
A Pattern for Efficient Parallel Computation on Multicore
Processors with Scalar Operand Networks

Henry Hoffmann
MIT CSAIL

hank@csail.mit.edu

Srinivas Devadas
MIT CSAIL

devadas@csail.mit.edu

Anant Agarwal
MIT CSAIL

agarwal@csail.mit.edu

ABSTRACT

Systolic arrays have long been used to develop custom hard-
ware because they result in designs that are efficient and
scalable. Many researchers have explored ways to exploit
systolic designs in programmable processors; however, such
efforts often result in the simulation of large systolic arrays
on a general purpose platforms. While simulation can add
flexibility and problem size independence, it comes at a cost
of greatly reducing the efficiency of the original systolic ap-
proach. This paper presents a pattern for developing parallel
programs using systolic designs to execute efficiently (with-
out resorting to simulation) on modern multicore processors
featuring scalar operand networks. This pattern provides
a compromise solution that can achieve high efficiency and
flexibility given appropriate hardware support. Several ex-
amples illustrate the application of this pattern to produce
parallel implementations of matrix multiplication and con-
volution.

Introduction and Context

This paper presents a pattern for exploiting systolic designs
to develop efficient parallel software for modern multicore
processors. This section discusses the benefits of systolic
designs, and then describes why these designs appear to
be a good match for the emerging class of multicore ar-
chitectures characterized by their high-performance, scalar-
operand networks.

Systolic Arrays

The systolic array pattern has a long history of use in custom
hardware solutions because it tends to produce designs that
are highly efficient both in terms of their computational and
power costs [18]. Designs based on the original concept are
still in use to develop high performance embedded comput-
ing applications [22], as well as custom hardware targeting
military and commercial applications in digital signal pro-
cessing, communications, and multimedia [34].

Systolic array designs are characterized by a network of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission. A preliminary version of this paper was presented in a writers’
workshop at the 2nd Annual Conference on Parallel Programming Patterns
(ParaPLoP).
ParaPLoP ’10, March 30 – 31st, 2010, Carefree, AZ.
Copyright 2010 ACM 978-1-4503-0127-5.

simple processing elements (PE). In a single clock cycle, each
PE receives data from the network, performs some simple
calculation on that data and injects data into the network.
PEs consist of a functional unit (for performing the com-
putation), network interfaces, and possibly a small amount
of local storage in the form of registers. Data initially en-
ters the array from peripheral memory, flows through the
network, and results exit from a different edge.

As an example of a systolic array design, consider a matrix
multiplication of two 2 × 2 matrices A and B to produce C
as illustrated in Figure 1. The systolic array consists of a
2 × 2 array of PEs. Each PE is responsible for computing
a different inner-product and thus a different element of the
result matrix. Specifically, the PE in row i and column j is
responsible for computing the value of cij . At cycle k, a PE
reads a value aik from the network to the left, a value bkj

from the network above and performs a multiply-accumulate
to compute ck

ij = ck−1

ij + aikbkj , while forwarding aik to the
right and bkj down. Thus, values of A flow from left to right
while values of B flow from top to bottom.

This simple example of matrix multiplication demonstrates
some of the benefits of the systolic array approach. First,
the array can achieve a high compute efficiency. If there are
many matrix multiplications to be computed in succession
(common for many signal processing applications) the en-
tire array can be utilized such that each PE is executing a
multiply-accumulate on every cycle. Furthermore, the array
is efficient in the sense that all the structures required are
used in every cycle, so there is no wasted area. Additionally,
the design is power efficient as it 1) avoids long wires and 2)
avoids using large memories on each PE. Finally, this design
is scalable in that we can accommodate larger problem sizes
by simply adding PEs.

