OSPREY: Implementation of Memory Consistency Models for Cache
Coherence Protocols involving Invalidation-Free Data Access

George Kurianf, Qingchuan Shi*, Srinivas Devadas’, Omer Khan*

T Massachusetts Institute of Technology — {gkurian, devadas} @csail.mit.edu
I University of Connecticut — {qingchuan.shi, khan} @uconn.edu

Abstract—Data access in modern processors contributes sig-
nificantly to the overall performance and energy consumption.
Traditionally, data is distributed among the cores through an on-
chip cache hierarchy, and each producer/consumer accesses data
through its private level-1 cache relying on the cache coherence
protocol for consistency. Recently, remote access, a mechanism
that reduces energy and latency through word-level access to data
anywhere on chip has been proposed. Remote access does not
replicate data in the private caches, and thereby removes the need
for expensive cache line invalidations or updates. Researchers
have implemented remote access as an auxiliary mechanism in
cache coherence to improve efficiency. Unfortunately, stronger
memory models, such as Intel’s TSO, require strict ordering
among the loads and stores. This introduces serialization penalties
for data classified to be accessed remotely, which hampers each
core’s ability to optimally exploit memory level parallelism.

In this paper we propose a novel timestamp-based scheme
to detect memory consistency violations. The proposed scheme
enables remote accesses to be issued and completed in parallel
while continuously detecting whether any ordering violations
have occurred, and rolling back the pipeline state (if needed).
We implement our scheme for the locality-aware cache coherence
protocol that uses remote access as an auxiliary mechanism for
efficient data access. Our evaluation using a 64-core multicore
processor with out-of-order speculative cores shows that the
proposed technique improves completion time by 26 % and energy
by 20% over a state-of-the-art cache management scheme.

I. INTRODUCTION

Increasing the number of cores has replaced clock frequency
scaling as the method to improve performance in modern
multicore processors. These multiple cores can either be used
in parallel by multiple applications or by multiple threads
of the same application to complete work faster. Maintaining
good single-core performance and multicore scalability are of
the utmost importance in continuing to improve performance
and energy efficiency.

Since the working sets of applications rarely fit within the
L1 cache, ensuring good single-core performance requires the
exploitation of the memory level parallelism (MLP) in an
application. MLP can be exploited using out-of-order (OOO)
cores through dynamically scheduling independent memory
operations. In addition to being ubiquitous in server proces-
sors, current industry trends are moving towards OOO cores
in embedded (Atom [1], ARM [2]), and energy-efficient high-
performance processors (Knights Landing [3]) as well.

Maintaining high multicore scalability requires addressing
the challenges that arise when placing multiple interacting
cores on the same die. First, a higher number of cores intro-
duces greater pressure on off-chip memory to satisfy the needs
of all the cores. Second, a higher core count increases the
sensitivity to network bandwidth, latency and energy efficiency

since an increasingly higher fraction of memory requests is
spent in the network.

State-of-the-art multicore processors must also balance ease
of programming with good performance and energy efficiency.
The programming complexity is significantly affected by the
memory consistency model of the processor. The memory
model dictates the order in which the memory operations of
one thread appear to another. The strongest memory model is
the Sequential Consistency (SC) [4] model. SC mandates that
the global memory order is an interleaving of the memory
accesses of each thread with each thread’s memory accesses
appearing in program order in this global order. SC is the most
intuitive model to the software developer and is the easiest to
program and debug with.

Commercial processors do not implement SC due to its
negative performance impact. ARM [2] and IBM Power [5]
processors implement relaxed (/weaker) memory models that
allow reordering of load and store instructions with explicit
fences for ordering when needed. These processors can better
exploit MLP, but require careful programmer-directed inser-
tion of memory fences to do so. Automated fence insertion
techniques sacrifice performance for programmability [6].

Intel x86 [7] and SPARC [8] processors implement Total
Store Order (TSO), which attempts to strike a balance between
programmability and performance. The TSO model only re-
laxes the Store—Load ordering of SC, and improves perfor-
mance by enabling loads (that are crucial to performance) to
bypass stores in the write buffer. Note that fences may still
be needed in critical sections of code where the Store—Load
ordering is required.

Implementing the TSO model on OOO core based pro-
cessors in a straightforward manner sacrifices memory level
parallelism. This is because loads have to wait for all previous
load/fence operations to complete before being issued while
stores/fences have to wait for all previous load/store/fence
operations. This inefficiency is circumvented in current pro-
cessors by employing two optimizations [9]. (1) Load per-
formance is improved using speculative execution, enabling
loads to be issued and completed before previous load/fence
operations. Memory consistency violations are detected when
invalidations, updates or evictions are made to addresses in the
load queue. The pipeline state is rolled back if this situation
arises. (2) Store performance is improved using exclusive store
prefetch requests. These prefetch requests fetch the cache line
into the L1-D cache and can be executed out-of-order and in
parallel. The store requests, on the other hand, must be issued
and completed in-order to preserve TSO. However, most store
requests hit in the L1-D cache (due to the earlier prefetch

request) and hence can be completed quickly. The performance
of fences is automatically improved by optimizing the previous
load and store operations. Note that the above two optimiza-
tions can also be employed to improve the performance of
processors under sequential consistency or memory models
weaker than TSO.

A. Memory Consistency Models and Data Access Efficiency

Unfortunately, cache coherence protocols that intelligently
avoid cache line invalidations or updates are incompatible with
these optimizations. For example, the locality-aware cache
coherence protocol! has been recently proposed to improve
on-chip memory access latency and energy efficiency in large-
scale multicores [10]. This protocol is motivated by the obser-
vation that cache lines exhibit varying degrees of reuse (i.e.,
variable spatio-temporal locality) at the private cache levels. A
cache-line level classifier is introduced to distinguish between
low and high-reuse cache lines. A traditional cache coherence
scheme that replicates data in the private caches is employed
for high-reuse data. Low-reuse data is handled efficiently using
a remote access [11] mechanism that does not allocate data in
the private cache levels. Instead, it allocates only a single copy
in the designated core’s shared cache slice and directs load and
store requests made by all other cores towards it. Data access is
performed at the word level and requires a roundtrip message
between the requesting core and the remote cache slice.
This improves the utilization of private cache resources by
removing unnecessary data replication. In addition, it reduces
network traffic by transferring only those words in a cache
line that are accessed on-demand. Consequently, unnecessary
invalidations and write-back requests are removed that reduce
network traffic even further.

A drawback of using remote access in cache coherence
protocols is that invalidation/update requests are avoided and
thereby, cannot be used to detect memory consistency viola-
tions for speculatively executed load operations. In addition,
an exclusive store prefetch request is not applicable since a
remote access never caches data in the private cache. We seek
to develop a new micro-architectural mechanism that retains
the advantages of auxiliary techniques, such as remote access,
for efficient data access, and at the same time removes their
dependence on the underlying cache coherence protocol for
memory consistency violation detection.

B. Principal Contributions of OSPREY

We propose a novel timestamp-based scheme to detect
memory consistency violations in multicores that implement
speculative execution and invalidation-free data access proto-
cols. To demonstrate the applicability of our proposed scheme,
we extend the recently proposed locality-aware coherence
protocol to work with OOO speculative cores for popular
memory models. Each load and store operation is assigned an
associated timestamp and a simple arithmetic check is done
at commit time to ensure that memory consistency has not
been violated. The timestamp mechanism is efficient due to the
observation that consistency violations occur due to conflicting

Locality-aware cache coherence protocol has been evaluated for the
Sequential Consistency (SC) memory model using in-order cores with a single
outstanding memory transaction per-core [10].

accesses that have temporal proximity (i.e., within a few cycles
of each other), thus requiring timestamps to be stored only
for a small time window. This technique works completely in
hardware and requires only 2.2K B of storage per core. This
scheme guarantees forward progress and is starvation-free.

Our evaluation using a 64-core multicore with out-of-order
speculative cores shows that the timestamp-based memory
consistency violation detection scheme, when implemented
on top of the locality-aware cache coherence protocol [10],
improves completion time by 26% and energy by 20%
over a state-of-the-art cache management scheme (Reactive
NUCA [12]).

II. BASELINE MULTICORE SYSTEM

The baseline is a tiled multicore processor with a 2-D mesh
interconnection network. Each core consists of a compute
pipeline, private L1 instruction and data caches, a physically
distributed shared L2 (/LLC) cache with integrated directory,
and a network router. The coherence directory is integrated
with the LLC slices by extending the tag arrays and tracks
the sharing status of the cache lines in the per-core private
L1 caches. The private L1 caches are kept coherent using
the ACKwise limited directory-based coherence protocol [13].
Some cores have a connection to a memory controller as well.

The mesh network uses dimension-order X-Y routing and
wormbhole flow control. Reactive-NUCA’s [12] data placement,
replication and migration mechanisms are used to manage the
LLC. Private data is placed at the L2 slice of the requesting
core, shared data is address interleaved across all L2 slices,
and instructions are replicated at a single L2 slice for every
cluster of 4 cores using a rotational interleaving mechanism.

When a core makes a memory request that misses the private
L1 cache, the locality-aware protocol [10] either brings the
entire cache line using a traditional directory scheme, or just
accesses the requested word at the shared L2 cache location
using remote access. This decision is based on the spatio-
temporal locality of the cache line. The reuse is profiled at
runtime using hardware counters in the private L1 cache and
the shared coherence directory. These counters are maintained
at a cache line granularity. A classifier subsequently uses this
profiled information to mark data as privately cacheable at the
L1 cache or remotely accessed at the shared L2 cache based
on a watermark called the Private Caching Threshold (PCT).
The classification decision is continuously adapted at runtime
so as to closely track the behavior of the application.

