7.5

10.0

12.5
Sp

ee
du

p
ov

er
 S

er
ia

l
PBBS
LiTM
Serial
Galois

Figure 6. Input Size Sweep — The speedup over the serial
baseline improves as the input size increases.

4.4 Sensitivity Study
In this subsection, we perform a sensitivity study on LiTM
with respect to input size, batch size, and lock table size,
to better understand its performance. We use maximal inde-
pendent set as the workload and random local graphs as the
inputs for these studies. Three metrics are reported for these
results: (1) speedup over the serial baseline; (2) abort rate,
which is defined as the ratio of the total number of aborts over
the total number of transactions (note that if a transaction is
aborted multiple times, it will be counted multiple times in
calculating the abort rate); and (3) execution time breakdown
of the different phases in LiTM.

Input Size. Figure 6 shows the results of maximal inde-
pendent set on varying sizes of the input graph. We vary the
number of vertices from 105 to 108 on the x axis (in log-scale),
and set the number of edges to 5 times the number of vertices.
We choose the batch size to be 200,000 and the lock table
size to be the number of vertices. Unless otherwise speci-
fied, they are the default parameters we use in the following
experiments. The larger the input is, the better the speedup
we get from LiTM over the serial baseline. This is due to
two factors: (1) larger inputs leads to more parallelism in
LiTM, and thus higher speedup, and (2) larger graphs make
the benchmarks more memory bound, hiding the overhead of
the extra computation in LiTM.

Batch Size. The batch size is critical to the performance in
LiTM. The optimal batch size is determined by the intrinsic
properties of the problem and the number of threads available.
If the batch size is too small, there is not much parallelism
that we can exploit within a batch, and hence adding more
threads will not help. If the batch size is too large, the system
will suffer from (1) higher abort rates due to conflicts among
transactions within the same batch, and (2) higher overhead
from managing large auxiliary data for the transactions (e.g.,
local read and write sets of each transaction).

Figure 7(a) shows how the performance change as we in-
crease the batch size from 104 to 107. We see that the speedup
increases consistently when the batch size goes up to 2 × 105.
When the batch size increases beyond that, the speedup starts
to drop slowly. Such decrease is caused by higher abort rate
and system overhead due to larger auxiliary data structures.

Figure 7(b) shows that the abort rate increases when the batch
size increases. When the batch size is larger, a transaction is
more likely to conflict with another. Figure 7(c) shows the
normalized time breakdown of LiTM. With a larger batch
size, the time spent in the cleanup phase is amortized and
hence decreases, giving better overall performance. Although
the performance varies with batch size, we see that we can
achieve close to the best performance for a wide range of
batch sizes (i.e., from 105–107), so this parameter does not
require significant tuning.

Lock Table Size. The lock table size is important to the
performance as we frequently access the lock table during
execution. A smaller lock table will result in more false con-
flicts caused by hash table collisions. A larger lock table leads
to more cache misses which may also hurt performance.

Figure 8 reports how sensitive the performance of LiTM
is to the size of the lock table. The benchmark is executed
with a batch size of 200,000. The x-axis is the ratio of the
input graph size (number of vertices) to the lock table size (in
number of entries). A larger x-value corresponds to a smaller
lock table. The false conflicts caused by a small lock table
lead to more unnecessary aborts, which hurts performance.
From Figure 8, we observe that the abort rate increases rapidly
when the lock table size becomes small. Figure 8(c) shows
that the time of the cleanup phase increases as the lock table
size decreases because of more aborted transactions.
4.5 Evaluation of Repeated Execution
In this subsection, we evaluate the performance and memory
usage of the repeated execution (RE) variant from Section 3.8
compared to LiTM without repeated execution.

Figure 9 shows that the performance of the repeated exe-
cution variant is very close to that of the version without RE
for maximal matching, where the transactions are small and
relatively cheap to re-execute. The memory savings is also
negligible due to the small read sets of maximal matching,
specifically, 2 reads on each edge.

The performance difference is larger for some applications
like maximal independent set. Figure 10 shows that in the
same parameter setting as that in Section 4.3, the RE variant
of LiTM takes only 4.3 megabytes for the metadata, 81% less
compared to LiTM without RE, but at the cost of being 11%
slower. Note that in this example, every node has 5 neighbors
on average, and therefore each time a transaction is executed,
it will perform 5 reads on average and one write. For denser
graphs, we expect the relative memory savings to increase.

5 Related Work
5.1 Deterministic STM
Software Transactional Memory (STM) is a programming
model that allows concurrent transactions to access shared
states with certain consistency guarantees. Deterministic STM
is a special kind of STM that ensures that the interleaving
order is deterministic.