Because of these advantages, many researchers have at-
tempted to transition the systolic array concept from custom
hardware designs to programmable substrates. The goal of
these efforts is to create programmable processors which can
take advantage of systolic designs so that their benefits are
not restricted to fixed function hardware. One obvious ap-
proach to overcoming the limited flexibility of systolic arrays
is to implement them on programmable hardware by simu-

lating [21] or emulating [14] multiple processing elements on
one programmable processor. This method is popular be-
cause it allows for problem-size independence and network
embedding, though this comes at the cost of potentially un-
bounded local memory requirements. As a consequence of
local memory accesses, simulated algorithms lose computa-
tional efficiency, consume significantly more energy due to

1



b 21 b 12

b 22

a 22 a 21

12
a a 11

b 11

(1)

a 22

b 22

12
c

c 22

c 11

21
c

(5)

c 12

c 21

22
c

(6)

c 22

11
c

c 21

c 12

b 21

a 22 a
21

b 12

a
12

b 22

c 11

12
a

a
21

b 12

a 21

a 11

b
11

b 22

a 22

b
11

b 21 b 12

a 11

.

(7)(4)

a 22

b 22

(3)

12
a

b 21 b 12

a 21

(2)

Figure 1: Seven time steps of a systolic matrix multiplication C = A·B for 2×2 matrices. Each box represents a

processing element. Values entering, leaving, or being generated in the array are shown in bold face. Shaded

boxes mark the completion of an inner product. We split the data flow of the operands and products into

the top and bottom rows.

memory traffic, and can suffer from poor scalability on mul-
ticores as the memory controller becomes a bottleneck.

We would like to find a way to implement systolic array de-
signs in software, using programmable processors, and with-
out resorting to simulation. Such a solution would provide
efficiency and scalability in combination with the flexibility
to implement multiple systolic solutions for variable problem
sizes using the same underlying hardware.

Multicore and Scalar-Operand Networks

Systolic designs are particularly compelling in the context
of the emerging class of multicore architectures with scalar-

operand networks [29] such as the TILE processor [33], Raw
[30], Trips [23], Scale [15], Wavescalar [28], and Synchroscalar
[24]. These architectures share several characteristics which
make them a tempting target for systolic designs: multiple
processors connected by high-bandwidth, low-latency net-
works. In many cases, the networks are exposed to software,
meaning software can directly control network routing. Fur-
thermore, these scalar-operand networks are optimized for
sending small messages efficiently. In addition to their pow-
erful networks, these architectures are characterized by a
relative lack of memory bandwidth as multiple processing
cores must share a memory controller.

The combination of powerful and programmable networks
optimized for sending many small messages and a relative
lack of memory bandwidth, makes systolic designs a good
match for these architectures, as such designs favor network
usage over local memory access. The scalability and effi-
ciency of systolic designs complements the current scaling
trends in modern multicore processors which tend to add
cores to a chip rather than increasing the ability of individ-
ual cores. Furthermore, targeting systolic designs to general
purpose multicore chips allows users to achieve efficiency
when a problem can be cast as a systolic array and maintain
the flexibility to solve other problems on the same architec-
ture by using a different programming model.

This pattern for developing systolic designs for multicore
provides a methodology to overcome the limitations of sim-
ulating systolic arrays and capture the efficiency and scala-
bility of the original hardware pattern on a programmable
processor. Given sufficient hardware support, the systolic
software pattern achieves these goals at a cost of increased
programmer effort and a lack of portability. Engineers con-
sidering the systolic software pattern should weigh their ap-

plication’s performance goals, their development time, and
the available hardware support before making use of this
pattern.

Problem

How can we use systolic designs to structure parallel code
for multicore, scalar-operand networks without resorting to
simulation or emulation?

Forces

• Efficiency. As discussed above, systolic designs for
hardware are efficient in several senses. First, they
achieve high computational efficiency as all the func-
tional units are kept busy at the same time. Second,
they are area efficient as they include a minimal set
of structures required to solve a problem. Third, they
are energy efficient because they avoid long wires and
large memories. In contrast, the simulation of systolic
arrays often loses this efficiency because they require
(potentially unbounded) local memory access. The in-
structions needed to access local memory reduce com-
putational efficiency, while the memories themselves
reduce area efficiency. Accessing these memories also
reduces energy efficiency compared to memory access.
For example, a recent study showed that in 90nm tech-
nology, the cost of sending one 32-bit word to a neigh-
bor is approximately 5 pJ while retrieving one 32-bit
word from a 32 KB data cache costs approximately 50
pJ [25].