III. TIMESTAMP-BASED CONSISTENCY VALIDATION

This section introduces the proposed timestamp-based tech-
nique for detecting memory consistency violations. This tech-
nique allows all load/store operations to be executed specu-
latively. Speculation failure is detected by associating times-
tamps with every memory transaction and performing a simple
arithmetic check at commit time. We describe the working of
this technique under the popular TSO memory model. Later,
in Section I'V-A, we discuss how it can be extended to stronger
(i.e., SC) or weaker memory models.

The timestamp-based technique is built up gradually through
a sequence of steps. The microarchitecture changes needed are
colored in in Figure 1, and will be described when

/ Core \ ROB : Reorder Buffer
SQ : Store Queue
L1-1 Cache »— LQ : Load Queue
Cc‘)mp‘ute TC: Timestamp Counter
L1-D Cache | |E=8 Pipeline TC-H : Timestamp — HRP
1 — - Counter
L1LHQf L1SHQ sQ La r DRQ : Directory Request
E 1 L | |] [TCH Queue
| |
Network |_| L2
Cache = B E==—

KRouter /

L1LHQ / L1SHQ: L1 Cache Load / Store History Queue
L2LHQ / L2SHQ : L2 Cache Load / Store History Queue

Fig. 1. Microarchitecture of a Multicore Tile. The -colored modules

are added to implement the proposed modifications.

introduced. The implementation is first described for a pure
remote access scheme (that always accesses the shared L2
cache). Later, we describe adaptations for the locality-aware
protocol that combines both remote L2 and private L1 cache
accesses according to the reuse characteristics of data.

A. Simple Implementation of TSO Ordering

We first introduce a straightforward method to ensure TSO
ordering (without speculation). The TSO model can be im-
plemented by enforcing the following two constraints: (1)
Load operations wait (i.e., without being issued to the cache
subsystem) till all previous loads and fences complete; (2)
Store operations and fences wait till all previous loads, stores
and fences complete. If all memory references are satisfied
by the L1 cache, this scheme works quite well. However, a
memory transaction that misses in the L1 cache takes several
(~10-100) cycles to complete. During this time, the load and
store queues fill up quickly and stall the pipeline.

B. Basic Timestamp Scheme

Next, we formulate a mechanism to increase the perfor-
mance of load operations (instead of making them wait as
described above). This requires enabling loads to execute
(speculatively) as soon as their address operand is ready,
potentially out-of program order and concurrently with other
loads. This could violate the TSO memory consistency model,
and hence, a validation step is required to ensure that memory
ordering is preserved. Stores and fences, on the other hand,
have to wait till all previous loads, stores and fences have been
completed.

To build a deeper understanding for the validation step,
consider the example shown in Figure 2 that illustrates how
it works in current out-of-order processors. Core 1 executes
LoAD A followed by LOAD B, while Core 2 executes STORE
B followed by STORE A. Initially, both A and B contain
the value ‘0’. The load/store requests execute and arrive at
their ordering points in the sequence shown in Figure 2.
LoAD B arrives first, followed by STORE B, STORE A and
finally, LOAD A. This ordering is permitted as loads can
execute speculatively and out-of-order with previous loads.
LoAD B returns the value ‘0’ while LOAD A returns the
value ‘1’. LOAD A is allowed to commit. However, LOAD
B cannot commit since its execution violates TSO ordering.

Loret Core 2
Load A; Store B=1;
Load B; | |nitial A, B=0 Store A=1;
‘Load A’ issue
‘Load B’ issue
‘Load B’ complete Store B=1
- 7 ‘Store A=1’

Invalidation for & = -
address B

‘Load A’ complete

‘Load A’ commit A=1 OK?v’
‘Load B’ commit B=0 OK? X

Rollback and Re-execute

Time
from ‘Load B’

Fig. 2. Example of TSO consistency violation due to load speculation.

TSO mandates that the global memory order should respect
both Load—Load and Store—Store program ordering.

TSO memory ordering can be enforced by relying on cache
coherence messages and performing a consistency validation
check at the commit time of each load operation. In this
example, STORE B generates an invalidation request for Core
1 (as shown in Figure 2). This invalidation message checks for
an outstanding load to address B in Core 1’s load queue, and if
present, sets the “conflict” flag. When the commit-time check
for LOAD B determines that the conflict flag has been set, the
core pipeline is rolled back and execution is restarted from
the load operation. Note that an eviction request for address
B triggers the pipeline rollback as well.

With an invalidation-free data access protocol, STORE B
does not generate an invalidation request for Core 1. Hence,
the previously described check cannot be used to detect mem-
ory consistency violations. The following sections describe
how a timestamp-based validation technique can be used to
detect violations for such protocols.

1) Timestamp Generation: Timestamps are generated using
a per-core counter, the Timestamp Counter (TC), as shown in
Figure 1. TC increments on every clock cycle. Assume for now
that timestamps are of infinite width, i.e., they never rollover
and all cores are in a single clock domain. We will remove
the infinite width assumption in Section III-D and discuss the
single clock domain assumption in Section IV-B. Timestamps
are tracked at different points of time, e.g., during load
issue, store completion, etc. and comparisons are performed
on these timestamps to determine whether speculation has
failed according to the algorithms discussed in the following
subsections.

2) Microarchitecture Modifications: The following changes
are made to the L2 cache, the load queue and the store queue
to facilitate the tracking of timestamps.

L2 Cache: The shared L2 cache is augmented with an L2
Load History Queue (L2LHQ) and an L2 Store History Queue
(L2SHQ) as shown in Figure 1. They track the times at which
loads and stores have been performed at the L2 cache. The
timestamp assigned to a load/store is the time at which the
request arrives at the L2 cache. Each entry in the L2LHQ /
L2SHQ has two attributes, Address and Timestamp. An entry

|Address| Issue-Time | Last-Store-Time |

Fig. 3. Structure of a load queue entry.

| Address | Data | Last-Access-Time |

Fig. 4. Structure of a store queue entry.

is added to the L2LHQ or L2SHQ whenever a remote load or
store arrives. Assume for now that the L2LHQ / L2SHQ are of
infinite size. We will remove this requirement in Section III-C.
Load Queue: Each load queue entry is augmented with the
attributes shown in Figure 3. The IssueTime field records the
time at which the load was issued to the cache subsystem
and the LastStoreTime is the most recent modification time
of the cache line. A remote load obtains this timestamp from
the L2SHQ. If there are multiple entries in the L2SHQ corre-
sponding to the address, the most recent entry’s timestamp is
taken. This is then relayed back to the core over the on-chip
network along with the word that is read.

Store Queue: Each store queue entry is augmented with the
attributes shown in Figure 4. The Data contains the word
to be written. The LastAccessTime field records the most
recent access time of the cache line at the L2 cache. A
remote store obtains the most recent timestamps from the
L2LHQ and L2SHQ respectively. The maximum of the two
timestamps is computed to get the LastAccessTime. This is
then communicated back to the core over the on-chip network
along with the acknowledgement for the store.

Each core also maintains the OrderingTime and StoreOrder-
ingTime fields that are used to detect speculation violations.
These fields are needed to precisely track the timestamp
history that may otherwise be lost due to newer allocations
in the load and store queues.

3) Speculation Violation Detection: In order to ensure that
speculatively executed loads conform to the TSO memory
consistency model, the IssueTime of a load must be greater
than or equal to:

o The LastStoreTime observed by previous load operations.
This ensures that the current speculatively executed load
can be placed after all previous load operations in the
global memory order. In other words, the global memory
order for any pair of load operations from the same thread
respects program order. In case the above condition is not
met, the Load —Load ordering requirement of TSO is
violated due to an intervening store operation.

o The LastAccessTime observed by previous store opera-
tions that are separated from the current load by a mem-
ory fence (MFENCE in x86). This ensures that the load
can be placed after previous fences in the global memory
order, i.e., the Fence — Load ordering requirement of
TSO is met.

The OrderingTime field conveniently holds the instanta-
neous maximum of the above two timestamps. The functions
in Algorithm 1 are responsible for updating this field and
performing the necessary consistency validation check. The
COoMMITLOAD function is executed when a load is ready to be
committed. Speculation failure is determined by comparing the
IssueTime of the load against OrderingTime. If the IssueTime
is greater, speculation has succeeded and the OrderingTime

Algorithm 1 : Basic Timestamp Scheme

1: function COMMITLOAD()

2 if IssueTime < OrderingTime then

3 REPLAYINSTRUCTIONSFROMCURRLOAD()
4: return

5: if OrderingTime < LastStoreTime then

6

7

8

OrderingTime < LastStoreTime
: function COMPLETESTORE()
if StoreOrderingTime < LastAccessTime then
9: StoreOrderingTime < LastAccessTime
10: function COMMITFENCE()
11: if OrderingTime < StoreOrderingTime then
12: OrderingTime <— StoreOrderingTime

is updated to reflect the LastStoreTime observed by the load.
Else, speculation has failed, and the instructions are replayed
starting from the current load.

The COMPLETESTORE function is executed when a store
completes execution, i.e., it is removed from the store queue
and inserted into the cache hierarchy. Note that the store could
have been committed (possibly much earlier) as soon as its
address calculation and translation are done. The StoreOrder-
ingTime field in the store queue keeps track of the maximum of
the LastAccessTime observed by previously completed stores
and is updated at the time of completion of each store.

