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Abstract
Existing secure database management systems (DBMSs) focus

on security and privacy of data but overlook semantic properties,

such as the correctness and ACID properties of transactions. Enforc-

ing these properties is crucial to the functionality of applications. If

these guarantees do not hold, catastrophic losses could result.

To address this issue, we present Litmus, a DBMS that can provide

verifiable proofs of transaction correctness and semantic properties

including atomicity and serializability. Litmus features a co-design of

both the database and the cryptographic parts. We evaluate a proof-

of-concept prototype of Litmus on the YCSB andTPC-C benchmarks

and show that under reasonable cryptographic assumptions it can

process more than 17,000 transactions per second (txn/s) verifiably.
Our result shows a promising practical direction considering that

PayPal runs on average 115 txn/s and VISA 2000-4000 txn/s. The

proof is about 30kBper verificationbatch andverifieswith a constant

time of 300 seconds. Litmus can extend to verify consistency as well.

CCS Concepts
• Security and privacy→Database and storage security; • The-
ory of computation→ Theory of database privacy and security.
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1 Introduction
Organizations are increasingly moving important databases to

public cloud platforms. For example, state and local governments use

AmazonWebServices tohost databases for criminal records [2]. Such

outsourcing can reduce hardware and labor costs, but also exposes

an organization to data-integrity risks. An attacker that breaches the

DBMScan tamperwith its contents. In the caseof avoter-registration

database, an attacker could selectively modify registration data for

voters from one political party. An even more problematic scenario

is if the organization is unable to detect that a breach has occurred

and thus it does not know that it needs to restore the database from

backup. Unfortunately, there is ample evidence that such breaches

occur often [1, 15] and that cleaning up from them is costly [39].

An additional risk of database outsourcing is the cloud provider’s

DBMS not actually providing the atomicity, consistency, isolation,

and durability (ACID) properties that the provider claims to pro-

vide. Software bugs [65] are not the only source of such correctness

failures. It has been reported that Machine-Learning-as-a-Service

(MLaaS) providers have incentives to lower the service quality as

observed in [27]. Similarly, for Database-as-a-Service (DBaaS), risk

could also originate from dishonest attempts by the cloud providers

to cut costs at the expenseof database integrity. For example, running

the TPC-C benchmark at a lower isolation level can yield 2.5× better
throughput compared to thatwith serializability [23]. SuchACID fail-

uresarecommonplace, even inwidelydeployeddatabasesystems[33,

35], and they sometimes even lead to business bankruptcy [53].

Existing solutions test whether a database provides serializability

by analyzing the log history [55], or the internal scheduler choices

[16, 31, 41, 52, 71]. They either include an independent trusted veri-

fier that is powerful enough to runSAT/SMTsolvers and report to the

clients, or assume the client itself is capable of handling the analysis.

We present Litmus, a verifiable outsourced DBMS that provides
verifiable atomicity and serializability. It allows data owners to out-

source data storage and query processing to the cloudwithout expos-

ing them to the risk of data-corruption attacks or semantic property

violations. With Litmus, the cloud provider will (as it does today)

maintain an outsourced database on behalf of the owner. But the Lit-

mus client additionallymaintains a small cryptographic digest of the

database state.Whenever the owner issues queries, the provider will

execute the query and then prove to the owner that the query’s result
is consistent with the owner’s digest. If the database state changes

while executing a query (e.g., the balance of an account is increased),

the cloud will also provide a new digest along with a proof that the

new digest accurately represents the state of the old digest with the

query applied. To exploit parallelism, the owner can submit multiple

transactions (a verification batch) and get a single digest reflecting

the new data states, and a succinct aggregated proof that these trans-

actions were executed correctly at the designated isolation level.

Verifying such a proof is computationally cheap. With this type of

verifiable DBMS, an attacker who compromises the server can at

best mount a denial-of-service attack (and the owner will notice).

To break data integrity, the attacker must compromise the owner it-

self, which is equivalent to the no outsourcing scenario. Hence, the

promise of verifiable DBMSs is that they can give the same level of

integrity protection as a local database with the cost savings and

convenience of the cloud.

We target the use case of critical cloud computing scenarioswhere

mistakes could have catastrophic consequences. Compared to a lo-

cal cluster, a cloud service, even with the overhead of verification,

can provide both elasticity and robustness at a lower cost. We eval-



uated a proof of concept prototype of Litmus with YCSB and TPC-C

workloads. Litmus with multiple parallel provers is able to verifi-

ably process over 17k txn/sec for simple workloads (YCSB) and 280.6

txn/sec for more complex workloads (TPC-C). We believe Litmus

has practical applications in the real world, given that Paypal han-

dles on average 115 transactions per second and the VISA network

has a demand of around 2,000-4,000 transactions per second
1
.

In this paper, we make the following contributions.

• We present Litmus, a practical and general verifiable database

system that provides cryptographic guarantees on data integrity,

execution correctness, and transaction semantic properties. Using

Litmus blocks the type of attacks described in ACIDRain [65].

• We propose, and use in Litmus, a lightweight authenticated dic-

tionary (AD) scheme based on RSA accumulators that supports

key non-existence proofs, which may be of independent interest.

• We improve the DBMS’s performance over naive schemes by

orders of magnitude by co-designing the DBMS and cryptogra-

phy. For example, batching non-conflicting transactions enables

aggregation of cryptographic proofs.

2 Background and Goals
We introduce the goals for our verifiable database and where we

must extend existing work to achieve them. A transaction is a se-

quence of operations (e.g., read, write, insert, or delete) that a client

sends to a database. A database guarantees ACID for transaction

processing, which refers to the following four properties [46]:

• Atomicity. Either all or no operations of a transaction occur in
the database (i.e., all or nothing).

• Consistency. Any given database transaction must obey se-

mantic invariants including constraints, cascades, and triggers.

A transaction cannot leave the database in an invalid state.

• Isolation. An isolation level defineswhen a transaction’s effects
can be observed by another concurrent transaction. Verifying

isolation is more difficult than the other three properties since

it involves the coordination of multiple transactions.

• Durability. Effects of committed transactions will survive per-

manently, even if the system crashes.

It is non-trivial to enforce the isolation level since the DBMS can

choose any transaction interleaving. Identifying correct interleav-

ings from the exponentially large space of interleavings is proven to

be NP-complete [7, 43]. We choose to utilize cryptography to force

the DBMS to provide a proof of behaving honestly. Finally, we note

that enforcing durability without special hardware is almost impos-

sible because whether or not the storage is physically permanent is

not discernible by software.

2.1 Challenges
There are many challenges in designing such a verifiable DBMS:

(1) It is not clear how to provide proofs of inter-transaction proper-

ties like serializability. Theoretically, sending the logic of the whole

DBMS into the verification framework can solve the problem assum-

ing the source code is carefully reviewed. Reality ismore challenging

because modern DBMSs are complex and cryptography has special

requirements on the input logic. (2) Existing cryptographic tools are

computationally heavyweight, posing a practicality challenge. (3) To

1
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justify the motivation of database delegation, the client is assumed

to be lightweight with limited memory.

For the first challenge, we observe that it is not necessary to verify

theentireDBMS.Wecandecouple runtimeexecutiondetails fromthe

information that needs to be verified. We achieve atomicity and seri-

alizability proofs by encoding transactions one-by-one into crypto-

friendly formats, adding extra constraints to ensure data integrity.

To address the second challenge, Litmus features a co-design of

both the database part and the cryptographic part. We select a batch-

based concurrency control (CC) algorithm that identifies a subset

of non-conflicting transactions. Witnesses of correctly executing

non-conflicting transactions can aggregate into a single succinct

one. When the contention level of the underlying workload is not

high, this improves the computational overhead of the proving sys-

tem by orders of magnitude. Further, we parallelize the provers at

the task level. This further improves the prover throughput while

maintaining a blackbox use of the verifiable computation technique.

Finally, for the third challenge, our design lets the client only keep

a constant-sized digest, and verify a succinct proof.

2.2 Building Blocks
We now discuss the building blocks of Litmus.We use a verifiable

computation framework to prove that transactions execute correctly

and their atomicity and isolation properties are guaranteed. We pro-

pose a lightweight weakly-binding authenticated dictionary scheme

to verifiably track the changes on the data. Finally, we specifically de-

sign the CC algorithm to process transactions in batches [59], which

enables aggregation of cryptographic computations and witnesses.

We discuss how these building blocks work together in Sec. 4.

Verifiable Computation (VC): This is a cryptographic protocol
that enables a (usually computationally limited) client to delegate

expensive computation to an untrusted server.

The computation is described as a cryptographic circuit. Formally,

we define a gate to be a tuple (𝑑𝑖 ,𝑑𝑜 ,𝑓 :F
𝑑𝑖+𝑑𝑜→{yes,no}), where 𝑑𝑖

is the in-degree,𝑑𝑜 is the out-degree, and 𝑓 is a function representing

the semantic evaluation of the gate. For example, an AND gate on

boolean values will have in-degree 2, out-degree 1, and a function

𝑓 (𝑥1,𝑥2,𝑦1) that outputs yes if and only if𝑦1=𝑥1∧𝑥2. Given a set of
gatesG (e.g., AND,OR,NOT, and 2-FANOUT for a boolean circuit, or

ADD andMUL for an arithmetic circuit), a cryptographic circuit is a
directed acyclic graph where each node is a gate in G, and the edges
connecting two gates arewires. During evaluation, we assign a value
to each wire such that for all the gates, the values of the wires satisfy

𝑓 =yes. There are always two special gates inG, the INPUT gate and

theOUTPUTgate,where an INPUTgate does not have inward edges,

but emits the corresponding circuit input as its output. Similarly,

an OUTPUT gate absorbs values from other gates and semantically

reports these values as the output of thewhole circuit. For simplicity,

we use𝐶(x)=y to indicate that when the INPUT gates emit values

in x, the OUTPUT gates will report the values y as the output.

Given a circuit𝐶 known by both the server and client, the veri-

fiable computation scheme proceeds as follows (after a trusted setup

as necessary): (1) the client sends x to the server; (2) the server com-

putes y=𝐶(x) and generates a proof 𝜋 , and sends it to the client; (3)
The client verifies 𝜋 against x, y and𝐶 efficiently.