• Scalability. Systolic designs for hardware are scalable
in the sense that additional PEs can be added to a de-
sign without sacrificing efficiency. In contrast, simula-
tion of a systolic array in software can lose this scalabil-
ity due to local memory accesses. As the amount of lo-
cal memory grows the energy efficiency decreases. Al-
ternatively, local memory can be backed up using ad-
ditional external memory (such as a DRAM); however,
the resulting DRAM accesses can become a bottleneck
that limits scalability. This is especially true when
simulating systolic arrays on modern multicore pro-
cessors in which multiple cores to compete for DRAM
bandwidth as described in [12].

2



• Flexibility. Simulation of a systolic design on pro-
grammable hardware is flexible. The structures and
abstractions required to simulate a variable number of
PEs on a single processor allow multiple systolic de-
signs to be simulated using the same underlying hard-
ware. Additionally, such programmable hardware can
also execute code that does not lend itself to a sys-
tolic design. In contrast, systolic hardware implemen-
tations are inflexible as they are designed to solve a
single problem and cannot be re-purposed.

• Problem Size Independence. The simulation of
systolic designs also allows problem size independence.
Modifying the design to work on larger problem sizes
simply requires allowing a single physical processor to
simulate a larger number of systolic PEs. Systolic de-
signs for hardware are built for a fixed problem size
and require adding additional physical PEs to accom-
modate the additional input sizes.

We want to find a compromise solution, providing most of
the efficiency and scalability of the systolic approach while
the maintaining flexibility and problem size independence
of a more general purpose approach suitable for multicore
implementation.

Solution

We design parallel programs using on two key strategies: 1)
partition the application into processors1 which access mem-
ory and those which perform computation (referred to as
memory and compute processors respectively) and 2) make
the number of memory processors (M) negligible compared
to the number of compute processors (P ). While memory
processors are allowed to access memory, compute proces-
sors are restricted to operating on data from the network or
stored in local registers. Thus, the compute processors form
a programmable systolic array and the memory processors
provide a mechanism for feeding the array with data. This
strategy is motivated by the fact that cores busy access-
ing memory are not contributing useful computation (e.g.
flops), yet tend to consume a relatively large amount of en-
ergy.

We aim for the condition where M = o(P ). Informally, if
this condition holds the number of memory processors be-
comes insignificant relative to the number of compute pro-
cessors as we increase the total number of processors. This
relationship between M and P is a necessary condition to
amortize the lack of useful computation performed by the
memory processors and the power invested in memory ac-
cesses. For example, suppose we implement an algorithm on
a 2D mesh of P = R2 compute processors. If we can arrange
the memory processors such that their number M becomes
negligible compared to P when increasing R, the resulting
algorithm meets this condition. Thus, for a design with
P = Θ(R2), we may choose M to be O(lg R), or O(

√
R), or

M = O(R), or M = O(R lg R), for example. In contrast, an
algorithm designed to simulate a large systolic array time-
multiplexing one physical processor among multiple virtual
processors (as described in [14]) would require memory to
buffer the state of each simulated processor. Thus each pro-

1This work assumes that each processor is running a single
thread or process.

cessor would have to be a memory processor and M = Ω(R2)
our condition would not hold.

To apply the systolic software pattern, we start with a sys-
tolic algorithm designed for a hardware implementation (in
which the required number of cells is proportional to the size
of the problem being solved). We assume that the number
of processors required in a hardware implementation of this
algorithm is Q and that the total number of processors R on
the target architecture is much less than Q (Q >> R). We
convert the systolic algorithm to one which can be executed
efficiently on our architecture by applying the following two
step process based on the design of stream algorithms [11].