The COMMITFENCE function is executed when a fence

is ready to be committed. This function updates the Order-
ingTime to reflect the StoreOrderingTime field and serves to
maintain the Fence —Load ordering.
Why does this work? The above validation check suffices
to ensure that the global memory order respects program
order (except for the Store—Load order). The OrderingTime
field at the end of the COMMITLOAD and COMMITFENCE
functions indicates the position of the corresponding load
and fence operations in the global memory order while the
StoreOrderingTime field at the end of the COMPLETESTORE
function indicates the position of the corresponding store
operation. These positions reflect the ordering of operations
to the same address from multiple program threads as well.

If sequential consistency (SC) is to be implemented instead
of TSO, all store operations are marked as being accompa-
nied by an implicit memory fence. So, for speculation to
be successful, the IssueTime of a load operation must be
greater than or equal to the maximum of the LastStoreTime
and LastAccessTime observed by previous load and store
operations respectively.

4) Consistency Validation Example: An example illustrat-
ing the working of the timestamp-based consistency validation
check is shown in Figure 5. The memory access pattern
is the same as that studied previously in Figure 2. The
timestamps associated with each event (such as load issue,
commit, etc.) are as shown in Figure 5. Initially, assume that
the OrderingTime at Core 1 is ‘3’ (from previously executed
loads/stores to other memory addresses). LOAD A and LOAD
B are issued and completed in the order shown. Speculative
execution allows LOAD B to complete before LOAD A on
Core 1. When LOAD B completes (@ °15°), the LastStoreTime
is recorded as ‘0’ since no stores have been made to ADDRESS

Core-1 Core-2

Initially, OrderingTime=3
‘Load A’ issue @ 10
‘Load B’ issue @ 11
LastStoreTime(‘Load B’)=0; ‘Load B’ complete @ 15

‘Store B’ @ 16

‘Store A’ @ 17
LastStoreTime(‘Load A’)=17; ‘Load A’ complete @ 22
Is IssueTime=10 > OrderingTime=3? v/ ‘Load A’ commit @ 23

Update, OrderingTime=17
Is IssueTime=11 > OrderingTime=17 ? X ‘Load B’ commit @ 24 Time
Rollback and Re-execute from ‘Load B’ v

Fig. 5. Using timestamp scheme to detect violations due to speculative loads.
The timestamps associated with each event are as shown. The memory access
pattern is the same as shown in Figure 2.

B so far. On the other hand, when LOAD A completes (@ ‘22’),
the LastStoreTime is recorded as ‘17’ since STORE A from
Core 2 has been performed at time “17’.

Now, when LOAD A commits (@ ‘23’), the COMMITLOAD
function is executed which compares the IssueTime of LOAD A
(=10’) against the OrderingTime (=‘3’). Since the IssueTime
is > OrderingTime, Core 1 safely commits LOAD A. In
addition, the OrderingTime is updated to reflect the observed
LastStoreTime (=‘17’). However, when LOAD B commits
(@24’), the IssueTime (=°11") is < the OrderingTime (=‘17").
Hence, the TSO validation check fails. The pipeline state in
Core 1 is rolled back and execution is restarted at LOAD B.
Also, observe that when LOAD B restarts, its IssueTime is
always greater than the OrderingTime (=‘17"), and hence it
always commits (guaranteeing forward progress).

C. Finite History Queues

A drawback of the algorithm discussed so far is that the
size of the load/store history queues cannot be bounded (i.e.,
they can grow arbitrarily large). The objective of this section
is to bound the size of the L2 history queues. Note that the
timestamps could still grow arbitrarily large (we will remove
this requirement in Section III-D).

The history queues can be bounded by the observation
that the processor cores only care about load/store request
timestamps within the scope of their reorder buffer (ROB).
For example, if the oldest micro-op in the ROB has been
dispatched at 1000 cycles, the processor core does not care
about load/store history earlier than 1000 cycles. This is
because memory requests from other cores carried out before
this time will not cause consistency violations. Hence, history
needs to be retained only for a limited interval of time called
the History Retention Period (HRP). After the retention period
expires, the corresponding entry can be removed from the
history queues. How long should the history retention period
be? Intuitively, if the retention period is equal to the maximum
lifetime of a load or store operation starting from dispatch (to
the reorder buffer) till completion, no usable history will be
lost. However, the maximum lifetime of a memory operation
cannot be bounded in a modern multicore system due to
non-deterministic queuing delays in the on-chip network and
memory controller.

An alternative is to set HRP such that nearly all (~99%)
memory operations complete within that period. If operations

do not complete within HRP, then spurious violations might
occur. As long as these violations only affect overall system
performance and energy by a negligible amount, they can
be tolerated. Increasing the value of HRP reduces spurious
violations but requires large history queues (L2ZLHQ/L2SHQ)
while decreasing the value of HRP has the reverse effect.
Finding the optimal value of HRP is critical to ensuring good
performance and energy efficiency.

1) Speculation Violation Detection with Finite Queues:
Speculation violations are detected using the same algorithm
in Section III-B. However, since entries can be removed
from the L2 history queues, checking the history queues
may not yield the latest load and store timestamps. Hence,
an informed assumption regarding previous history has to
be made. If no load or store history is observed for a
memory request, it can be safely assumed that the request
did not observe any load/store operations at the L2 cache
after ‘CompletionTime — HRP’ (CompletionTime represents
the time when the load/store request completes). Hence, the
LastStoreTime and LastAccessTime required by the algorithm
in Section III-B are adjusted as shown by the ADJUSTHIS-
TORY function in Algorithm 2. Note that ‘NONE’ indicates no
load/store history for a particular address.

Algorithm 2 : Finite History Queues

function ADJUSTHISTORY()
if LastLoadTime = NONE then
LastLoadTime <— CompletionTime — HRP

1:
2
3:
4: if LastStoreTime — NONE then
5.
6

LastStoreTime <— CompletionTime — HRP
LastAccessTime < MAX(LastLoadTime, LastStoreTime)

2) Finite Queue Management:: Adding entries to the his-
tory queue and searching for an address works similar to the
description in Section III-B. However, with a finite number of
entries, two extra considerations need to be made.

1) History queue overflow needs to be considered and

accommodated.

2) Queue entries need to be pruned after the history reten-

tion period (HRP) expires.

The finite history queue is managed using a set-associative
structure that is indexed based on the address (just like a
regular set-associative cache). The overheads associated with
the history queues are discussed in Section III-G.

Queue Insertion: When an entry (<Address, Timestamp>)
needs to be added to the queue, the set corresponding to
the address is first read into a temporary register. A pruning
algorithm is applied on this register to remove entries that
have expired (this will be explained later). Then the <Address,
Timestamp> pair is added to the set as follows. If the address
is already present, then the maximum of the already present
timestamp and the newly added timestamp is computed and
written. If the address is not present, then the algorithm checks
whether an empty entry is present. If yes, then the new
timestamp and address are written to the empty entry. Else, the
oldest timestamp in the set is retrieved and evicted. The new
< Address, Timestamp> pair is written in its place. In addition
to the set-associative structure, each queue also contains a

Conservative Timestamp (ConsTime) field. The ConsTime field
is used to hold evicted timestamps that have overflowed till
they expire.

Pruning Queue: A pruning algorithm removes entries from
the queue after their retention period (HRP) has expired
(and/or) resets the ConsTime field. This function uses a second
counter called TC-H (shown in Figure 1). This counter lags
behind the timestamp counter (TC) by HRP cycles. If a partic-
ular timestamp is less than TC-H, the timestamp has expired
and can be removed from the queue. On every processor cycle,
the TC-H value is also compared to ConsTime. If equal, the
ConsTime has expired and can be reset to ‘NONE’.

Searching Queue: When searching the queue for an address,
the set corresponding to the address is first read into a
temporary register. If there is an address match, then the
timestamp is returned. Else, the ConsTime field is returned. To
maintain maximum efficiency, the ConsTime field should be
‘NONE’ (expired) most of the time, so that spurious load/store
times are not returned.

For efficiency, all entries in a set are searched in parallel.
However, since these history queues are really small (cf.
Section III-G), the above computations can be performed
within the cache access time.

D. In-Flight Transaction Timestamps

One of the main drawbacks of the algorithm presented in
Section III-B was that the timestamps should be of infinite
width, i.e., they are never allowed to rollover during the
operation of the processor. This drawback can be removed by
the observation that only the timestamps of memory operations
present in the reorder buffer (ROB) need to be compared when
detecting consistency violations, i.e., only memory transac-
tions that have temporal proximity could create violations.
Hence, Load and Store timestamps need to be distinct and
comparable only for recent memory operations.

Finite Timestamp Width (TW): The above observation can
be exploited to use a finite timestamp width (TW). When the
timestamp counter reaches its maximum value, it rolls over
to ‘0’ in the next cycle. The range of possible values that
the counter can take could be divided into two quantums, an
‘even’ and an ‘odd’ quantum. During the even quantum, the
most significant bit (MSB) of the timestamp counter is ‘0’
while during the odd quantum, the MSB is ‘1°. For example,
if the timestamp width (TW) is 3 bits, values 0-3 belong to the
even quantum while values 4-7 belong to the odd quantum.
Now, to check which timestamp is greater than the other, it
needs to be known whether the current quantum (i.e., the MSB
of the TC [Timestamp Counter]) is an even or an odd quantum.
If the current quantum is even, then any timestamp with an
even quantum is automatically greater than a timestamp with
an odd quantum. If two timestamps of the same quantum are
compared, a simple arithmetic check suffices to know which
is greater.