8

PMAM’19 , February 17, 2019, Washington, DC, USA

104 105 106 107

Batch Size

0

2

4

6

Sp
ee

du
p

ov
er

 S
er

ia
l

(a) Speedup over Serial

104 105 106 107

Batch Size

0.00

0.01

0.02

0.03

0.04

0.05

0.06

To
ta

l A
bo

rt
 R

at
e

(b) Total Abort Rate

104 5 × 104 105 2 × 105 5 × 105 106 107

Batch Size
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 T
im

e
B

re
ak

do
w

n

Reserve Phase
Commit Phase
Cleanup Phase

(c) Time Breakdown

Figure 7. Batch Size Sweep — The speedup over the serial baseline, total abort rate, and time breakdown change as the batch
size increases. The x-axis is in log scale.

20 23 26 29 212 215

Input Size / Lock Table Size

0

2

4

6

Sp
ee

du
p

ov
er

 S
er

ia
l

(a) Speedup over Serial

20 23 26 29 212 215

Input Size / Lock Table Size

0.0

2.5

5.0

7.5

10.0

12.5

15.0

To
ta

l A
bo

rt
 R

at
e

(b) Total Abort Rate

20 23 26 29 212 215

Input Size / Lock Table Size
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 T
im

e
B

re
ak

do
w

n

Reserve Phase
Commit Phase
Cleanup Phase

(c) Time Breakdown

Figure 8. Lock Table Size Sweep — The speedup over the serial baseline, total abort rate, and time breakdown change as the
lock table size increases. The x-axis is in log scale.

0 10 20 30 40
Number of Threads

0

2

4

6

8

Sp
ee

du
p

ov
er

 S
er

ia
l

PBBS
LiTM
LiTM(RE)
Serial

Figure 9. Performance of repeated execution on maximal
matching.

DeSTM [13] is the first attempt to non-trivially introduce
determinism into an STM system. The system not only pro-
vides techniques to reach determinism in general multi-threaded
program (the double-barrier technique), but also exploits
many properties of STM to potentially remove barriers and
improve performance. However, DeSTM shows insufficient
performance and scalability [21]. DeTrans [16] used similar
double-barrier techniques. DeTrans-lib [17] leverages the
system to a standard library level.

Pot [21] is a system built upon TL2 [5] that pre-orders the
transactions and enforces the order with its scheduling algo-
rithm. It executes transactions in two modes, namely the fast

0 10 20 30 40
Number of Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Sp
ee

du
p

ov
er

 S
er

ia
l

PBBS
LiTM
LiTM(RE)
Serial

Figure 10. Performance of repeated execution on maxi-
mal independent set.
mode and the speculative mode, to reduce the system over-
head caused by the order enforcement. Pot also uses hardware
transactional memory (HTM) to further improve performance.
Pot is shown to scale better than prior work when tested on
STMBench7 [8], but it still relies on global states in its design
to enforce the transaction order. Specifically, it has a global
counter, дv. When a transaction t tries to commit, it will wait
for the global counter дv to be exactlywvt − 1 and then apply
the changes, where wvt is the pre-ordered sequence number
of t . Finally, the transaction updates the global counter дvp
to be wvt so that the next transaction can start to commit.
Therefore, the global counter is a contended resource that
every thread is accessing frequently.

9

PMAM’19 , February 17, 2019, Washington, DC, USA Y. Xia, X. Yu, W. Moses, J. Shun, and S. Devadas

Galois [11, 12] is a state-of-the-art framework that sup-
ports deterministic parallelism. It provides a nested-loop inter-
face, as well as useful tools like reducers and other containers.
5.2 Deterministic Databases
Determinism has also been used in database management
systems (DBMS). We highlight the Calvin and Bohm systems.

Calvin [20] is a distributed and replicated DBMS using
deterministic execution to enforce consistency across data
replicas. In Calvin, commands of transactions are ordered by
a sequencer and sent to all replicas, where they are determin-
istically executed. All replicas are in identical states after the
execution. The deterministic model outperforms traditional
log shipping due to the elimination of the two-phase com-
mit protocol. The purpose of determinism in Calvin is very
different from LiTM. Furthermore, Calvin requires the read
and write sets of a transaction to be known before execution,
which is a strong requirement that LiTM avoids.

Bohm [6] is a single-node multi-version DBMS that uses
determinism to increase concurrency. Bohm also requires the
read and write sets to be known before executing a transaction.
Furthermore, conflict resolution is performed using a single
thread which is a natural scalability bottleneck. LiTM’s use of
deterministic reservations avoids this scalability bottleneck.

6 Future Work
Application-specific optimizations are a natural extension of a
transactional processing system. Galois’s performance in Fig-
ure 5(a) shows the power of these optimizations. It would be
great if we can automatically exploit such hidden properties
in the problem. Static analysis is a potential approach.

Another interesting extension would be supporting dynam-
ically batching online inputs to bypass the requirement of
the system that all of the inputs need to be ready before the
execution begins. One trivial approach to do this would be
to divide the time into rounds with constant length. At the
end of each round, the system would process the inputs that
arrived in the last round. However, such an approach would
result in variable sizes of batches, and small batches may hurt
parallelism. Furthermore, this approach would increase the
latency of the transactions.