A verifiable computation is correct if and only if, when the claimed



output y equals𝐶(x), the proof verification always passes. It is sound
if and only if, when the verification passes, there is only an expo-

nentially small chance that the server could cheat by not computing

correctly. Litmus generates program code (e.g., in the C language) of

a function thatwill return false if the transaction semantic properties

are violated. Then, it compiles the function into crypto circuits using

compilers like Frigate [40], extracts interleaving hints from CC algo-

rithms, and applies a VC scheme on the circuit and the interleaving

hints. TheVCschemeguarantees that if the function returns true and

the proofs pass verification, the client knows that the transactions

were executed correctly and the semantic properties are preserved.

Weakly-BindingAuthenticatedDictionaries: Anauthenticated
dictionary (AD) scheme enables a client to securely outsource a dic-

tionary to anuntrusted server. The client only keeps a succinct digest

of the dictionary. The server is able to provide verifiable key-value

pair lookups for the client. When the dictionary changes, the digest

gets updated accordingly. A weakly-binding AD guarantees the cor-

rectness and soundness properties (Sec. 6.1.1) if the digest updating

is trusted. In contrast, a strongly-binding ADworks against a mali-

cious updater. In Litmus, we let the client as well as the delegated

computation maintain an AD to track the database state. The client

itself is trusted and the delegated computation is guaranteed correct

by the VC framework. Therefore, a weakly-binding AD is sufficient.

Deterministic Reservation: This is a CC algorithm that processes

transactions by batches [9, 59], which we call processing batches to
distinguish from the verification batch (the number of transactions

submitted by the client). It identifies a maximal non-conflicting sub-

set of transactions, as described in Section 7. In our design, determin-

istic reservation helps the authenticated dictionary scheme “merge”

the non-conflicting transactions and provide aggregated proofs of

data integrity. This reduces the workload of the VC framework.

2.3 RelatedWork
Verifiable computation (VC) is a powerful technique to prove the

correctnessof aprogramexecutionwhereaclientoffloads thecompu-

tation to an untrusted computer, while being able to efficiently verify

the result. By using general-purpose VC tools [5, 6, 8, 10, 14, 19, 49–

51, 62, 63], we can, in theory, construct a verifiable database system

that satisfies the cryptographic properties of Sec. 3 by compiling the

whole DBMS into a giant circuit. Even though it shows promising

asymptotic results [47], it would still incur an impractical compu-

tational overhead due to large constant factors. Litmus only verifies

essential parts of the database and parallelizes the provers to achieve

a practical throughput.

AuthenticatedDataStructures: Cryptographicaccumulators [25],

multiset hashes [20], vector commitment [18], and authenticated

dictionaries [60] are widely used in verifiable data storage in var-

ious settings. For example, [32] uses Merkle trees to keep track of

the data on the server. vChain [64, 69] proposes new authenticated
data structures based on bilinear mapping groups to verify queries
on blockchains. Similar to vChain, Litmus also allows batched verifi-

cation and utilizes aggregation to boost the performance. However,

different from vChain, Litmus targets OLTP transactions on a cloud

database, while vChain allows expressive queries on blockchains,

where the blocks are immutable (read-only). Besides data integrity,

works like [68] use authenticated data structures and attribute-based

signatures to authenticate queries with fine-grained access control

and protect data privacy against unauthorized users.

Verifiabledatabases inthesingle-transactionsetting: vSQL[73]
and IntegriDB [74] construct VC schemes that handle processing of

a non-trivial subset of SQL, one query at a time,while Litmus focuses

on concurrent transactions with read andwrite operations.

Verification of concurrent systems: Recent work considers the
task of verifying general-purpose computations in a concurrent

setting [54]. Orochi [54] is a system for verification of PHP web ap-

plications. Spice [48] addresses the verifiable concurrent execution

problem, and provides low-level mutual-exclusion primitives. Since

none of these works consider verification of a transaction’s ACID

properties, they are orthogonal to our work.

Checking serializability: Recent work has proposed using ex-

ternal programs to verify the serializability of transactions in a

DBMS [16, 31, 36, 41, 52, 55, 56, 56, 70? , 71]. These programs take

the traces from a transactional database and verify whether the ex-

ecution is serializable. These techniques either require the DBMS to

both generate these traces and send them to a verifier (which is likely

impractical), or use SAT or SMT solvers to compute a possible se-

quential interleaving [56]. Works like Elle [35] require the database

to make data acesses into list operations to keep track of the history

of the tuples; we evaluate Elle in Sec. 8.3. Other approaches that pro-

vide verifiable serializability include [30, 32]. Haeberlen et al. applies

to general distributed systems settings, where the nodes are uniform

and at least one node is honest [30]. Compared to the classic Merkle-

tree approach, [32] is novel in decoupling the data owner and clients,

and introducingpostponedverification; this enables the server topro-

cess transactions in parallel. In particular, [32] resembles the Merkle

tree baseline in our evaluation (c.f. Sec 8) and their evaluation is con-

sistent with our observation (<20 txn/s at 100% verification level).

3 Cryptographic Formalization
Wenow present a sketch of the cryptographic framework that we

use to formalize ACID properties. We focus on verifying serializabil-

ity, thehighest level of isolation, andatomicity, though the formalism

naturally extends to other isolation levels as well as consistency (as

defined by invariants before and after applying transactions). We

discuss durability separately in Sec. 9.

Formally, we model the database state as a bitstring𝐷 ∈ {0,1}∗ (as
some encoding of a dictionary). We model a transaction𝑇 : {0,1}∗
→{0,1}∗×{0,1}∗ as a function that maps the old database state 𝐷

to a new database state𝐷′ and an output value 𝑣 . For example, the

output value 𝑣 could be the result of a transaction that updates a data-

base row and then executes a SELECT query. A verifiable database
scheme is then a tuple of algorithms as follows:

• Digest(𝐷)→𝛿 . Compute a constant-sized cryptographic digest

𝛿 of the database𝐷 .

• Execute(𝐷,T )→ (𝐷′,V,𝜋 ). Given a database state𝐷 and a list of

transactions T , apply the transactions to the database (in some

order) to produce a new database 𝐷′, a list of output valuesV
(one per transaction), and a proof 𝜋 of computation correctness.

• Verify(T ,𝛿,𝛿 ′,V,𝜋 )→{0,1}. Given a list of transactions T , a di-
gest 𝛿 of the old database state, a digest 𝛿 ′ of the new database

state, a list of output valuesV , and a claimed proof of correctness

𝜋 , check the proof and output “1” if and only if the proof is valid.



For simplicity, we omit the cryptographic security parameter and

the public parameters of the scheme. For a verifiable database system

to be useful, it should be correct and sound. Informally, correctness

states that an honest database server is able to convince an honest

client that it has correctly executed a list of transactions.

Definition 1 (Correctness): A verifiable database scheme (Digest,
Execute,Verify) is correct if for all lists of transactions T and all

database states𝐷 ∈ {0,1}∗,

Pr

[
Verify(T,𝛿,𝛿 ′,V,𝜋 )=1 :

𝛿 ←Digest(𝐷),

(𝐷 ′,V,𝜋 ) ←Execute(𝐷,T),
𝛿 ′ ←Digest(𝐷 ′)

]
=1.

Informally, a verifiable database scheme is sound for serializability

if, for all lists of transactions T = {𝑇1,...,𝑇𝑛}, whenever an adversary
produces digests 𝛿, 𝛿 ′, a list of outputsV = ⟨𝑣1,...,𝑣𝑛⟩, and a proof 𝜋
that the verifier accepts, this adversary “must know” corresponding

databases𝐷0 and𝐷𝑛 and a permutation 𝜎 on {1,...,𝑛} that “explain”
the new digest 𝛿 ′ of the database state and the outputs inV . Namely,

(a) 𝛿 =Digest(𝐷0),

(b) for 𝑖 =1, ..., 𝑛: (𝐷𝑖 , 𝑣𝑖 )←𝑇𝜎(𝑖)(𝐷𝑖−1), and
(c) 𝛿 ′=Digest(𝐷𝑛).

We formalize this notion of “knowledge” with an extractor E(A)

with a oracle access to the adversaryA as follows.

Definition2 (Soundness–Serializability):Averifiabledatabasescheme

(Digest,Execute,Verify) is sound for serializability if there exists a

probabilistic polynomial time (p.p.t.) extractor E s.t. for any p.p.t. ad-
versarial database serverA, for all lists of transactionsT = {𝑇1,...,𝑇𝑛}
that Pr[Verify(T ,A(T )) = 1] is non-negligible, the extractor E(A)

outputs databases (𝐷0,𝐷𝑛) and a permutation 𝜎 on {1, ... ,𝑛} such
that the following quantity is negligibly close to 1 in the (implicit)

security parameter:

Pr


Digest(𝐷0) =𝛿

for all 𝑖 ∈ {1,...,𝑛}:
(𝐷𝑖 ,𝑣𝑖 ) ←𝑇𝜎 (𝑖)(𝐷𝑖−1)

Digest(𝐷𝑛 ) =𝛿 ′
:

(𝛿,𝛿 ′,V,𝜋 ) ←A(T),
(𝐷0,𝐷𝑛,𝜎) ←E(A)

(T)

 .
Note that this definition also implies atomicity because no trans-

actions are partially executed. Extensions of this definition allow

capturing other isolation levels and consistency.

4 SystemOverview
This section presents an overview of the verifiable database sys-

tem.We assume a single client that interacts with a single database

server. In the DBaaS setting, the single client is the organization

that delegates the database, which might be the proxy of millions

of real users and submit many transactions. In Sec. 7, we introduce

concurrency where the client submits a batch of transactions.

In this section, we focus on the verification of Atomicity and Iso-
lation (namely, Serializability) of the database. We will discuss Con-
sistency and Durability in Sec. 9. To provide verifiable isolation, we

need a global scope for transactions because the isolation property

places constraints on the interleaving of transactions. We introduce

the concept of wrapped transaction to help the VC scheme han-

dle the interleavings. A wrapped transaction is a set of transactions

“glued” together, with the logic of the memory integrity checker (c.f.