Recency of Timestamps: A possible problem with the above
comparison is when the timestamps that are compared are
not recent. For example, consider a system with a timestamp
width (TW) of 3 bits. Assume TC is set to 3 to start with.
Timestamp, T4, is now generated and set to the value of TC,

i.e., 3. Then, TC increments, reaches its maximum value of
7 and rolls over to 1. Now, another timestamp, Tp, is set
to 1. If the check, T4 > Tp is now performed, the result
is true according to the algorithm discussed above. But, T4
was generated before Tz, so the result should have been false.
The comparison check returned the wrong answer because 14
was ‘too old’ to be useful. Timestamps have to be ‘recent’ in
order to return an accurate answer during comparisons. Given
a particular value of the timestamp counter (TC), timestamps
have to be generated in the current quantum or the previous
quantum to be useful for comparison. In the worst case, a
timestamp should have been generated at most 27" ~1 cycles
before the current value of TC to be useful.
Consistency Check: In the algorithms described previously,
the only arithmetic check done using timestamps is at the
commit point of load operations. The check performed is:
IssueTime > OrderingTime. If both IssueTime and Ordering-
Time are recent, the check always returns a correct answer,
else it might return an incorrect answer. Now, if IssueTime
is recent and OrderingTime is old, the ‘correct’ answer for
the consistency check is true, however, it might return false
in certain cases. The answer being ‘false’ is OK, since all
it triggers is a false positive, i.e., it triggers a consistency
violation while in reality, there is no violation. As long as
the number of false positives is kept low, the system functions
efficiently. So, the important thing is to keep IssueTime recent.
This is accomplished by adding another bit to each reorder
buffer (ROB) entry to track the MSB of its DispatchTime
(i.e., the time at which the micro-op was dispatched to the
ROB). So, each ROB entry tracks if it was dispatched during
the even or the odd quantum. If the DispatchTime is kept
‘recent’, the IssueTime of a load operation will also be recent,
since issue is after dispatch. The DispatchTime is kept recent
by monitoring the entry at the head of the ROB and the
timestamp counter (TC). If the TC rolls over from the odd
to the even quantum with the head of the ROB pointing
to an entry dispatched during the even quantum, then that
entry’s timestamp is considered ‘old’. A speculation violation
is triggered and instructions are replayed starting with the one
at the head of the ROB. Likewise, if the TC rolls over from
the even to the odd quantum with the head pointing to an odd
quantum entry, a consistency violation is triggered. Through
experimental observations, the timestamp width (TW) is set
to 16 bits. This keeps the storage overhead manageable while
creating almost no false positives. With T'W = 16, each entry
in the ROB has 27" ~1 = 32768 cycles to commit before a
consistency violation is triggered due to rollover.

E. Mixing Remote Accesses and Private Caching

The previous sections described the implementation of TSO
on a pure remote access scheme. The locality-aware protocol
chooses either remote access at the shared L2 cache or private
caching at the L1 cache based on the spatio-temporal locality
of data. Hence, the timestamp-based consistency validation
scheme should be adapted to such a protocol.

1) L1 Cache History Queues (LILHQ/LISHQ): Such an
adaptation requires information about loads and stores made
to the private L1-D cache to be maintained for future reference
in order to perform consistency validation. This information

needs to be captured because private L1-D cache loads/stores
can execute out-of-order and interact with either remote or
private cache accesses such that the TSO memory consistency
model is violated. Similar to the history queues at the L2
cache, the L1 Load History Queue (LILHQ) and the L1 Store
History Queue (L1SHQ) are added at the L1-D cache (shown
in Figure 1) and capture the load and store history respectively.
The history retention period (HRP) dictates how long the
history is retained for. The management of the LILHQ/L1SHQ
(i.e., adding/pruning/searching) is carried out in the exact same
manner as the L2 history queues.

With history queues at multiple levels of the cache hierar-
chy, it is important to keep them synchronized. An invalida-
tion, downgrade, or eviction request at the L1-D cache causes
the last load/store timestamps (if found) to be sent back along
with the acknowledgement so that they can be preserved at
the shared L2 cache history queues until the history reten-
tion period (HRP) expires. From the L2LHQ/L2SHQ, these
load/store timestamps are passed onto cores that remotely
access or privately cache data. A cache line fetch from the
shared L2 cache into the L1-D cache copies the load/store
history for the address into the LILHQ/L1SHQ as well. This
enables the detection of consistency violations using the same
timestamp-based validation technique described earlier.

2) Exclusive Store Prefetch: Since exclusive store prefetch
requests can be used to improve the performance of stores that
are cached at the L1-D cache, they must be leveraged by the
locality-aware protocol as well. In fact, these prefetch requests
can be leveraged by remote stores to prefetch cache lines from
off-chip DRAM into the L2 cache. This can be accomplished
only if both private and remote stores are executed in two
phases.

The first phase (exclusive store prefetch) is executed in
parallel and potentially out-of program order as soon as the
store address is ready. If the cache line is already present at the
L2 cache, then the first phase for remote stores is effectively a
NOP but must be executed nevertheless since the information
about whether a store is handled remotely or cached privately
is only present at the directory (that is co-located with the
shared L2 cache). The second phase (actual store) is executed
in order, i.e., the store is issued only after all previous stores
have completed (to ensure TSO ordering) and the first phase of
the current store has been acknowledged. The second phase
for stores to the private L1-D cache complete quickly (~1-
2 cycles), while remote stores have to execute a round-trip
network traversal to the remote L2 cache to be completed.

F. Parallelizing Non-Conflicting Accesses

An alternate/complementary method to exploit memory
level parallelism while maintaining TSO is to recognize the
fact that only conflicting accesses to shared read-write data
can cause memory consistency violations. Concurrent reads to
shared read-only data and accesses to private data cannot lead
to violations [14], [12]. Such memory accesses can be both
issued and completed out-of-order. Only accesses to shared
read-write data must be ordered according to the TSO model.
In order to accomplish the required classification of data into
private, shared read-only and shared read-write, our baseline

machine [12] extends the page-level classifier by augmenting
existing TLB and page table structures (similar to [14]).

The TSO ordering of shared read-write data could be
implemented in two ways: (1) executing memory operations in
the strict order mandated by TSO as described in Section III-A,
and (2) employing the timestamp-based speculative execution
scheme discussed in the previous subsections. Note that using
the timestamp check only for shared read-write data implies
that the history queue modifications and search operations can
be avoided for private and shared read-only data. This reduces
the energy overhead of the history queues. We will evaluate
both these approaches in this paper.

G. Overheads

The storage, latency and energy overheads of the timestamp-
based technique are as follows:
L1 History Queues: The L1SHQ (L1 store history queue)
is sized based on the expected throughput of store requests
to the private L1-D cache and the History Retention Period
(HRP). In Section VI-C, HRP is empirically found to be
512ns using a sensitivity study. A memory access is expected
every 3 instructions, and a store is expected every 3 memory
accesses, so for a single issue processor with a 1 GHz clock,
a store is expected every 9ns. Each LISHQ entry contains the
store timestamp and the physical cache line address (42 bits).
The width of each timestamp is 16 bits (as discussed above).
Hence, the size of the LISHQ = %‘Mbits = 0.4KB.
The throughput of loads is approximately twice that of stores,
hence the size of the LILHQ (L1 load history queue) is 0.8KB.

Since the LILHQ and L1SHQ are much smaller than the
L1-D cache, they can be accessed in parallel with the cache
tags, and so do not add any extra latency. The energy expended
when accessing these structures is modeled in our evaluation.

L2 History Queues: The L2SHQ is sized based on the ex-
pected throughput of remote store requests to the L2 cache and
invalidations/write-backs from the L1-D cache. The through-
put of remote requests is much less than that of private L1-D
cache requests, but can be susceptible to higher contention if
many remote requests are destined for the same L2 cache slice.
To be conservative, the expected throughput is set to one store
every 18 processor cycles (this is 4x the average expected
throughput from experiments). The same calculation (listed
above) is repeated to obtain a size of 0.2KB. The L2LHQ has
twice the expected throughput as the L2SHQ so its size is
0.4KB.

Since the L2LHQ and L2SHQ are much smaller than the
L2 cache, they can be accessed in parallel with the cache tags,
and do not add any extra latency. The energy expended when
accessing these structures is modeled in our evaluation.
Load/Store Queues and Reorder Buffer: Each load queue is
augmented with 2 timestamps and each store queue entry with
1 timestamp respectively (as shown in Figures 3 and 4). With
64 load queue entries, the overhead is 64 x 2 x 16 bits =
256 bytes. With 48 store queue entries, the overhead is
48 x 16 bits = 96 bytes. A single bit added to the ROB for
timestamp overflow detection has only a negligible overhead.

Network Trafficc Whenever an entry is found in the
LILHQ/L1SHQ on an invalidation/write-back request or an

entry is found in the L2LHQ/L2SHQ during a remote access
or cache line fetch from the L2 cache, the corresponding
timestamp is added to the acknowledgement message. Since
each timestamp width is 16 bits and the network flit size is 64
bits (see Table I), even if both the load and store timestamps
need to be accommodated, only 1 extra flit needs to be added
to the acknowledgement.

Counting all the above changes, the total storage overhead
is ~2.2 K B per core. We consider the latency and energy over-
heads associated with the timestamp scheme in our evaluation.

H. Forward Progress and Starvation Freedom Guarantees

Forward progress for each core is guaranteed by the
timestamp-based consistency validation protocol. To under-
stand why, consider the two reasons why load speculation
could fail: (1) Consistency Check Violation, and (2) Times-
tamp Rollover.