7 Conclusion
We have introduced LiTM, a deterministic STM system that
achieves both simplicity and efficiency at the same time. LiTM
implements the deterministic reservation paradigm in a novel
way, such that the programmer no longer has to manually
write functions to handle data conflicts. We show that LiTM
achieves a better performance than the current state-of-the-art
deterministic STM system for six applications, providing a
practical choice for deterministic transactional processing.

Acknowledgments
This work is supported by the National Science Founda-
tion Grant No. CCR-1822920, DOE Computational Sciences

Graduate Fellowship DE-SC0019323, DOE Early Career
Award DE-SC0018947, and DARPA SDH Award HR0011-
18-3-0007. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors
and do not necessarily reflect the views of the grant sponsors.

References
[1] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Julian

Shun. 2012. Internally Deterministic Parallel Algorithms Can Be Fast.
In PPoPP. 181–192.

[2] Robert L. Bocchino, Vikram S. Adve, Sarita V. Adve, and Marc Snir.
2009. Parallel Programming Must Be Deterministic by Default. In
Usenix HotPar.

[3] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004.
R-MAT: A recursive model for graph mining. In SDM. 442–446.

[4] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: an industry
standard API for shared-memory programming. IEEE Computational
Science and Engineering 5, 1 (1998), 46–55.

[5] Dave Dice, Ori Shalev, and Nir Shavit. 2006. Transactional locking II.
In DISC. 194–208.

[6] Jose M Faleiro and Daniel J Abadi. 2015. Rethinking serializable
multiversion concurrency control. VLDB (2015).

[7] Jim Gray. 1986. Why do computers stop and what can be done about
it?. In Symposium on Reliability in Distributed Software and Database
Systems. 3–12.

[8] Rachid Guerraoui, Michal Kapalka, and Jan Vitek. 2007. STMBench7:
A Benchmark for Software Transactional Memory. SIGOPS Oper. Syst.
Rev. 41, 3 (March 2007), 315–324.

[9] Charles E. Leiserson. 2010. The Cilk++ Concurrency Platform. Journal
of Supercomputing 51, 3 (2010), 244–257.

[10] Charles E. Leiserson, Tao B. Schardl, and Jim Sukha. 2012. Determin-
istic Parallel Random-Number Generation for Dynamic-Multithreading
Platforms. In PPoPP.

[11] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A light-
weight infrastructure for graph analytics. In SOSP. 456–471.

[12] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2014. Deter-
ministic Galois: On-demand, portable and parameterless. In ASPLOS.

[13] Kaushik Ravichandran, Ada Gavrilovska, and Santosh Pande. 2014.
DeSTM: harnessing determinism in STMs for application development.
In PACT. 213–224.

[14] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons,
Aapo Kyrola, Harsha Vardhan Simhadri, and Kanat Tangwongsan. 2012.
Brief Announcement: The Problem Based Benchmark Suite. In SPAA.
68–70.

[15] Julian Shun, Yan Gu, Guy Blelloch, Jeremy Fineman, and Phillip Gib-
bons. 2015. Sequential Random Permutation, List Contraction and Tree
Contraction are Highly Parallel. In SODA. 431–448.

[16] Vesna Smiljkovic, Srdan Stipic, Christof Fetzer, Osman Ünsal, Adrián
Cristal, and Mateo Valero. 2014. DeTrans: Deterministic and parallel
execution of transactions. In SBAC-PAD.

[17] Vesna Smiljković, Osman Ünsal, Adrián Cristal, and Mateo Valero.
2017. Determinism at Standard-Library Level in TM-Based Applica-
tions. International Journal of Parallel Programming (2017).

[18] Alexander Thomson and Daniel J Abadi. 2010. The case for determin-
ism in database systems. VLDB (2010).

[19] Alexander Thomson and Daniel J Abadi. 2011. Building Determin-
istic Transaction Processing Systems without Deterministic Thread
Scheduling. In WoDet.

[20] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren,
Philip Shao, and Daniel J Abadi. 2012. Calvin: fast distributed transac-
tions for partitioned database systems. In SIGMOD. 1–12.

[21] Tiago M Vale, João A Silva, Ricardo J Dias, and João M Lourenço.
2016. Pot: Deterministic transactional execution. ACM TACO (2016).

10

	Abstract
	1 Introduction
	2 Background
	2.1 Deterministic Reservations
	2.2 Example on Maximal Independent Set

	3 The LiTM Protocol
	3.1 API of LiTM
	3.2 Data Structures in LiTM
	3.3 Overall logic of LiTM
	3.4 Reserve Phase
	3.5 Commit Phase
	3.6 Cleanup Phase
	3.7 Parameter Selection
	3.8 Variants

	4 Evaluation
	4.1 Workloads
	4.2 Baseline Systems
	4.3 Main Results
	4.4 Sensitivity Study
	4.5 Evaluation of Repeated Execution

	5 Related Work
	5.1 Deterministic STM
	5.2 Deterministic Databases

	6 Future Work
	7 Conclusion
	Acknowledgments
	References