Section 6.1.1) plugged into each transaction. Specifically, before ev-

ery transaction starts to run its own logic, it first runs the checker

to see if the provided memory digest along with the memory mod-

ifications are consistent with its local digest. If the check passes, the
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Figure 1: Overview of the Proposed Verifiable Database— The system

contains three modules as shown in the top left corner: (1) the verifiable

DBMSwith (1.a) a normal DBMS system, (1.b) thewrapped transactions, (1.c)

the memory integrity provider, and (1.d) the VC prover; (2) the (optional)

trusted third-party setup; and (3) the client.

transaction continues, otherwise it aborts by directly returning 0.

As shown in Figure 1, the system contains three key modules: (1)

The server hosts the normal DBMS, receives transactions from the

clients, and creates awrapped transaction; The server also con-
tains thememory integrity provider and theVC prover. (2) The
optional key generator can be the client itself or a trusted third-

party, or be implemented by another VC instance if the client wants

the server to carry the heavy computation (as the key generation

logic is fixed, there is no circular dependency on the key generation).

Alternatively, we can use a universal VC scheme, where the keys do
notdependon the circuits,makingkeygenerationaone-timecost; (3)

The client is the organization or program that submits transactions.

We now describe the modules in greater detail. The client is a
commoditymachine that does not have to be computationally strong.

Before the system starts,we assume that the client has stored enough

information to define a group of transactions, e.g., a stored procedure

with a set of input parameters. The client first sends the transactions

to the server. Then, it passes the transactions to the circuit compiler

to obtain the circuit representation of each of the transactions. Upon

receiving the circuit of the wrapped transaction (c.f. (1b)) from the

server, the client tries tomatch the local circuits and the circuit of the

wrapped transaction sent from the server. Then, the client sends the

circuit to the key generator. The client also contains the verifier part

of the VC framework, which takes in the verification key from the

key generator and the proof generated from the server, and outputs

a single bit indicating whether the proof is accepted or rejected.

The optional key generator takes in the circuit and a sufficient

amount of randomness, and produces the proving key 𝜎 and the

verification key 𝜏 . The proving key is sent to the server and the

verification key is sent to the client.

We now describe the four components of the server.

(1a)NormalDBMS: This is a full-fledged database system.Theoret-

ically, it can run any valid CC algorithm like two-phase locking (2PL)



or optimistic concurrency control (OCC). However, we choose to use

the deterministic reservationCC algorithm in Litmus (see Section 7.1)

to reduce the size of the circuit by aggregating the cryptographicwit-

nesses of a set of non-conflicting transactions into a single succinct

witness. Because this CC algorithm is deterministic, the client by it-

self may be able to infer the transaction interleaving and produce the

whole circuit. The key generation may start even before the server

finishes running all the transactions, escaping the critical path of per-

formance. The normal DBMS also generates runtime traces, namely,

the transaction interleaving and data updates, which closely resem-

bles logging records. Just like aDBMScould support data logging and

command logging, the traces could be as small as a few bytes indicat-

ing the transaction order and their inputs (as in command logging),

or an extensive list of all the data changes (as in data logging).

(1b) Transaction Wrapper and Circuit Compiler: The trans-
action wrapper is a tool to plug a memory integrity check into the

starting point of every transaction in a group, and merge them into

a single transaction. It takes in a group of transactions as well as

the specification of the memory integrity checker, and outputs a

circuit representing thewrapped transactions. This is similar to com-

pilers adding instrumentation to source code to add features to the

program (e.g., producing traces for debuggers). The wrapped trans-

action generated by the transaction wrapper is then compiled into

logic circuits acceptable to the verifiable computation scheme. The

circuit is analogous to the binary program produced by a compiler. It

expresses the same logic but in a more low-level representation. The

circuit is then used by the key generator to generate the proving key

and the verification key, and by the prover to provide cryptographic

proofs of the circuit being evaluated correctly.

(1c) Memory Integrity Provider: The memory integrity provider

helps the circuit keep track of data changes and provides proofs on

the values read from the database. It listens to runtime traces of con-

currency control algorithms and generates a sequence of memory

digests. The difference between each consecutive pair of memory

digests reflects a modification by a subset of transactions.

(1d) Prover: The VC prover takes in the proving key, the circuit

generated by the transaction wrapper, and the inputs supplied by

the memory integrity provider. It outputs a proof indicating the

transaction’s output is correct with respect to the input transactions.

Generating the proof is usually computationally heavy and the run-

ning time depends on the size of the circuit. However, the size of the

final proof is not necessarily long, and the client can verify the proof

even in constant time for some existing VC constructions.

5 Authenticated Dictionary Scheme fromRSA
Before diving into the details of the system, we discuss a useful

cryptographic primitive to guarantee data integrity in Litmus.

We propose a new weakly binding AD scheme that only needs

a constant length of storage and a constant number of arithmetic op-

erations for each verification. The AD scheme is based on an RSA

accumulator [13]. One might argue that it is trivial to build a weakly

binding AD from an RSA accumulator by simply hashing the key-

value pairs into distinct primes. However, we believe the naive con-

struction is not suitable for databases because it does not efficiently

support keynon-existenceproofs. Transactions only visit a few spots

in the memory compared to the vast memory space. If we adopt the

naive approach, the client has to encode all memory values into the

accumulator, which is catastrophic in terms of running time. Our

approach efficiently supports key non-existence proofs so that the

server can prove that the requested keywas not previously accessed,

and provide an initial value, say 0, previously agreed with the client.

5.1 Prime Categorization
At a high level, our construction relies on categorization of prime

numbers to accumulate multiple types of information at the same

time. Specifically, we use a dynamic universal RSA accumulator as

the building block. We categorize prime numbers into three cate-

gories that each contains an infinite number of primes. We use the

first category to encode keys, the second category to encode val-

ues, and the last category to encode the relationship between keys

and values. This construction enables us to produce constant-sized

proofs of lookups and toverify suchproofswith a constantnumberof

operations. These properties make our AD scheme circuit-friendly.

Categorization of PrimeNumbers:Acategorization of prime numbers

isa setofdisjoint subsetscat= (P1,P2,...,P𝑙 ), such that
⋃
𝑖P𝑖 =P,where

P is the set of all the primes. A categorization scheme consists of two

deterministic algorithms (Sample,Verify) that satisfy the following:
• Sample(𝜆,𝑖,𝑛𝑜𝑛𝑐𝑒) takes in the bit-length 𝜆 and a categorization

index 𝑖 ∈ [𝑙]. It returns a prime number 𝑝 ∈P𝑖 with 𝜆 bits.
• Verify(𝑝,𝑖) takes in a number 𝑝 and a categorization index 𝑖 ∈ [𝑙].

It returns a bit yes/no indicating whether or not 𝑝 ∈P𝑖 .
We say a categorization cat is feasible if and only if Sample and

Verify are probabilistic polynomial time bounded by 𝜆, Sample out-
puts a unique prime number for a nonce. The following holds.

Definition 3 (Correctness): For any bit-length 𝜆, a categorization
index 𝑖 ∈ [𝑙], and any nonce, we have

Pr[Verify(Sample(𝜆,𝑖,𝑛𝑜𝑛𝑐𝑒),𝑖)=yes]=1.
Definition 4 (Soundness): For any adversary𝐴, any bit-length 𝜆 and
a categorization index 𝑖 ∈ [𝑙], we have

Pr[Verify(𝑝,𝑖)=yes∧𝑝 ∉P𝑖 : (𝑝,𝑖)←𝐴(1𝜆)]=0.
A simple way to construct a finite number of prime categories

is by modulo residue. For example, P1 := {±1 (mod 8)}∩P, P2 := {3
(mod 8)}∩P, and P3 := {5 (mod 8)}∩P form three categories. The

reader might worry that proving modulo operations involves ex-

pensive range proofs on the residues. We let the circuit include

dedicated wires for all the possible residues {1,3,5,7} for an odd

prime. To show that a residue is well-defined, we assert it to be equal

to one of {1,3,5,7}. Hence, the server can simply provide the quotient

𝑞 and residue 𝑟 . A single constraint 𝑝 = 8𝑞+𝑟 suffices to show the

category (we handle primality tests separately). Examples include

17∈P1, 11∈P2, and 13∈P3.

5.2 Assumption and Interfaces
The AD scheme relies on the strong RSA assumption [3].

Definition 5 (Strong RSA Assumption):Given two primes 𝑝 and 𝑞 of

bit-length 𝜆, let 𝑁 :=𝑝𝑞. It holds for all p.p.t. adversaryA that

Pr[𝑢𝑥 ≡𝑎 (mod 𝑁 ) : (𝑢,𝑥 )←A(𝑎,𝑁 ),𝑎←
$
Z∗𝑁 ] ≤negl(𝜆).

Before we dive deeper, we provide the definition of ADs.

Definitions: An AD scheme consists of the following APIs.

Setup(1𝜆)→ (pk,vk). Returns the proving and verification keys.



Commit(pk,𝐷)→𝑑 . Returns a digest 𝑑 of the dictionary𝐷 .

Update(pk,𝐷,𝑑,𝐾,𝑉 )→𝑑′. Update the digest 𝑑 by setting the value
of the key 𝑘 ∈𝐾 to be𝑉 (𝑘). Return the new digest 𝑑′.

ProveLookup(pk,𝑑,𝐷,𝑉 ,𝐾)→𝜋 . Returns a lookup proof 𝜋 that each

𝑘 ∈𝐾 has value𝑉 (𝑘).

VerLookup(vk,𝑑,𝐾,𝑉 ,𝜋 )→ {yes,no}. Verifies the proof that each
𝑘 ∈𝐾 has value𝑉 (𝑘) in the dictionary with digest 𝑑 .

ProveNoKey(pk,𝑑,𝐷,𝐾 )→𝜋 . Returns a non-membership proof 𝜋 that

there does not exist any key value pair (𝑘,𝑣) with 𝑘 ∈ 𝐾 in the

dictionary with digest 𝑑 .