If speculation fails due to the consistency check violation,
then re-executing the load is guaranteed to allow it to com-
plete. This is because the IssueTime of the load (when executed
for the second time) will always be greater than the time at
which the consistency check was made, i.e., the commit time
of the load, which in turn is greater than OrderingTime. This
is because OrderingTime is simply the maximum of load and
store timestamps observed by previous memory operations,
and the time at which the load is committed is trivially greater
than this.

If speculation fails due to timestamp rollover, then re-
executing the load/stores is guaranteed to succeed unless the
timestamp rolls over again. This condition is prevented by
adding a special check to make sure the operation where re-
execution starts always commits (regardless of rollover) since
it cannot conflict with any previous operation. Since forward
progress is guaranteed for all the cores in the system, this
technique of ensuring TSO ordering is starvation-free.

IV. DISCUSSION
A. Other Memory Models

Section III discussed how to implement the TSO memory
ordering using the proposed timestamp-based memory consis-
tency verification scheme. The TSO model is the most popular,
being employed by x86 and SPARC processors. Other memory
models of interest are Sequential Consistency (SC), Partial
Store Order (PSO), and the IBM Power/ARM models. We
provide an overview of how they can be implemented with
the timestamp-based scheme.

Sequential Consistency (SC) can be implemented by asso-
ciating an implicit fence after every store operation. Hence,
in the COMPLETESTORE function in Section III-B, each store
directly updates OrderingTime using its LastAccessTime. This
ensures that the Store —Load program order is maintained in
the global memory order.

Partial Store Order (PSO) relaxes the Store —Store ordering
and only enforces it when a fence is present. This enables all
stores, both private and remote, to be issued in parallel and
potentially completed out-of-order. On a fence that enforces
Store —Store ordering, stores after a fence can be issued only
after the stores before it complete.

IBM Power is a more relaxed model that enforces minimal
ordering between memory operations in the absence of fences.
Here, we discuss how its two main fences, lwsync and
hwsync are implemented. 1wsync enforces TSO ordering
and can be implemented by maintaining a LoadOrderingTime
field that keeps track of the maximum LastStoreTime observed
so far. On a fence, the LoadOrderingTime is copied to the
OrderingTime field and the timestamp checks outlined earlier
are run. hwsync enforces SC ordering. This can be imple-
mented by taking the maximum of the LoadOrderingTime and
StoreOrderingTime and updating the OrderingTime field with
this value. The ARM memory model is similar to the IBM
Power model and hence can be implemented in a similar way.

B. Multiple Clock Domains

The assumption in Section III was that there is a single clock
domain in the system. However, current multicore processors
are gravitating towards multiple voltage and clock domains
with independent dynamic frequency scaling (DVES). In such
processors, keeping timestamps synchronous is challenging.
We assume that a common global clock would be available in
this system, for example, to ensure a capability for determin-
istic debug of the processor. The timestamps can be managed
using this global clock. In summary, a thorough evaluation of
supporting multiple clock domains is a challenging problem.
We defer an evaluation of this aspect to future work.

V. EVALUATION METHODOLOGY

We evaluate a 64-core processor. The default architectural
parameters used for evaluation are shown in Table I.

A. Performance Models

All experiments are performed using the out-of-order core,
cache hierarchy, coherence protocol, memory system and on-
chip interconnection network models implemented within the
Graphite [15] multicore simulator. All the mechanisms and
protocol overheads discussed are modeled. Graphite uses a
barrier mechanism to synchronize the execution of cores. We
use a barrier interval of 100ns, i.e., the simulations of all the
cores are synchronized after every interval of 100ns. Within
each interval, the cores could get ahead of each other but by
100ns at most. In order to prevent this from affecting results,
a history of all load and store access times to each cache level
is maintained for at least 100ns (and at most for the history
retention period), and the load/store times within this history
are used to detect consistency violations.

Each out-of-order core is modeled with an issue width of
one instruction per cycle. However, the core implements a
128-entry reorder buffer to enable out-of-order and speculative
scheduling of instructions. A 64-entry load queue and a 48-
entry store queue also ensures each core’s ability to exploit
memory level parallelism.

B. Energy Models

We evaluate just dynamic energy. For energy evaluations
of on-chip electrical network routers and links, we use the
DSENT [20] tool. Energy estimates for the L1-I, L1-D and
L2 (with integrated directory) caches are obtained using Mc-
PAT [21]. The evaluation is performed at the 11nm technology
node to account for future technology trends.

Architectural Parameter Value ‘
Number of Cores 64 @ 1 GHz
Physical Address Length 48 bits
Core
Type Out-of-order, Single-issue
Reorder Buffer Size 128
Load Queue Size 64
Store Queue Size 48

Speculation Violation Timestamp-based

Memory Subsystem

16 KB, 4-way Assoc., 1 cycle
32 KB, 4-way Assoc., 1 cycle
256 KB, 8-way Assoc., 6 cycles
Inclusive, R-NUCA

64 bytes

Invalidation-based MESI
ACKwisey [13]

Num. of Memory Controllers | 8

DRAM Bandwidth 5 GBps per Controller

DRAM Latency 75 ns

Electrical 2-D Mesh with XY Routing

2 cycles (1-router, 1-link)
Only link contention
(Infinite input buffers)

64 bits

1 flit

L1-I Cache per core
L1-D Cache per core
L2 Cache per core

Cache Line Size
Directory Protocol

Hop Latency
Contention Model

Flit Width

Header

(Src, Dest, Addr, MsgType)
Word Length

Cache Line Length

1 flit (64 bits)
8 flits (512 bits)

Locality-Aware Coherence Protocol [10]
Private Caching Threshold [PCT =4

TABLE 1
ARCHITECTURAL PARAMETERS FOR EVALUATION.

The energy consumption during the INSERT and SEARCH
operations of each history queue is conservatively assumed to
be the amount of energy it takes for an L1-D cache tag read.
This is justified since the size of the L1-D cache tag array is
2.6 K B. The tag array contains 512 tags, each 36 bits wide
(subtracting out the index and offset bits from the physical
address). On the other hand, the size of each history queue is
< 0.8KB.

C. Application Benchmarks

We simulate six SPLASH-2 [16] benchmarks, six PAR-
SEC [17] benchmarks, one Parallel-MI-Bench [18], and ten
CRONO graph analytics benchmarks [19]. Each multithreaded
benchmark is run to completion using the input sets from
Table II.

VI. RESULTS
A. Comparison of Schemes

In this section, we perform an exhaustive comparison be-
tween the various schemes introduced in this paper to imple-
ment locality-aware coherence on an out-of-order processor
while maintaining the TSO memory model. The comparison
is performed against the Reactive-NUCA protocol. All imple-
mentations of the locality-aware protocol use a PCT value of
4. Section VI-B describes the rationale behind this choice.

1) Reactive-NUCA (RNUCA): This is the baseline scheme
that implements the data placement and migration tech-
niques of R-NUCA (basically, the locality-aware proto-
col with a PCT of 1).

’ Application Problem Size
SPLASH-2 [16]
RADIX 4M Integers, radix 1024
LU 512 x 512 matrix, 16 x 16 blocks
BARNES 64K particles
OCEAN 514 x 514 ocean
WATER 512 molecules
VOLREND head
PARSEC [17]
BLACKSCHOLES 64K options
SWAPTIONS 64 samples, 40,000 times
DEDUP 31 MB data
BODYTRACK 2 frames, 2000 particles
FACESIM 1 frame, 372,126 tetrahedrons
CANNEAL 200,000 elements
Parallel MI Bench [18]
PATRICIA [5000 IP address queries

CRONO [19]
Graph with 218 nodes, 16 edges/node

BFS, DFS, PAGERANK,

SSSP DIJKSTRA,

TRIANGLE COUNTING,
CONNECTED COMPONENTS,
COMMUNITY DETECTION
ALL PAIRS SHORTEST PATH,
BETWEENNESS CENTRALITY
TSP

Graph with 212 nodes, 16 edges/node

16 cities

TABLE II
PROBLEM SIZES FOR THE PARALLEL BENCHMARKS.

2) Simple TSO Implementation (SER): The simplest im-
plementation of TSO on the locality-aware protocol that
serializes memory accesses naively according to TSO
ordering (cf. Section III-A).

3) Parallel Non-Conflicting Accesses (NC): This scheme
classifies data as shared/private and read-only/read-write
at page-granularity and only applies serialization to
shared read-write data (cf. Section III-F).

4) Timestamp-based Consistency Validation (TS): Executes
loads speculatively using timestamp-based validation
(cf. Section III) for shared read-write data. Shared read-
only and private data are handled as in the NC scheme.

5) Timestamp-based + Stall Fence (TS-STF): Same as
TS but the micro-op dispatch is stalled till a fence
completes to ensure Fence—Load ordering. The load
history queues (L1LHQ and L2LHQ) are not required
for detecting violations here. It has lower hardware
overhead than TS but potentially lower performance due
to stalling on fence operations.

6) No Speculation Violations (IDEAL): Same as TS but
speculation violations are ignored. It provides the upper
limit on performance and energy consumption. The
L1 and L2 history queues are not required since no
speculation failure checks are made.

The completion time and energy consumption of the above
schemes are plotted in Figures 6 and 7 respectively. The distri-
bution of completion time and energy between the caches and
network varies across benchmarks and is primarily dependent
on the private L1 cache miss rate. For this purpose, the L1

B Instructions L1-I Fetch Stalls L Compzu&e Stalls Memory Stalls B Load Speculation Branch Speculation
2.11 2.

B Synchronization

 Idle

v 16
= 14
3 12
s8]
ggo.s
3.'50'6
€c 04 n
o~ 0.2
§T 02 []
x O v w o e O Vv w o e O v x O v w g x QO v w - e O v ow x O Vv w = g x QO » w -
S&=rpg g&=rEg ga=rpg g8=Rpg §g2FEg fEREE §R2FEE §E2REE
2 2= |2 2= 2 2=l |2 2=l 2 2=l 2 2= 2 2= 2 2=
VOLREND ‘ BARNES ‘ OCEAN-NC ‘ RADIX ‘ LU-C ‘ WATER-SP ‘ CANNEAL FACESIM ‘
1.6 »
] | |
£~ 14
Es 13 | -
g2 1
-5!!0.8
3 E 06
2o 04
EL 02
o=
© 0 x O wv - g x O wn = g x O wn - x O wv - x O wv - g x O wn - g x O wn - e O wuv -
w w w w w w w w
s&=ebg g&=rmEg §&=REg §8=2FEg 5§=2FEg S&=Rhg SEEREE §82REg
z 2le |z 28 |z 28 |z 2 el |z 2 el |z 28l |z 28l |z g8
SWAPTIONS ‘ BLACKSCH ‘ BODYTRACK ‘ DEDUP ‘ PATRICIA ‘ BFS ‘ PAGERANK ‘ SSSP-DUK ‘
] 1.6
E— 14
=3 12
§= 1
5 8 08
o £
2 £ o6
22 04
o — 0.2
o 0
g x QO Vi w - g x O »n w o w e Qv w - g £ QO »n w < w e Q v w - g x QO UV w - w e O uviw o g x QO » w =
g\4|2|F LS |98z RS |[Z28z2F 58 |88 2R ES (248 2F 58 |g42F 5 S (282758 (842K 58
= »|a = wl e o w8 = vl a o wn| 8 = w2 fre w8 = w2
= [= - 2 [= - 2 [= - a [= -
(-] (-] o
TRI-CNT CONN-COMP coMm APSP ‘ DFS ‘ TSP ‘ BETW_CENT Average

Fig. 6. Completion Time breakdown for the schemes evaluated. Results are normalized to that of Reactive-NUCA (RNUCA). Note that Average and not
Geometric-Mean is plotted here.

B L1-l Cache L1-D Cache B L2 Cache Directory B Network Router Network Link H DRAM M History Queues

3
= N = = =
= =
: W *****
£
5 | | | S S SRS S SNBNR SORNE
£
% = 0 | B | | S AR R BB EERE BERERRI
-
g i BEEE |
gl Ol v in o CAN- AR AR IR <
%HZ“ZE‘SEZ"GE‘S
w 2 w =
H 4 H 4 g
VOLREND ‘ BARNES ‘ OCEAN-NC ‘ RADIX ‘ LU-C ‘ WATER-SP CANNEAL FACESIM

Energy (normalized)

BODYTRACK ‘

PATRICIA ‘

SWAPTIONS BLACKSCH. DEDUP BFS ‘ PAGERANK ‘ SSSP-DUK
=)
3
N
®
£
£
o
£
Goo Missss §
E’lo ______ EESEESS mweewes memsessm _SETREE EEEEEE EEEEES =mmmam
w g x QO v kL d g x££ OV L d < x Q v W o < x Q v d g x QO »n o < x Q v W o < x Q v d g x O »n o
SE=rEg 38=ry3 3&=2rpg 38=Fy3 3E=2rEE 38EFLE 3E=2rEE 38EFY 3
H PIEl 8 St R2I=l 8 RI=lE RI=l 8 RI=l 8 RI=ElE 2=
TRI-CNT ‘ CONCOMP ‘ comm ‘ APSP ‘ DFs ‘ TSP ‘ BETW_CENT ‘ Average ‘
Fig. 7. Energy breakdown for the schemes evaluated. Results are normalized to that of RNUCA. Note that Average and not Geometric-Mean is plotted here.

cache miss rate is plotted along with miss type breakdown in misses.

Figure 8. 3) Compute Stalls: Stall time due to waiting for functional

Completion Time: The parallel completion time is broken unit (ALU, FPU, Multiplier, etc.) results.

down into the following categories: 4) Memory Stalls: Stall time due to load/store queue ca-
1) Instructions: Time spent retiring instructions. pacity limits, fences and waiting for load completion.
2) LI-I Fetch Stalls: Stall time due to instruction cache 5) Load Speculation: Stall time due to memory consistency

Cold

2 1.0% 3.5%
.
€5 os% b
w 2 .
§3 0.6% 2.0%
%
28 04% I] 1o
[*N-"] 0%
&7 02% B] 0.5% l L]
0.0% 0.0%
0% <] »
gl gle g e S| F
> > > 2
4 4 4 o
3 3 3
LU-C | WATER- SP| COMM VOLREND
o 8%
T
o g 6%
38,
b
=3 I
0
A L | iI_ I
S o = 8
e ge se 3se |ge |ge
2 2 2 2 2 2
4 2 2 4 4 2
3 o« 3 3 -3 o«

BARNES | RADIX |FACESIM BODYTRA. DEDUP | PATRICIA

Fig. 8. Private L1 Cache Miss Rate and Miss Type Breakdown for the TS
increases from left to right as well as from top to bottom.

violations caused by speculative loads.

6) Branch Speculation: Stall time due to mis-predicted
branch instructions.

7) Synchronization: Stall time due to waiting on locks,
barriers and condition variables.

8) Idle: Initial time spent waiting for parallel worker
threads to be spawned.

Benchmarks with low private cache miss rate (LU-C,
WATER-SP, COMM and CANNEAL) do not gain from the
locality-aware protocol since only a small number of sharing
misses are converted to word misses. However, these bench-
marks contain a significant degree of synchronization. This
causes the memory stalls in one thread to increase the syn-
chronization penalty of threads waiting on it, thereby creating
a massive slowdown for the SER scheme. The performance
problems observed by the SER scheme are shared by the NC
scheme as well. The NC scheme can only efficiently handle
accesses to private and shared read-only data. Since these
benchmarks contain a majority of accesses to shared read-write
data, the NC scheme performs poorly. The TS scheme allows
speculative cores to hide the latency of all L1 cache misses and
hence the performance of these benchmarks stay competitive
with respect to the RNUCA baseline. The only exception is
LU-C benchmark that observes a significant slowdown due to
store queue capacity stalls created by serializing remote stores.
The TS-STF scheme stalls the issue of load operations on
a fence till all previous stores have committed. It performs
poorly in these benchmarks due to significant numbers of
fences. Note that all fences seen in the evaluated benchmarks
are implicit fences introduced by atomic operations in x86,
e.g., test-and- set, compare-and-swap, etc. There were almost
no explicit MFENCE instructions observed.

Several benchmarks, VOLREND, SWAPTIONS, BARNES and
DEDUP convert private L1 capacity misses into word misses.
Each remote access generates lower network traffic compared
to a capacity miss. However, these benchmarks convert a
capacity miss into multiple word misses since the cache lines
are reused a few times (< PCT of 4) before eviction. The mem-
ory stalls due to accesses to remote lines create performance

H Capacity ® Sharing Word
I I - I I I I I
glel |gle| |gel |sle |slel |s|e
=) =) =) 2 =) 2
2 2 2 F4 F4 F4
o -3 -3 3 3 3
CANNEAL | SWAPTIONS | BLACKSCH. APSP TSP BETW.
CENT
60%
50%
40%
30%
20%
_ 10% I | B | =f
SIS glel |gle |gle |gle
=) 2 2 2 2 2
F4 F4 2 2 2 2
o 3 o« o« 3 3

RNUCA |

BFS |SSSP-DIK - |PAGERAN.| CONN-

comp

DFs

and Reactive-NUCA (RNUCA) schemes. Note that in this graph, the miss rate

slowdowns with the SER scheme. These slowdowns are again
worse when memory stalls fall within critical sections that
synchronize threads, as seen clearly for BARNES and DEDUP.
The NC scheme performs on par with the TS scheme for these
benchmarks except in BARNES. This is because the majority of
L1 cache capacity misses in BARNES are for read-write shared
data while they are for private and read-only shared data in the
other 3 benchmarks. Like TS, the NC scheme exploits MLP
for access to non-conflicting data and hence performs almost
on par with the RNUCA scheme.

Benchmarks with a high L1 cache miss rate (OCEAN-NC
and CONN-COMP) do not perform well with the SER scheme.
This is because the cache misses cause the load and store
queues to fill up, thereby stalling the pipeline. This can be
understood by observing the fraction of memory stalls in the
completion time of these benchmarks (with the SER scheme).
In addition, these benchmarks contain a significant degree of
synchronization. The TS scheme only spends a small amount
of time stalling due to load speculation violations. This stalling
due to speculation violation just replaces the already occurring
stalls due to the limited size of the reorder buffer. Moreover,
since remote accesses are much cheaper than sharing and
capacity misses, they help reduce memory stalls in these
benchmarks. This results in an overall performance gain that
is clearly observed for the CONN-COMP benchmark. Similar
trends are seen for the RADIX, PATRICIA and BODYTRACK
benchmarks.

The BLACKSCHOLES and FACESIM benchmarks convert
capacity misses into word misses. This improves cache utiliza-
tion (i.e., reduces cache pollution) and thereby lowers capacity
misses for other cache lines. This results in a lower L1 cache
miss rate compared to the RNUCA baseline. Moreover, a
significant proportion of these misses are much cheaper word
misses. As a consequence of these two factors, all schemes
that use the locality-aware protocol improve performance, as
clearly evident in the FACESIM benchmark. The TS scheme
delivers the highest performance gain since it fully exploits
the speculative execution of the cores under the TSO memory
model.