VerNoKey(vk,𝑑,𝐾,𝜋 ). Verifies the proof 𝜋 that each 𝑘 ∈𝐾 does not

exist in the dictionary with digest 𝑑 .

A weakly binding authenticated scheme observes two properties,

namely, correctness andweak key binding.
Definition 6 (Correctness):An authenticated dictionary scheme is

correct if, ∀ public parameters (pk,vk)← Setup(1𝜆), ∀ dictionaries
𝐷 with digest 𝑑←Commit(pk,𝐷), the following hold:
• Lookupcorrectness:∀setsofkeys𝐾 , if𝜋 =ProveLookup(pk,𝐷,𝐾,𝑉 )

and𝑉 (𝑘)=𝐷(𝑘), ∀𝑘 ∈𝐾 , then VerLookup(vk, 𝑑, 𝐾, 𝑉 , 𝜋 )=1.
• Key Non-membership correctness: ∀𝐾 , if 𝜋 =ProveNoKey(pk,
𝑑, 𝐷, 𝐾 ) and ∀𝑘 ∈𝐾, 𝑘 is not in𝐷 , then VerNoKey(vk, 𝑑, 𝐾, 𝜋 )=1.

Definition 7 (WeakKey Binding): ∀ adversariesA running in time

poly(𝜆), there exists a negligible function negl(·), such that the fol-
lowing inequalities hold:

Lookup Soundness:

Pr


(pk,vk)←Setup(1𝜆 ),

(𝐷,𝐾,𝐾 ′,𝑉 ,𝑉 ′,𝜋,𝜋 ′)←A(1
𝜆,pk,vk) :

𝑑 =Commit(pk,𝐷)

VerLookup(vk,𝑑,𝐾,𝑉 ,𝜋 )=1∧
VerLookup(vk,𝑑,𝐾 ′,𝑉 ′,𝜋 ′)=1∧
∃𝑘 ∈𝐾∩𝐾 ′ s.t.𝑉 (𝑘)≠𝑉 ′(𝑘)


≤ negl(𝜆).

Key Non-membership Soundness:

Pr


(pk,vk)←Setup(1𝜆 ),

(𝐷,𝐾,𝐾 ′,𝑉 ,𝜋,𝜋 ′)←A(1
𝜆,pk,vk) :

𝑑 =Commit(pk,𝐷)

VerLookup(vk,𝑑,𝐾,𝑉 ,𝜋 )=1∧
VerNoKey(vk,𝑑,𝐾 ′,𝜋 ′)=1∧

∃𝑘 ∈𝐾∩𝐾 ′


≤ negl(𝜆).

5.3 Extending RSAAccumulators to AD
Nowwe are ready to extend an existing dynamic universal RSA

accumulator scheme (e.g. [11]) to a weakly binding authenticated

dictionary scheme, given a feasible categorization of prime numbers.

For simplicity, we first define

𝐻 (𝑘,𝑣)=Sample(𝜆,0,𝑘)·Sample(𝜆,1,𝑣)·Sample(𝜆,2,ℎ(𝑘,𝑣)),

whereℎ(𝑘,𝑣) is a collision-resistant hash function.

Setup(1𝜆)→ (pk,vk). Sample an RSA groupG? with generator 𝑔. Set
pk=𝑔 and vk=𝑔. The order ofG? remains secret.

Commit(pk,𝐷)→ 𝑑 . For each key-value pair (𝑘,𝑣) ∈ 𝐷 , we sample

three primes from each of the categories. The primes correspond

to the key, the value, and the relationship of the key and value

(represented by a hashℎ(𝑘,𝑣)). Formally, we compute

𝑑←𝑔
∏

(𝑘,𝑣)∈𝐷 [𝐻 (𝑘,𝑣)] .

ProveLookup(pk,𝐷,𝐾)→𝜋 . Denote the dictionary after removing

the key-value pairs with keys 𝑘 ∈𝐾 as𝐷\𝐾 . We produce a digest

of this sub-dictionary, serving as the proof. Similar to Commit,
the proof equals

𝜋←𝑔
∏

(𝑘,𝑣)∈𝐷\𝐾 [𝐻 (𝑘,𝑣)] .

VerLookup(vk,𝑑,𝐾,𝑉 ,𝜋 )→{yes,no}. Checks whether
𝜋
∏

(𝑘,𝑣)∈(𝐾,𝑉 )
[𝐻 (𝑘,𝑣)] =𝑑.

Update(pk,𝐷,𝑑,𝐾,𝑉 ) → 𝑑′. We first compute 𝜋 ← ProveLookup
(pk,𝐷,𝐾 ), then build the new digest 𝑑′ based on 𝜋 :

𝑑′←𝜋
∏

(𝑘,𝑣)∈𝐷\𝐾 [𝐻 (𝑘,𝑣)] .

ProveNoKey(pk,𝑑,𝐷,𝐾)→ {𝐴,𝐵}. We compute (𝐴,𝐵) = 𝐵𝑒𝑧𝑜𝑢𝑡 (𝑆,∏
𝑘∈𝐾 Sample(𝜆,0,𝑘)), where 𝐵𝑒𝑧𝑜𝑢𝑡 (𝑥,𝑦) returns the Bezout co-

efficients𝐴,𝐵 s.t.𝐴𝑥+𝐵𝑦=1 for 𝑥,𝑦 with 𝑔𝑐𝑑(𝑥,𝑦)=1.
VerNoKey(vk,𝑑,𝐾,𝐴,𝐵)→{yes,no}. Checks whether

𝑑𝐴 ·
(
𝑔
∏
𝑘∈𝐾 Sample(𝜆,0,𝑘)

)𝐵
=𝑔.

One important property that enables our optimization in Sec. 7

is aggregability. As shown in the ProveLookup and VerLookup in-
terfaces, we can aggregate a number of lookups into a set of keys

and provide a single proof for all of them. This means we can batch

non-conflicting transactions and prove/verify the memory access

once for all their lookups. This property is widely used in RSA ac-

cumulators [12]. Our AD scheme inherits this property.

As an example, suppose we want to compute a digest 𝑑 of dictio-

nary 𝐷 where 𝐷 [1] = 2, 𝐷 [3] = 4. Then, 𝑑 =𝑔𝐻 (1,2)·𝐻 (3,4)
. To prove

𝐷 [1] = 2, the server needs to compute 𝜋 = 𝑔𝐻 (3,4)
as the proof. To

verify, the client can check if 𝜋𝐻 (1,2)
equals 𝑑 . If the dictionary oth-

erwise does not contain the key-value pair (1,2), the server has to

compute 𝜋 from 𝑑 itself. By the Strong RSA Assumption, it is diffi-

cult to compute 𝑑1/𝐻 (1,2)
. Therefore, even if the server is malicious,

it is not likely to produce a proof passing the verification.

The reader might wonder why we only used Sample so far but
not Verify. The reason is that, given that the circuit is computation-

ally weak and deterministic, it is impractical for the circuit to sample

primenumbers on its own. It needs theprover to supply candidates of

Primenumbers as auxiliary inputs, and it callsVerify to test primality

and its category (e.g., viaPocklington [42, 45]).Pocklington adds extra
conditions to the Fermat primality test to make the conditions suffi-

cient. Specifically, if there exists an integer 𝑎 and a prime 𝑝 such that

𝑎𝑁−1 ≡1 (mod 𝑁 ), 𝑝 |𝑁 −1, 𝑝 >
√
𝑁 −1, and gcd(𝑎(𝑁−1)/𝑝 −1,𝑁 )=1,

then 𝑁 is prime. With this result, the server can provide a small

prime number 𝑝0 and prove its primality through a deterministic pri-

mality test, and “boost” it up by providing (𝑟,𝑎) s.t. 𝑟 <𝑝0, gcd(𝑎
𝑟 −

1, 𝑟𝑝0+1)= 1, 𝑎𝑟𝑝0 ≡ 1 (mod 𝑟𝑝0+1)⇒ 𝑁 = 𝑟𝑝0+1. This is a prime

number by Pocklington. This process can be repeatedmultiple times

to reach a prime number that is large enough. Whenever the circuit

calls Sample on a nonce, the server needs to provide the prime num-

ber and𝑝0,𝜋𝑝0 ,{𝑎𝑖 ,𝑟𝑖 ,𝜋𝑖 } to the circuit, where𝜋𝑝0 is the deterministic

primality proof for 𝑝0, and {𝜋𝑖 } are the proofs that 𝑎𝑖 and 𝑟𝑖 satisfy
the conditions. To make the whole process deterministic, the choice

of certificates𝑎𝑖 ,𝑟𝑖 depends on the nonce. The nonce could be a key, a

value, or ahashvalue fromakey-valuepair.As the lengthof theprime

number only depends on the security parameter 𝜆, we only need to

boost𝑂(𝜆) times. For example, if we already know 𝑝0=59 is a prime,

to prove 827 is also a prime,we can pick𝑎=2, 𝑟 =14 as our certificate.



6 Single-Threaded 2PL Baseline
We present a baseline system that provides verifiability of atom-

icity and isolation properties. Although Litmus’s server can work

with any CC algorithm if it can access transactions’ interleaving in-

formation, we use single-threaded 2PL to simplify our discussion.

We also extend the design to multiple threads in Sec. 7.

6.1 Server
We first present Litmus’s memory integrity model. Next, we dis-

cuss its transaction wrapper and circuit compiler. Lastly, we explain

how a normal database interacts with these components.

6.1.1 Memory Integrity.The memory integrity scheme uses authen-

ticated dictionaries to maintain data integrity. The core design phi-

losophy of our memory integrity model is to make the circuit as

small as possible. Existing works do not suit our purpose because

they either need a variable length digest (e.g., Merkle Tree) or re-

quire significant time to verify. We use the same approach as Pantry

to enable a memory access interface for circuits [14]. As shown in

Algs. 1 and 2, thememory integritymodel consists of two parts— the

provider and the checker. The provider runs natively on the server
and generates proofs for values read by the transactions. The checker

runs as a part of the circuit and checks the proofs. The server and

the client agree on the initial state (𝑔0,𝐷0) before the protocol starts.

We require an consistent initial digest, namely𝑔0=Commit(pk,𝐷0).

The initial digest does not have to cover all the possible memory

addresses. For example,𝐷0 could be empty.

The memory integrity provider maintains two variables, 𝑆 and

acc. The former (𝑆) tracks the product of the elements, and acc stores
the latest AD digest. The provider also maintains a dictionary to

keep track of the memory changes. It initializes 𝑆 to be the product

of the hashes of the key-value pairs in𝐷0 and acc to 𝑔0. It holds that
𝑔0=𝑔

𝑆
. Due to our AD scheme, the digest 𝑔0 and the initial product

𝑠0 do not have to include initial values for all the memory addresses

since initializing the memory is a significant cost for the client.

When the system calls GenReadProof (Alg. 1), Litmus computes

the corresponding proofs for the client and returns them. It first

checks if thememory address is in the local cache𝐷 . If yes, it returns

a lookup proof 𝜋 =𝑔𝑆/𝐻 (𝑘,𝑣)
. Otherwise, it returns a non-existence

proof of the key 𝑘 , indicating that no values have been written to

the address 𝑘 , and the circuit should accept an initial value.

The UpdateWrite operation is simpler (Alg. 1). It reads the old

value at address 𝑘 from the dictionary𝐷 , and computes the lookup

proof 𝜋 =𝑔𝑆/𝐻 (𝑘,𝑣′)
. Then, it updates the digest to be 𝜋𝐻 (𝑘,𝑣)

, and the

product 𝑆 accordingly. Finally, it updates𝐷 . Note that if we assume

no blind writes, it gets the value of 𝜋 for free.

Thememory integritycheckerconsistsof three interfaces,MemInit,
MemCheck, and MemUpdate. Before a transaction starts, the circuit

first invokes MemCheck (Alg. 2) to determine whether the read val-

ues are correct according to its local digest, namely, 𝜋𝐻 (𝑘,𝑣′)=acc. If
this fails, it checks whether the proof indicates that the address was

not accessed before so the value should be an initial value. If both

fail, the function returns 0, indicating the integrity is compromised.

After the transactionfinishesexecution, thecircuit runsMemUpdate
(Alg. 2). The server provides auxiliary inputs: the address 𝑘 , the old

value 𝑣 ′, the new value 𝑣 , and the lookup proof 𝜋 of the pair (𝑘, 𝑣 ′). It
first checks if 𝜋 is valid. The circuit can skip the verification if we as-

sume no blindwrites since 𝜋 is already verified in the read operation.

Algorithm 1: Memory Integrity Provider (on the Server

Side) with initial database state agreed as (𝑔0,𝐷0).

Input: AgreedInitState = {𝑔0,𝐷0 }
1 𝑆 =

∏
(𝑘,𝑣)∈𝐷

0
𝐻 (𝑘,𝑣); acc=𝑔0 ;𝐷 =𝐷0 ; /* initialization */

2 Func GenReadProof (𝑘 , 𝑣):
3 if 𝑘 is in𝐷 then
4 return 𝜋 =𝑔𝑆/𝐻 (𝑘,𝑣)

; /* generate the lookup proof */

5 else
6 return (𝐴,𝐵)=𝐵𝑒𝑧𝑜𝑢𝑡 (𝑆,Sample(𝜆,0,𝑘)) ; /* non-existence proof */

7 Func UpdateWrite (𝑘 , 𝑣):
8 𝑣′ =𝐷 [𝑘 ] ; /* old value */

9 𝜋 =GenReadProof(𝑘,𝑣′) ; /* must be a lookup proof */

10 acc=𝜋𝐻 (𝑘,𝑣)
; /* update the digest */

11 𝑆 =𝑆/𝐻 (𝑘,𝑣′) ·𝐻 (𝑘,𝑣); /* update the product */

12 𝐷 [𝑘 ] = 𝑣 ; /* update the dictionary */

13 return

Algorithm 2: Memory Integrity Checker (inside the

Wrapped Transaction) with initial database state (𝑔0,𝑠0).

Input: AgreedInitState = (𝑔0,𝑠0)
1 Global variable accmaintained by a dedicated wire;

2 Func MemInit ():
3 acc =𝑔0 ; /* initialize the local digest */

4 Func MemCheck (𝑘 , 𝑣, 𝜋,𝐴,𝐵):
5 if 𝜋𝐻 (𝑘,𝑣) =acc or (acc𝐴 ·𝑔𝐵 ·𝐻 (𝑘,𝑣) =𝑔 and 𝑣=0) then
6 return 1 ; /* verification passes */

7 return 0

8 Func MemUpdate (𝑘 , 𝑣′ , 𝑣, 𝜋 ):
9 if 𝜋𝐻 (𝑘,𝑣′ )

!=acc then
10 return 0 ; /* verification failure */

11 acc = 𝜋𝐻 (𝑘,𝑣)
; /* update the local digest */

12 return 1

Lastly, the circuit updates acc to be 𝜋𝐻 (𝑘,𝑣)
.

There are no loops in the pseudo-code in the memory integrity

checker. Every variable has a fixed length (only depending on the

security parameter) except𝐴 and𝐵. The only concernhere is comput-

ing large exponentiation. We can address this by letting the server

provide the result directly with a Proof-of-Exponent [11]. This tech-

nique can shrink down the size of𝐴 and 𝐵 to be constants. Overall,
the memory integrity checker only contributes a constant number

of gates to the circuit per memory access in the transaction
2
.

6.1.2 The Transaction Wrapper.This component takes in a list of

transactions {𝑇𝑖 } and the runtime traces RuntimeTraces, and builds
a single wrapped transaction (represented as a function) from

{𝑇𝑖 } by chaining them sequentially and inserting memory integrity

checking code before each transaction starts. It constructs a graph

representing transactions and their partial orders decided by the

CC algorithm. Then, it performs a topological sort on the transac-

tions such that the partial orders are all satisfied. Next, it builds the

wrapped transaction. The wrapped transaction takes in inputs of (1)

read values passed by the memory and (2) the proofs of the memory

digests. It initializes the local memory digest. Then, it runs the trans-

actions one by one and for each transaction𝑇𝑖 in the list, it checks

if the corresponding read values provided by the input are correct

by using the memory integrity proofs. It runs the transaction with

the read values. While running the transactions, it collects the writ-

ten values and updates the local memory digest accordingly. If any

of the memory integrity checks fail, the return value of the wrapped

transaction will start with a 0 bit if evaluated correctly by the server.

2
Thememory integrity checker performs exactly three exponentiations, twomultiplica-

tions, three comparisons, and two boolean operations per request. This logic produces a

constant number of gates in the circuit.



Algorithm 3: The Serial TransactionWrapper

1 Func TransactionWrapper (A set of transactions {𝑇𝑖 }, runtime traces RuntimeTraces):
2 /* Construct the wrapped transaction */

3 Construct a graph T with nodes {𝑇𝑖 } and edges (𝑇𝑖→𝑇𝑗 ) ∈ RuntimeTraces;
4 Perform topological sort on T and get a list of transactions (𝑇𝑖 )< ;

5 Func WrappedTransaction (ReadVals, memproof):
6 MemInit ();

7 AllCommit = 1;

8 for each𝑇𝑖 in (𝑇𝑖 )< do
9 if MemCheck (ReadVals, memproof) then
10 CommitFlag𝑖 , WriteVals =𝑇𝑖 .run (ReadVals);

11 CommitFlag𝑖 = CommitFlag𝑖 ∗MemUpdate (WriteVals);
12 AllCommit = AllCommit * CommitFlag𝑖 ;

13 else
14 AllCommit = 0;

15 returnAllCommit;

16 return the function code of WrappedTransaction;

The wrapped transaction does not need to represent a sequential

chain of transactions. As we will discuss in Sec. 7, forming a wide

network of transactions is better for performance; the shape of the

returned wrapped transaction is critical for exploiting parallelism.

6.1.3 Circuit Compiler and Circuit Matcher.The circuit compiler

compiles the wrapped transaction into a monolithic circuit on the

server side, and compiles each transaction into separate circuits on

the client side. The client runs the circuit matcher to determine if

the circuit claimed by the server matches the local sets of circuits.

The compiler converts the description of thewrapped transaction

(in high-level programming languages or in LLVM-like representa-

tions) into a Rank-1 Constraint System. A carefully designed circuit

compiler can optimize the structure of the circuit without changing

the underlying logic. This is similar to what modern compilers do

to re-order instructions for multi-issue architectures.

A malicious server is free to generate any circuit it prefers and

pass it to the client and the prover. Therefore, the client must check

whether the wrapped transaction circuit is valid or not. First, it

checks whether the logic of the transactions is consistent with that

in the wrapped transaction. Secondly, the circuit matcher checks if

the memory integrity checker in the circuit is correctly plugged in.

One can reduce these two tasks to pattern matching problems as the

same transaction logic would be compiled into the same circuit, and

a knownmemory integrity checker also results in a known circuit

description. Later, in Sec. 7,wewill showhow to extendLitmus to use

a deterministic CC algorithmwith fixed batch sizes. In this case, the

client does not need to perform circuit matching since it can locally

produce the transaction interleaving (if the writesets do not depend

on the readset). Instantiationsof suchdeterministic circuit compilers

exist and can be re-purposed for our verifiable DBMS [17, 40].

6.1.4 Normal Database and Concurrency Control.To verify the iso-
lation property, we need to track runtime traces (namely, transac-

tional dependencies) and guarantee memory integrity. We track

transactional dependencies because the circuit should follow the in-

terleaving of real transaction execution (otherwise the read values

and proofs provided by the memory integrity provider are inconsis-

tent). Furthermore, the dependency information can serve as hints

to the VC prover to prepare the proofs faster.Wemake the following

changes to the 2PL algorithm to obtain transactional dependencies,

and prepare memory integrity proofs and memory digest updates.