Benchmarks with significant L1 sharing miss rate (TSP, BFS,
DFS, SSSP-DIJK, TRI-CNT, and PAGERANK) perform signifi-
cantly well for all schemes. From a performance standpoint,
sharing misses are expensive because they incur additional
network traffic generated by invalidations and synchronous
write-backs. In these benchmarks, even if cache miss rate
increases with remote accesses, the miss penalty is lower
because a word miss is much cheaper than a sharing miss.
This results in a significant reduction in the memory stalls for
these benchmarks. Reducing the memory stalls may decrease
synchronization time as well if the responsible memory ac-
cesses lie within the critical section. This can be observed in
the DFS and PAGERANK benchmarks. On the downside, the
TS scheme now spends time stalling due to load speculation
violations. However, this stalling accounts for much less time
than the memory stalls in the RNUCA baseline and hence,
these benchmarks benefit greatly in performance.

Overall, the TS scheme performs well on our benchmarks
and matches the performance of the IDEAL scheme. The
TS, TS-STF and NC schemes improve performance over the
RNUCA baseline by a geometric mean of 26%, 20% and 13%
(average of 18%, 11% and 1%) respectively. The SER scheme
reduces performance by an average of 9%.

Energy: All the locality-aware coherence protocol implemen-
tations except for RNUCA are found to significantly reduce L2
cache and network energy due to the following three factors:

1) Fetching an entire line on a cache miss is replaced by
multiple cheaper word accesses to the shared L2 cache.

2) Reducing the number of private sharers decreases the
number of invalidations (and acknowledgments) re-
quired to keep all cached copies of a line coherent.
Synchronous write-back requests that are needed to fetch
the most recent copy of a line are reduced as well.

3) Since the caching of low-locality data is eliminated, the
L1 cache space is more effectively used for high locality
data, thereby decreasing the amount of asynchronous
evictions (that lead to capacity misses) for such data.

Among the locality-aware coherence protocol implementa-
tions, SER, NC, and IDEAL exhibit the best dynamic energy
consumption. Dynamic energy consumption increases when
TS-STF is used and increases even further when TS is used.
This is because both these implementations modify and access
the L1 and L2 cache history queues. The TS-STF scheme only
requires the store history queues since it stalls on a fence
while the TS scheme requires both load and store history
queues to perform consistency checks, thereby creating a
larger energy overhead. Note that page-classification is used
in both the TS and TS-STF schemes to ensure that history
queue modification and access is only done for shared read-
write data since accesses to private and shared read-only data
cannot cause consistency violations. Overall, the TS, TS-STF,
SER and NC schemes reduce energy by a geometric mean of
20%, 20.5%, 24% and 22% (average of 16.5%,17.5%, 20%
and 20%) respectively over the RNUCA baseline.

B. Sensitivity to Private Caching Threshold (PCT)

In this section, we study the impact of the Private Caching
Threshold (PCT) parameter on the overall system perfor-
mance. PCT controls the percentage of remote and private

1.2

1
0.8

0.6
04 =#=Completion Time
’ =@=Energy
0.2
0
1 2 3 4 6 8 10 12 14 16

Private Caching Threshold (PCT)

Fig. 9. Variation of the Geometric-Means of Completion Time and Energy
with Private Caching Threshold (PCT). Results are normalized to a PCT value
of 1 (i.e., the Reactive-NUCA protocol).

o 12
£~ 1 B HRP-64
=]
c 8038 HRP-128
2 ®06 B HRP-256
9 Egy
2 o HRP-512
€ £02
5] N HRP-1024
(5 0
< < 3 N~ . . Q HRP-2048
‘§Q S @,e & eég & & @(}v s ®‘§
> <X 0@ & Q,»‘?(’ Qé & S B HRP-4096

Fig. 10. Completion Time sensitivity to History Retention Period (HRP) as
HRP varies from 64 to 4096.

cache accesses in the locality-aware protocol. A higher PCT
increases the percentage of remote accesses while a lower PCT
increases the percentage of cache line fetches into the private
cache. Finding the optimal value of PCT is of paramount im-
portance to system performance. We plot the geometric means
of the Completion Time and Energy for our benchmarks as a
function of PCT in Figure 9. We observe a gradual decrease
in completion time till a PCT of 3, constant completion time
till a PCT of 8 and then a gradual increase afterward. Energy
consumption reduces steadily till a PCT of 4, reaches a global
minimum at 4 and then increases steadily afterward.

The completion time shows an initial gradual reduction due
to lower network contention. The gradual increase afterward is
due to increased stall time from remote loads. Overall, at PCT
of 4, the locality-aware protocol obtains a 26% completion
time reduction and a 20% energy reduction when compared
to the Reactive-NUCA baseline.

C. Sensitivity to History Retention Period (HRP)

In this section, the impact of the History Retention Period
(HRP) on system performance is studied. Figure 10 plots the
completion time as a function of HRP. A small value of
HRP reduces the size requirement of the load/store history
queues at the L1 and L2 caches (L1LHQ, L1SHQ, L2LHQ
and L2SHQ) as described in Section III-G. A small HRP
also reduces network traffic since timestamps are less likely
to be found in the history queues, and thereby less likely to
be communicated in a network message. However, a small
HRP also discards history information faster, requiring the
mechanism to make a conservative assumption regarding the
time the last loads/stores were made (cf. Section III-C). This
increases the chances of the speculation check failing, thereby
increasing completion time.

From Figure 10, we observe that an HRP of 64 performs

Idle

® Synchronization
Branch Speculation

B Load Speculation
Memory Stalls

H Compute Stalls
L1-1 Fetch Stalls

B Instructions

I
]
i
[N)

o
[

© o o o

Omem
-
|
.

N
m
L
L]

Average Completion Time
(normalized)

RNUCA NC Ts RNUCA NC Ts

Out-of-Order Cores In-Order Cores

Fig. 11. Average Completion Time breakdown for the RNUCA, NC and TS
schemes. Results are normalized to RNUCA for each core type.

12 12 History Queues

1 1
5 | | [H DRAM)
59 0.8 | | 0.8 = = Network Link
5= 06 06 H Network Router
o 8 7 ju— . .

Directo!

& § s M 5 W o.M g = v
S M L2 Cache
<7 02 02 11-D Cache

o W= o | WW___Wm___WE__mi1Cache

RNUCA NC TS RNUCA NC TS

Out-of-Order Cores In-Order Cores

Fig. 12. Average Energy breakdown for the RNUCA, NC and TS schemes.
Results are normalized to RNUCA for each core type.

considerably worse when compared to other data points.
The high completion time is due to the instruction replays
incurred due to speculation violation. HRP values of 128
and 256 reduce speculation violations, and thereby improve
performance considerably. However, we opted an HRP of 512
since its performance is within ~1% of a large HRP of 4096.

D. Sensitivity to Out-of-Order vs In-Order Core Types

In this section, the impact of the type of core used in a
multicore processor is studied. Figures 11 and 12 show the
average completion time and energy results for out-of-order
and in-order core based multicore processors. It is immediately
apparent that the percentage of time spent in memory and
compute stalls is much lower in out-of-order processors due
to their dynamic scheduling. However, the energy profiles are
quite similar (since only dynamic energy is modeled). We
observe that an out-of-order system requires the TS scheme to
improve performance with the locality-aware protocol. The NC
scheme incurs load/store serialization stalls since speculative
execution of loads to shared read-write data is not supported
and cannot be used to improve performance.

On the other hand, an in-order core issues and commits all
instructions in program order. Long latency operations such
as private cache misses cannot be hidden and create pipeline
stalls when a dependent instruction is encountered. Hence,
the capability of the in-order core to exploit MLP is limited.
Speculative execution of load operations is not expected to
be much beneficial and this is confirmed by the performance
results which indicate that there is no advantage of using the
TS scheme over the much simpler NC scheme. The energy
consumption is worse for the TS scheme since it needs to
access/update the load/store history queues. However, both
the NC and TS schemes reap the benefits of the locality-
aware protocol. Overall, the in-order system with NC scheme
improves completion time by 23% and energy by 27% over
the RNUCA baseline. (Note: the improvements reported here
use geometric mean versus average in Figures 11 and 12.)

VII. RELATED WORK
A. Timestamps
Timestamps have been used previously to implement cache
coherence [22], [23], [24], and coherence verification [25].
The idea of using sequence numbers or timestamps to create
and track ordering between memory operations has also been
explored [26], [27]. Our paper is unique in the following
ways: (1) it provides a detailed design of an implementable
timestamp scheme to detect consistency violations in modern
multicores; (2) it applies the timestamp scheme on top of a
state-of-the-art directory based locality-aware cache coherence
protocol; (3) it implements the timestamp scheme in a func-
tionally correct multicore simulator that utilizes the popular
x86 ISA and TSO memory model; (4) it shows that the
timestamp scheme can be implemented with a lightweight
hardware overhead of ~2.2K B per core.

B. Memory Models

Speculatively relaxing memory order was proposed with
load speculation in MIPS R10K [28]. Full speculation for SC
execution has been studied as well [29], [14]. InvisiFence [30],
Store-Wait-Free [31] and BulkSC [32] are proposals that
attempt to accelerate existing memory models by reducing
both buffer capacity and ordering related stalls. In this paper,
we have evaluated a novel timestamp-based scheme to detect
memory consistency violation for the popular TSO memory
model.