We add two metadata fields to the data items, LastReader and
LastWriter, indicating the set of last readers and last writers, re-
spectively. The server initializes all of the data items in the database,

Algorithm 4: TheWorkflow of the Server

Input:A previously agreed initial statue of the database AgreedInitState
1 Initialize DB.Data[∗] .LastReader=DB.Data[∗] .LastWriter= ∅;
2 Upon receiving message (MSG_TXN,{𝑇𝑖 }) from the client:

3 Initialize the memory accumulator acc=Acc.Accumulate(AgreedInitState);
4 Initialize the proof list proofList←[], the read values readList←[];
5 DB.Run ({𝑇𝑖 });
6 When𝑇𝑖 reads an item DB.Data[𝑘 ]:
7 Acquire the shared read lock on DB.Data[𝑘 ];
8 Append (DB.Data[𝑘 ] .LastWriter→𝑇𝑖 ) to RuntimeTraces;
9 Append𝑇𝑖 to DB.Data[𝑘 ] .LastReader;

10 Append (𝑘,DB.Data[𝑘 ]) to𝑇𝑖 .read_set;
11 Append GenReadProof(acc,𝑘,DB.Data[𝑘 ]) to𝑇𝑖 .proofs;
12 When𝑇𝑖 writes an item DB.Data[𝑘 ] with a new value 𝑣:

13 Acquire the exclusive write lock on DB.Data[𝑘 ];
14 Append (DB.Data[𝑘 ] .LastWriter→𝑇𝑖 ) and

(DB.Data[𝑘 ] .LastReader→𝑇𝑖 ) to RuntimeTraces;
15 DB.Data[𝑘 ] .LastWriter=𝑇𝑖 ;
16 DB.Data[𝑘 ] .LastReader= ∅;
17 Call UpdateWrite(acc,𝑘,𝑣);
18 When a transaction𝑇𝑖 commits:

19 Append𝑇𝑖 .proofs to proofList;

20 Append𝑇𝑖 .read_set to readList;

21 When the database finishes execution, get the runtime traces

RuntimeTraces= {(𝑇𝑖→𝑇𝑗 )}𝑖,𝑗 and the final output 𝑦;
22 𝐶 =CircuitCompiler(TransactionWrapper({𝑇𝑖 },RuntimeTraces));
23 Send (MSG_WRTXN,𝐶) to the client;

24 Upon receiving message (MSG_PKEY,𝜎) from the third-party:

25 Initiate the prover VC.Prove on𝐶 and𝜎 ;

26 Feed readList and proofList as circuit inputs to the prover;

27 Feed RuntimeTraces as auxiliary information to the circuit to the prover;

28 Get the proof 𝜋 from the prover and send (𝜋,𝑦) to the client;

and sets DB.Data[∗] .LastReader and DB.Data[∗] .LastWriter to
empty. Upon receiving a message (MSG_TXN, {𝑇𝑖 }) from the client,

the server initializes acc, the memory digest on the server side. It

then sets RuntimeTraces to be an empty set. In addition, the server

also initializes the list of proofs of memory integrity to be empty.

Then, the normal DBMS starts processing the transactions.

Upon a read request on address 𝑘 from the transaction 𝑇𝑖 , the

serverfirst runsnormal2PLto fetch thesharedread lockonDB.Data[𝑘].
Then, it infers a partial transaction order (DB.Data[𝑘] .LastWriter
→𝑇𝑖 ) by looking at the LastWriter field of the data item, and en-

forces Read-After-Write dependencies. The server adds 𝑇𝑖 to the

LastReader, and a tuple (𝑘, DB.Data[𝑘]) to the read set of𝑇𝑖 . The
servergeneratesamemory integrityproofandappends it to𝑇𝑖 .proofs.

For a write request to address 𝑘 from the transaction 𝑇𝑖 , the

server first runs the 2PL logic to fetch the write lock on DB.Data[𝑘].
Then, the server creates the partial order information by appending

(DB.Data [𝑘] .LastWriter→𝑇𝑖 ) and (DB.Data [𝑘] .LastReader→
𝑇𝑖 ) toRuntimeTraces. It thenresets theLastReaderandLastWriter
fields, andnotifies thememory integrityprovider toupdate thedigest

with a newwrite on 𝑘 with value 𝑣 .

When a transaction𝑇𝑖 commits, the proofs and read set of𝑇𝑖 are

appended to the proofList and readList, respectively. After all
the transactions are finished, the server stores RuntimeTraces and
the final output of the transaction set, denoted as 𝑦. The output 𝑦

will start with a bit that indicates if any memory integrity check has

failed. Also,𝑦 can include other information depending on the appli-

cation. Then, the server calls TransactionWrapperwith {𝑇𝑖 } and
RuntimeTraces, and sends back the compiled circuit𝐶 to the client.

Recall that the client will check this circuit with its local circuits cor-

responding to each transaction. If the check succeeds, the client noti-

fies the key generator to produce keys. Upon receiving the message

(MSG_PKEY, 𝜎), the server then starts the prover with the readList



and proofList, as well as the RuntimeTraces as auxiliary informa-

tion to speed up the proving process. When the prover produces the

proof 𝜋 , the server sends it along with the output to the client.

6.2 Client
When Litmus’s client sends a batch of transactions {𝑇𝑖 } to the

server, it also compiles each transaction𝑇𝑖 into a small circuit 𝑐𝑖 . The

client then waits for the circuit𝐶 of the wrapped transaction from

the server. The client tries to match the circuit𝐶 with its local cir-

cuits {𝑐𝑖 } by pattern matching. If successful, the client sends𝐶 to

the key generator and gets the verification key back. Upon receiving

the proof 𝜋 and the commit result𝑦, it checks if the proof 𝜋 is valid

with respect to 𝑦 (i.e., contains an 1 bit, indicating whether all the

memory checks passed), the circuit𝐶 , and the transactions {𝑇𝑖 }, us-
ing the verification key 𝜏 . If the verification passes, the client accepts

the output and the proof; otherwise, the client rejects.

6.3 Verifying Atomicity and Isolation
We contend that Litmus’s design guarantees atomicity and iso-

lation. For atomicity, the wrapped transaction in Sec. 6.1.2 chains

the transactions sequentially, and so evaluating the circuit implies

the effect on the database is equivalent to running the transactions

one by one. The DBMS cannot partially execute a transaction if the

wrapped transaction evaluates honestly. For isolation, the memory

integrity model guarantees that the server can never cheat on the

data values. Every read operation will return the latest written value

to the designated memory address. Therefore, the result that the

client receives is exactly the same as what comes from an honest

server in an ideal world, which runs the transactions sequentially.

7 Extension toMulti-Threading
In Sec. 6 we described a single-threaded baseline. In this section,

we present an extended design and optimizations to make Litmus

practical. Parallelism provided by modern multi-core architecture

is crucial to efficient verifiable DBMSs. However, it is non-trivial for

VC frameworks to work in parallel. Existing works on VC require

that the whole circuit to be evaluated is ready before the proto-

col starts. Apart from this, they are designed and described for a

single-threaded machine because parallelizing the process has lim-

ited theoretical interest. There is littlework that parallelizes the steps

inside the VC framework efficiently outside of [58, 72].

7.1 Concurrency Control
We use the deterministic reservation protocol that processes trans-

actions by batches as the CC algorithm for the normal DBMS part [9,

67]. For each batch, it runs two phases in parallel. Alg. 5 shows the

pseudocode for the algorithm. It allocates a global array of reserva-

tion 𝑅 and sets it to be infinity. Given a set of transactions T and a

batch size𝑚, the entry function Process first assigns a determinis-

tic and unique priority𝑇 .𝜌 for each transaction𝑇 . Then, it processes

them in batches. For every batch, it first calls Reserve(𝑇 ) in parallel
on each transaction𝑇 in the batch. Any for-loop parallel framework

like OpenMPwould be sufficient. Then, it computes the return value

𝑟𝑇 ofCommit(𝑇 ) for each transaction𝑇 in parallel. Lastly, it collects

all the transactions with 𝑟𝑇 =yes as the non-conflicting batch, adds
it to RuntimeTraces, and removes these transactions from T .

The Reserve function runs the transaction and collects its read

Algorithm 5:Deterministic Reservation

Input:A set of transactions T= {𝑇𝑖 } and the batch size𝑚
1 R = [∞,∞,...,∞] ; /* size 𝑛 */

2 Func Reserve (𝑇𝑖 ):
3 Run𝑇𝑖 ;

4 Whenever𝑇𝑖 reads DB.Data [𝑥 ]:
5 𝑇𝑖 .read_set.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑥 );

6 if 𝑥 is in𝑇𝑖 .WriteVals then
7 return𝑇𝑖 .WriteVals[𝑥 ]
8 return DB.Data [𝑥 ]
9 Whenever𝑇𝑖 writes 𝑣𝑎𝑙 to DB.Data [𝑥 ]:
10 𝑇𝑖 .WriteVals.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑥,𝑣𝑎𝑙 );

11 Atomic do:
12 if𝑇𝑖 .𝜌 <𝑅 [𝑥 ] then
13 /* smaller number means higher priority */

14 𝑅 [𝑥 ]←𝑇𝑖 .𝜌
15 FuncCommit (𝑇𝑖 ):
16 /* Check the reservations */

17 for 𝑥 ∈𝑇𝑖 .read_set∪𝑇𝑖 .WriteVals do
18 if𝑇𝑖 .𝜌 <𝑅 [𝑥 ] then
19 return no
20 /* Apply the updates */

21 for 𝑥,𝑣𝑎𝑙 ∈𝑇𝑖 .WriteVals do
22 DB.Data[𝑥 ]←𝑣𝑎𝑙

23 return yes
24 Func Process (T,𝑚):
25 Generate priorities𝑇 .𝜌 for every transaction𝑇 ∈ T ;
26 do
27 Reset𝑅 to be [∞];
28 Take𝑚 transactions as T′ from T ;
29 In parallel call Reserve(𝑇 ) for all𝑇 ∈ T′ ;
30 In parallel compute 𝑟𝑇 =Commit(𝑇 ) for all𝑇 ∈ T′ ;
31 Provide a non-conflicting batch𝐵= {𝑇 |𝑟𝑇 =yes};
32 T←T\𝐵
33 while T≠ ∅;

set and write set. Additionally, for every write operation, it also at-

tempts to reserve the key by setting 𝑅 [𝑥] to be the priority of 𝑇𝑖 ,

if𝑇𝑖 has a higher priority (𝑇𝑖 .𝜌 is smaller), where 𝑥 is the key. The

Commit function first checks if all the reservations are still valid. If
any other transaction overwrites the reservation, the function re-

turns no right away as there is a conflict. Otherwise, it applies the
batch to the database. Finally, the function returns yes.

Deterministic reservation identifies subsets of transactions that

can be executed in parallel without conflicts. These transactions are

perfect for the transaction wrapper since they can be merged to-

gether. And this brings several advantages:(a) Reduce the number
calls to the memory integrity checker. Exploiting the aggregability
of our AD scheme, we can prove and verify a processing batch of

non-conflicting transactions with a single proof. This reduces the

size of the circuit and the number of auxiliary inputs. Both contribute

to reducing the prover computation. (b) Simplify circuit matching.
The client can locally compute the same interleaving as that on the

server thanks to the determinism, and generate fewer circuit pieces.

(c) Flatten the circuit by reducing its depth. The depth of the circuit
is critical for the prover efficiency for some VC frameworks [28].

Moreover, if the transactions are generated from the same template

or stored procedure and are similar to each other, we have parallel

repetitions of similar structures in the circuit. This repeated struc-

ture pattern can be utilized to apply a specially designed proving

algorithm [57] that improves the prover efficiency.

When thecontention level of theunderlyingbenchmarkworkload

is not high, the improvement in terms of throughput is significant.

As we will show in Sec. 8, enabling batching yields a throughput

gain of around 10×. Because the CC algorithm is deterministic, the

client is able to produce the same batch of transactions if their write

targets do not depend on the read values (as in YCSB and the subset
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Figure 2: Litmus Pipelining—We start multiple provers with each pro-

ducing on a number of batches.

of TPC-Cwe evaluated). If the transactions’ writeset depends on the

read values, our current design lets the server send the circuit as well

as the read sets and write sets to the client. The client can validate

the correctness of interleaving by checkingwhether the transactions

in the same batch are non-conflicting or not using a hash table that

maps accessed keys to transaction IDs. Alternatively, we can encode

the non-conflicting property as a check in the circuit. Given two

variables𝑋 and𝑌 , the relationship𝑋 ≠𝑌 can be encoded using an

auxiliary input𝑍 provided by the server s.t.𝑍 ·(𝑋−𝑌 )=1. This trick
helps the server prove the transactions access different places.

Although Litmus also supports non-deterministic CC algorithms

(Sec. 6), we justify our choice of deterministic CC algorithms here.

For a non-deterministic algorithm, the client cannot produce the

wrapped circuit itself because the interleaving on the server is likely

different and therefore, the circuit would be different. The server has

tosend thecircuit to theclient for it toperformpatternmatching.This

adds to communication cost and increases latency. However, batch-

ing techniques are still feasible as long as the CC algorithm, which is

notnecessarily deterministic, canproducebatchesof non-conflicting

transactions. Note that when the CC algorithm is not deterministic

and does not work by exploiting non-conflicting batches, like the

2PL baseline in Sec. 8, our multi-core optimization does not apply.

7.2 Pipelining Provers

Following the determinism of the CC algorithm, the transaction

wrapper and thememory integrity provider are able towork on their

own and do not have to wait for the traces from the normal database

part. This not only enables the merging of non-conflicting transac-

tions, but also directly increases parallelism and reduces interaction

between components inside the server.

We enable parallel proving without modifying the underlying

VC framework. Namely, we break the whole circuit into sequential
pieces that each consist of multiple transaction batches, and let a sin-

gle thread work on the proof of a single part of circuit. As shown

in Figure 2, we use a dedicated thread (dispatcher) to read runtime

traces from thenormal databasemodule.Once thedispatcher gathers

enough transactions for a circuit piece (e.g., Batch 1-5), it launches

a new thread to work on generating the circuit for the transactions

and generating the proofs. If all the proofs generated by the prover

threads are valid, and the values passing through connecting circuit

parts are consistent, the client is convinced of the correctness and se-

mantic properties. Fortunately, the values between connecting parts

are only thememory digest and the single bit indicating if all the pre-

vious checks are successful. The cost of checking consistency is min-

imal. Enabling multiple provers yields an extra gain of around 25×.

8 Evaluation Results
We have built a preliminary verifiable database system [66] with

prover pipelining and evaluated it against the Yahoo Cloud Serving

Benchmark [21] and the TPC-C benchmark [37] OLTP workloads.

The YCSB benchmark mimics a cloud database service with a ta-

ble of 10 million rows with each row storing 1kB data. In total, the

database system hosts 10G in-memory data if not stated otherwise.

We also tested a larger YCSB table (see Sec. 8.2). The access pattern of

the rows follows the Zipfian distribution with the Zipfian parameter

𝜃 =0.6. Each transaction accesses two rows where each access has a

50% chance to be awrite operation or otherwise is a read operation.
The TPC-C benchmark simulates 64 data warehouses and per-

forms entry orders on them.We include two types of transactions

Payment and NewOrder, which cover around 90% of all the TPC-C

transactions per the specification. Moreover, we further assume that

customers are selected based on IDs only and the transactions do

not insert into the HISTORY table because no transactions read from

this table. In this way, the writing targets of transactions do not de-

pend on the read values. Therefore, the server does not have to send

the interleaving to the client, which can produce the circuit by itself.

We tested both of the benchmarks with a real DBMS, PostgreSQL,

by BenchBase [24]. For YCSB, PostgreSQL has a throughput of 5759

txn/sec. For TPC-C NewOrder and Payment, PostgreSQL reaches

a throughput of 506 txn/sec and 1337 txn/sec, respectively.

We instantiate the VC framework with Pequin [51]. We bypassed

the compiler, and hand-wrote the circuits of the transactions and

memory integrity checker to guarantee efficiency and determinism.

The backend of Pequin is a zero-knowledge succinct non-interactive

argument of knowledge (zk-SNARK) protocol that produces the final

proof showing that the arithmetic constraints are actually satisfied.

Specifically, the backend is built based on the libsnark project, an

optimized version of the Pinocchio scheme [44].

Our implementationservesasaproofof concept. It consistsofonly

the server side software as we determined that the server efficiency

decides the throughput of the DBMS.We include key generation on

the critical path, which can be done in parallel as our CC algorithm

is deterministic. For interaction between the client and the server,

we simulate a thread sleep of 1ms or 100ms. The implementation as-

sumes division-intractability for large integers of shape 𝑥+𝑃 , where
𝑃 is a pre-sampled large prime number. The underlying curve we

use in the proving system is BN-128 [4].

We run Litmus on amachine with two Intel Xeon 5218R CPUs (20

cores per CPU, 2×with hyperthreading). The machine has a 173 GB

RAM.We include the following baselines for comparison.

• Litmus-DRM is the Litmus system using Deterministic Reserva-

tionwithMultiple Provers. It uses a processing batch size of 81,920

for the CC algorithm. If not explicitly specified, this baseline uses

4 threads for the normal database component, 1 thread for the

runtime tracing, and 75 threads for the provers.

• Litmus-DR is the same as Litmus-DRMexceptwith a single prover.

• Litmus-2PL is the Litmus system using the 2PL algorithm in Sec. 6.

• AD-Interact-1ms/100ms is an interactive baseline that follows the
vSQL style interaction between the server and the client for every

transaction. The client maintains a digest and performs lookup

proof verification locally. By issuing the transactions sequentially,

serializability and atomicity are guaranteed. The simulated la-
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Figure 3: Throughput and Latency vs Verification Batch Size - YCSB
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Figure 4: Throughput vs Verification Batch Size - TPC-C

tency for the network roundtrip is set to 1 ms to mimic a LAN

connection, and 100 ms to mimic a connection across countries

(e.g., from Los Angeles to Tokyo), respectively.

• Merkle Tree is the folklore approach to realize authenticated data
delegation. For every lookup and every update, the server needs

to supply a Merkle path consisting of𝑂(log𝑛) hashes. The client

maintains the root of the Merkle tree. We use SHA-256 as the un-

derlying hash algorithm. To make sure the experiment finishes

in a reasonable time, we use a smaller table with only 1024 rows.

• No-Verification-2PL/DR runs 2PL / Deterministic Reservation at 64

threads without any verification or any logging/traces collection.

They serve as performance upper bounds.

8.1 Throughput and Latency
The first experiment evaluates the runtime performance of Lit-

mus by measuring the throughput when the verification batch size

changes. We run the baselines with a single verification batch.

For all the baselines, the results in Figure 3a show that throughput

increases when the verification batch is larger because the verifiable

framework has overhead that grows sublinearly with the number of

constraints (namely, the circuit size). When the circuit is larger, the

amortized overhead becomes smaller. Litmus-DRM reaches 17,638

txn/sec when the number of transactions in a batch is 2.6m. This is

two orders of magnitude slower than the no-verification baseline,

and 24.7× faster than Litmus-DR, which uses a single prover thread

achieving 714.2 txn/sec at 82k transactions. The peak performance

of Litmus-DR is 12.6× faster than Litmus-2PL because it exploits ag-

gregation and transaction parallelism. Litmus-2PL is slower than

the deterministic reservation baselines due to less parallelism.

The interactive baselines plateau when the number of transac-

tions is larger than 320. The network latency becomes the bottleneck.

Further, the interactive baseline with simulated network latency

of 1ms starts to perform worse when the total number of transac-

tions increases. This is due to the computational overhead of the AD

scheme. Every single update of the digest invalidates all the proofs.

The server has to either compute the witnesses from scratch when

needed, or cache the proofs and update them for every digest up-

date. Both methods become more expensive when the number of

elements is larger. For the Merkle Tree baseline, the computation

overhead of SHA-256 degrades throughput. Our data collection pro-

cess stops when the lines start to plateau as the slow baselines take

an unacceptable amount of time to finish on large workloads.