C. Remote (Cache) Access

Remote access has been used as the sole mechanism to sup-
port shared memory in multicores [33], [34], [11]. Recently,
research proposals that utilize remote access as an auxiliary
mechanism [35], [10] have demonstrated improvement in per-
formance and energy consumption for large-scale multicores.
In this paper, we observe that complex cores that support
popular memory models (e.g., x86 TSO, ARM, SC) need novel
mechanisms to benefit from these adaptive protocols.

D. Techniques to Improve Performance and Energy

Data access and network bottlenecks in multicores can
be alleviated using intelligent cache hierarchy management.
Better last-level cache (LLC) partitioning [36], [37] and re-
placement schemes [38], [39] have been proposed to reduce
memory pressure. Better cache replication [12], [40], [41],
placement [12], [37] and allocation [10] schemes have been
proposed to exploit application data locality and reduce net-
work traffic. Our proposed extension for locality-aware cache
coherence ensures that it can be implemented in multicore
processors with popular memory models alongside any of the
above schemes.

VIII. CONCLUSION

In this paper we propose a timestamp-based memory con-
sistency verification scheme that enables invalidation-free data
access protocols to execute efficiently using speculation. The
scheme continuously detects whether any ordering violations
have occurred and rolls back the pipeline state (if needed).
We implement our scheme for a state-of-the-art locality-aware
cache coherence protocol that uses remote access as an auxil-
iary mechanism for efficient data access. Our evaluation using

a 64-core multicore with out-of-order speculative cores shows
that our proposed technique improves completion time by 26%
and energy by 20% over the RNUCA cache management
scheme.

IX. ACKNOWLEDGMENT

This research was partially supported by the National Sci-
ence Foundation under Grant No. CCF-1452327. We would
also like to thank the anonymous reviewers for their construc-
tive feedback.

[1]
[2]
[3]
[4]

[5]

[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

REFERENCES

“Intel launches low-power, high-performance silvermont microarchitec-
ture,” Intel.com, 2013.

P. Greenhalgh, “big.LITTLE Processing with ARM Cortex-Al5 &
Cortex-A7,” ARM White Paper, 2011.

J. Reinders, “Knights Corner: Your Path to Knights Landing,” Intel
Developer Zone, October 2014.

L. Lamport, “How to make a multiprocessor computer that correctly
executes multiprocess programs,” IEEE Trans. Comput., vol. 28, no. 9,
pp. 690-691, Sep. 1979.

S. Mador-Haim, L. Maranget, S. Sarkar, K. Memarian, J. Alglave,
S. Owens, R. Alur, M. M. K. Martin, P. Sewell, and D. Williams,
“An axiomatic memory model for power multiprocessors,” in Computer
Aided Verification (CAV), 2012.

J. Alglave, D. Kroening, V. Nimal, and D. Poetzl, “Don’t sit on the fence:
A static analysis approach to automatic fence insertion,” in Computer
Aided Verification (CAV), 2014.

P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen,
“X86-TSO: A Rigorous and Usable Programmer’s Model for x86
Multiprocessors,” Commun. ACM, vol. 53, no. 7, pp. 89-97, Jul. 2010.
“The sparc architecture manual, v. 8. sparc international, inc,”
http://www.sparc.org/standards/V8.pdf, 1992.

K. Gharachorloo, A. Gupta, and J. Hennessy, “Two techniques to en-
hance the performance of memory consistency models,” in International
Conference on Parallel Processing (ICPP), 1991.

G. Kurian, O. Khan, and S. Devadas, “The locality-aware adaptive
cache coherence protocol,” in International Symposium on Computer
Architecture (ISCA), 2013.

C. Fensch and M. Cintra, “An os-based alternative to full hardware
coherence on tiled cmps,” in International Symposium on High Perfor-
mance Computer Architecture (HPCA), 2008.

N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, ‘“Reactive
NUCA: Near-optimal Block Placement and Replication in Distributed
Caches,” in International Symposium on Computer Architecture (ISCA),
2009.

G. Kurian, J. Miller, J. Psota, J. Eastep, J. Liu, J. Michel, L. Kimerling,
and A. Agarwal, “ATAC: A 1000-Core Cache-Coherent Processor with
On-Chip Optical Network,” in International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2010.

A. Singh, S. Narayanasamy, D. Marino, T. Millstein, and M. Musuvathi,
“End-to-end Sequential Consistency,” in International Symposium on
Computer Architecture (ISCA), 2012.

J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann,
C. Celio, J. Eastep, and A. Agarwal, “Graphite: A Distributed Parallel
Simulator for Multicores,” in International Symposium on High Perfor-
mance Computer Architecture (HPCA), 2010.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 Programs: Characterization and Methodological Consider-
ations,” in International Symposium on Computer Architecture (ISCA),
1995.

C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Bench-
mark Suite: Characterization and Architectural Implications,” in Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT), 2008.

S. Igbal, Y. Liang, and H. Grahn, “ParMiBench - An Open-Source
Benchmark for Embedded Multiprocessor Systems,” Computer Archi-
tecture Letters, vol. 9, no. 2, pp. 45 —48, feb. 2010.

M. Ahmad, F. Hijaz, Q. Shi, and O. Khan, “CRONO: A Benchmark Suite
for Multithreaded Graph Algorithms Executing on Futuristic Multi-
cores,” in IEEE International Symposium on Workload Characterization,
(IISWC), 2015.

C. Sun, C.-H. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L.-S.
Peh, and V. Stojanovic, “DSENT - A Tool Connecting Emerging Photon-
ics with Electronics for Opto-Electronic Networks-on-Chip Modeling,”
in International Symposium on Networks-on-Chip (NOCS), 2012.

[21]

[22]

[23]

(24]

[25]

[26]

[27]

(28]
[29]
(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[40]

[41]

S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in International
Symposium on Microarchitecture (MICRO), 2009.

M. Elver and V. Nagarajan, “TSO-CC: Consistency directed cache
coherence for TSO,” in International Symposium on High Performance
Computer Architecture (HPCA), 2014,

I. Singh, A. Shriraman, W. W. L. Fung, M. O’Connor, and T. M. Aamodt,
“Cache Coherence for GPU Architectures,” in International Symposium
on High Performance Computer Architecture (HPCA), 2013.

M. M. K. Martin, D. J. Sorin, A. Ailamaki, A. R. Alameldeen, R. M.
Dickson, C. J. Mauer, K. E. Moore, M. Plakal, M. D. Hill, and D. A.
Wood, “Timestamp Snooping: An Approach for Extending SMPs,” in
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2000.

M. Plakal, D. J. Sorin, A. E. Condon, and M. D. Hill, “Lamport Clocks:
Verifying a Directory Cache-coherence Protocol,” in Symposium on
Parallel Algorithms and Architectures (SPAA), 1998.

A. Meixner and D. Sorin, “Dynamic verification of memory consistency
in cache-coherent multithreaded computer architectures,” IEEE Trans-
actions on Dependable and Secure Computing, vol. 6, no. 1, pp. 18-31,
Jan 2009.

T. Arons, “Using timestamping and history variables to verify sequential
consistency,” in Computer Aided Verification. Springer Berlin Heidel-
berg, 2001, vol. 2102, pp. 423-435.

K. Yeager, “The Mips R10000 superscalar microprocessor,” IEEE Micro,
vol. 16, no. 2, pp. 28-41, Apr 1996.

C. Gniady, B. Falsafi, and T. N. Vijaykumar, “Is SC + ILP = RC?” in
International Symposium on Computer Architecture (ISCA), 1999.

C. Blundell, M. Martin, and T. F. Wenisch, “InvisiFence: Performance-
Transparent Memory Ordering in Conventional Multiprocessors,” in
International Symposium on Computer Architecture (ISCA), 2009.

T. E. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos, “Mechanisms
for Store-wait-free Multiprocessors,” in International Symposium on
Computer Architecture (ISCA), 2007.

L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas, “BulkSC: Bulk
Enforcement of Sequential Consistency,” in International Symposium
on Computer Architecture (ISCA), 2007.

D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C. Miao, J. F. B. III, and A. Agarwal, “On-chip intercon-
nection architecture of the tile processor,” IEEE Micro, vol. 27, no. 5,
pp. 15-31, 2007.

H. Hoffmann, D. Wentzlaff, and A. Agarwal, “Remote store program-
ming: A memory model for embedded multicore,” in International Con-
ference on High Performance Embedded Architectures and Compilers
(HiPEAC), 2010.

J. Park, R. M. Yoo, D. S. Khudia, C. J. Hughes, and D. Kim, “Location-
aware Cache Management for Many-core Processors with Deep Cache
Hierarchy,” in International Conference on High Performance Comput-
ing, Networking, Storage and Analysis (SC), 2013.

M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches,” in International Symposium on Microarchitecture (MICRO),
2006.

N. Beckmann and D. Sanchez, “Jigsaw: Scalable Software-defined
Caches,” in International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2013.

M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adap-
tive insertion policies for high performance caching,” in International
Symposium on Computer Architecture (ISCA), 2007.

A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer, “High
Performance Cache Replacement Using Re-reference Interval Prediction
(RRIP),” in International Symposium on Computer Architecture (ISCA),
2010.

M. Zhang and K. Asanovi¢, “Victim Replication: Maximizing Capacity
while Hiding Wire Delay in Tiled Chip Multiprocessors,” in Interna-
tional Symposium on Computer Architecture (ISCA), 2005.

B. M. Beckmann, M. R. Marty, and D. A. Wood, “ASR: Adaptive
Selective Replication for CMP Caches,” in International Symposium on
Microarchitecture (MICRO), 2006.