The second experiment results in Figure 3b show the average

latency of the transactions for each of the baselines. The latency

covers the time period from the point when the user sends the trans-

action to the server to the point when the transaction commits and

the user receives the proof(s). The latency for Litmus baselines is

comparatively higher since the proving algorithm of the VC frame-

work has a significantly long critical path. Among these baselines,

Litmus-2PLhas thehighest latency since all the transactions not only

compile into a deep circuit, but also go into a single proof. On the

contrary, Litmus-DRM generates a smaller circuit and utilizes multi-

ple provers, with each prover processing a smaller circuit piece. The

transactions in those pieces that finish earlier have a smaller latency.

The deterministic reservation no-verification baseline starts with a

higher latency than the 2PL counterpart, as the CC algorithm needs

to wait for a large batch. The latency of the interactive baselines

remain stable because the latency is dominated by the simulated net-

work roundtrip when the number of transactions is smaller than

1,000. Then, the latency starts to get dominated by the computation,

as we can see clearly for the interactive-1ms baseline.

Figures 4a and 4b show the performance of Litmus and baselines

on TPC-C NewOrder transactions and Payment transactions. We

scanned the processing batchsize for deterministic reservation and

found that a smaller processing batch is preferable for both TPC-C

transactions. The performance of both no-verification baselines are

stable for NewOrder and Payment, because deterministic reserva-

tion has a small batch size. For New Order transactions, the peak

performance of Litmus-DRM is only 280.6 txn/sec. This is because

NewOrder transactions execute more queries, leading to more cryp-

tographic gates. The results are similar for Payment transactions.
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8.2 Sensitivity Study

We next discuss the sensitivity of Litmus to parameters including

processing batch size and the number of prover threads.

Figure 5a shows how the throughput of the deterministic reser-

vation baselines change when the processing batch size changes.

The x-axis is the batch size and the y-axis is the throughput. Both

of them are in log scale. We can observe that the no-verification

baseline remains stable with batch size, because the bottleneck of no-

verification is the underlyingworkload contention. However, for the

Litmus baselines, we can see that the throughput grows as the batch

size increases due to the larger batch size enabling better exploitation

of parallelism and thus the system incurs less prover computational

cost. Finally, the throughput decreases because the prover capac-

ity gets saturated while a too large batch harms the performance

of CC.We can see a factor of up to 36.2× between the Litmus-DRM

and Litmus-DR because of prover pipelining. Figure 5b presents the

latency information. When the processing batch size is extremely

small, the deterministic reservationCC schemedegrades to a sequen-

tial scheduler, incurring significant latency. The latency improves

with larger batch sizes, andplateauswhen the batch size increases be-

yond 10
4
. The latency of the no-verification baseline increases when

the batch size is large, because the too large batch size slows down

the synchronized portion of the deterministic reservation algorithm.

Figure 6 shows the throughput and latency of Litmus-DRMwhen

the number of prover threads changes. We see that the throughput

scales well up until 40 threads and starts to plateau when there are

more than 60 prover threads. As for the average latency, it drops

quickly from 514.3 seconds to around 100 seconds when there are

more than 40 prover threads.

Figure 7 shows the time breakdown of Litmus-DRM running a
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Figure 9: Performance of Litmus vs Table Size

verification batch of 2.6m transactions while varying the number

of prover threads. We can observe that with a smaller number of

prover threads, runtime trace processing (including computing the

memory integrity witnesses) takes around 18% of the time. However,

as we increase the number of prover threads, key generation and

proving gradually take a greater percentage of the time, ending up

with 51% and 38%, respectively. The verification takes a modest and

stable proportion regardless of the number of prover threads. Since

we hand-wrote the circuit, the circuit generation always takes min-

imal time (not noticeable in the figure). The size of the proofs are

constant, namely, 312 bytes per prover thread and 30 KB in total. It

takes the client around 300 sec to verify each proof. The key pair has

a large size, but we can use universal VC schemes (Sec. 9) where key

pairs are not necessary.

Figure 8 shows how the throughput changes with the contention

level of theworkload.Weobserve that all three deterministic reserva-

tion baselines are impacted heavily. Since a higher contention level

makes more transactions conflict with each other, each round of de-

terministic reservation produces a smaller non-conflicting batch.

Therefore, it needsmore rounds to finish processing the transactions.

This directly affects the performance of Litmus with deterministic

reservation as it cannot benefit from aggregating a large number

of transactions. Note that, the proving capability depends only on

the circuit size, which does not change with the contention level.

When the contention level is high, the performance of Litmus is close

to the no-verification baseline with DR because the performance

is bounded by the CC algorithm. Comparatively, the 2PL baselines

are less sensitive to the contention level. The interactive baselines

performance increases since a higher contention level brings better

cache utilization.

Figure 9 shows how Litmus performs for varying table sizes. We

observe that throughput decreases slowly as the table size doubles.

However, we ran out of memory at a 160G YCSB table, as our ma-

chine only has 173 GB RAM and we need to allocate space for the

traces. We can project that Litmus has promising performance for

even larger in-memory databases.

8.3 Comparison with Elle
To understand how Litmus performs compared to alternatives,

we evaluated Elle [35] with our codebase. Elle verifies serializabil-

ity by inferring from the transaction read values and write values.

Specifically, it changes all the write operations into list appends to

get a history of value versions. It looks for inconsistency between

transaction commit orders and the actual value histories.

We ran theno-verification baselinewith theYCSBbenchmark and



stored the list appending traces into the RAM disk to avoid perfor-

mance impacts from storage I/O. Elle reads and analyzes the traces,

and outputs the result. For fairness, we exclude the time of Elle read-

ing the traces, and include only the actual analyzing time.With 3.5m

txns
3
, Elle spent 576 sec, reaching a throughput of ∼ 5.5k txn/sec.

This is at the same level as reported in [35].

Both Cobra [55] and Elle are trace-based, which means they must

expose the trace to a trusted entity (a strong verifier able to infer the

dependency graph) or the client itself. In contrast, Litmus’s client

only needs to obtain a single constant-sized proof and verify it in

constant time. Moreover, Elle requires changes to the table schema

(replacing fixed-length values into var-length lists) to make accurate

inferences, and is designed to perform offline tests for software bugs,

but not for a continuous/growing history. In the case where an ac-

tive adversary is involved, itmight exploit the incompleteness of Elle

and perform violations with an irrecoverable history. Different from

Elle, Litmus checks correctness properties on the fly and provides

protection on the exact transactions submitted by the client. Mean-

while, Elle relies on the server to honestly provide a full history, and

the client to run an inference algorithm to look for serializability

violations.

9 Discussion
Wenext discuss some of our design insights and future directions.

As mentioned in Sec. 2, the motivation of Litmus is untrusted cloud

DBaaS services. One use case is critical cloud computing scenarios

where mistakes could have catastrophic consequences. Examples in-

cludefinancial institutionsandcriminal records.Ourdesign supports

large databases because the digest is constant-sized and verification

takes only constant time. The prover running time depends only on

the complexity of transaction logic, but not directly on the data size.

Why Cryptography: Compared to the interactive baseline, Lit-

mus lets the client delegate the “interactive verifier” onto the server.

Cryptography ensures that the verifier is working correctly. This

delegation enables (1) aggressive exploitation of parallelism and

aggregability because the server now has the freedom to re-shape

the verifier circuit for better performance, and the sequential order

is not necessarily materialized within the server (e.g., determinis-

tic reservation only produces batch-by-batch order); (2) network

communication becomes internal data exchange, saving significant

overhead; and (3) lightweight clients, which do not need to per-

form heavy transaction replays, (e.g., scanning the whole database

requires sending the whole database to the client in [32]).

UniversalVerifiableComputation: WecurrentlyuseGroth16[29]

to instantiate the verifiable computation primitive. However, this

comes with a trade-off regarding the trusted setup. Namely, we as-

sume a trusted third-party needs to know the circuit before the

proving starts. In our evaluation, we only implemented the server

side that performs the trusted setup for the client; there is a secu-

rity issue because the server might generate a malicious setup that

allows it to cheat. This is not a problem for the situations in our eval-

uation, where the transactions’ logic (i.e., circuits) is fixed and the

setup only needs to be done once.

However, if the transactions are not generated from a fixed tem-

plate, the client has to generate the setup for everynewcircuit. This is

3
We could not push it further because Elle exhausted our server’s 173 GBmemory.

computationally expensive, violating our assumption that the client

is lightweight. A better alternative is to replace the instantiation

with a universal verifiable computation framework like Plonk [26],

whose setup is circuit-independent.

Real-time Transactions and Hybrid Approach: Our current
design has a fundamental issue of having long latency. Due to the

current status of cryptographic tools, the latency of verification is

inevitable for batched verification. To address this, we propose two

solutions: (1)we can include ahybridmode,where Litmus can switch

between batch verification and interactive verification in real-time.

The memory digest of these twomodes are compatible. Whenever

a client needs faster responses, it can mark the transactions so that

the DBMS executes them in the interactive mode that has a lower

throughput because it cannot take advantage of aggregations, but it

will have a lower latency. (2)We can decouple the transaction results

and the cryptographic proof, i.e., Litmus can issue the results to the

client as soon as they are ready. The client receives the proof from

the server asynchronously. There also could be special transactions

that check for application invariant properties.

Consistency and Durability: A consistent transaction changes

the database only in certain ways. In a bank system, the rule could

be that the sum of all balances remains the same after a transfer

transaction. To verify consistency, we apply similar methods, but

specializing the memory integrity checker into customized check-

ers.Durability guarantees that once a transaction is committed, it

will remain committed even if the system crashes. To provide veri-

fiable durability, we have to rely on external shared storage because

there is no way to guarantee that the server has written to the disk

without letting the client have access to it. One approach would be

to design new hard drives with secure enclaves [22, 38]. We believe

recent advances in in-storage computation that enable data storage

to perform programmable tasks [61] may be promising.

10 Conclusion
We proposed a potential solution to data integrity issues and at-

tacks on transaction semantic properties in database outsourcing.

The Litmus system not only prevents amalicious server from return-

ingwrong results, but also provides an answer to ‘ACIDRain attacks’

[65] by preventing attackers from exploiting isolation levels.
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