Partitioning: We start by partitioning the problem into
smaller, independent subproblems. Each of the sub-
problems, as well as the composition of their results,
must be suitable for parallelization by means of a smaller
systolic algorithm such that the compute processors
access data in registers and on the network only. For
simple applications, the partitioning can be obvious
immediately. For applications with more complicated
data dependencies, we find that recursive formulations
and partitioning methods like those developed for out-
of-core algorithms [32] can be helpful. We continue to
recursively apply partitionings until each sub-problem
is sized such that it can execute systolically, without
resorting to simulation or emulation, on the available
compute processors.

Decoupling: Our goal is to move the memory accesses off
the critical path. To this end, we have to decouple
the computation such that the memory accesses occur
on the memory processors and compute operations on
the compute processors (a design principle shared by
the the decoupled-access execute architecture [27]) .
For a systolic problem, the memory processors feed
the input streams into the compute processors, and
the decoupling procedure is almost trivial. However,
the composition of several subproblems requires care-
ful planning of the flow of intermediate data streams,
such that the output streams of one systolic phase can
become input streams of a subsequent phase without
copying streams across memory processors. Occasion-
ally, it is beneficial to relax the strict dedication of
memory processors to memory accesses, and compute
portions of the composition of the subproblems, such
as reductions, on the memory processors themselves.

In practice this is often an iterative process; sometimes
promising partitionings are unable to be decoupled.

Examples

This section presents two examples applying the systolic
software pattern to first a matrix multiplication and sec-
ond a convolution. These examples are taken from formula-
tions of stream algorithms as described in [11] and were used
to develop efficient software implementations exploiting the
scalar operand network on the Raw processor [31].

Matrix Multiplication

As our first example, we consider a dense matrix multipli-
cation. Given two N × N matrices A and B, we wish to
compute the N × N matrix C = AB. We compute element

3



22
c

13
c

23
c

14
c

31
c

41
c

32
c

42
c

33
c

34
c

43
c

24
c

44
c

21
c

12
c

11
c

a 22

b 22

14
a

23
a

b
31

13
a

12
a

a 21

11
a

24
a

b
42

b 23 b 14

b 13b
41

14
a

23
a

b
32

a 11

b
13

b
42

24
a

34
a a 33

43
a a 42

b
41 32b

b 22b 31

14
a

23
a

a 31

b
34

b
43

b
13

44
a

42
b

24
a

32
a

31
a

a 41

b 21 b 12

b 11 b
44

b
43

14
a a 13

34b

b 22

a 22

b 33

23
a

14
a

23
a

24
a

a 31

b
11

b
34

b
43

44
bb

33

a 13
a

12

b 24

b 23

a 22 a
21

b 14

32
a

31
a

a 41

b 23

b 13

b 14

44
a

b
42

a 33
a

32

a 42 a
41

b
33

b 23

b 24

b 14

34
a a 33

43
a a 42

b
43

b 33 b 24

34b

b
43

44
b

44
a

43
a

b
34

34
a

A(1,:)

A(3,:)

A(2,:)

A(4,:)

b
44

44
a

B(:,3)

B(:,1)

B(:,4)

B(:,2)

A(1,:)

A(3,:)

A(2,:)

A(4,:)

B(:,3)

B(:,1)

B(:,4)

B(:,2)

A(1,:)

A(3,:)

A(2,:)

A(4,:)

(20)

B(:,3)

B(:,1)

B(:,4)

B(:,2)

A(1,:)

A(3,:)

A(2,:)

A(4,:)

a 11

b
11

12
a

b 21

a 21

b 11

11
a

b 12

a
21

b 12

a
12

b 22

a 13

b
31

b 21

a 22

a 33
a

32

a 42 a
41

b
31

b 22

b 12b 21

(1) (2) (3) (4) (5)

B(:,3)

B(:,1)

B(:,4)

B(:,2)

(7)(6)

B(:,3)

B(:,1)

B(:,4)

B(:,2)

(14)(13)(11) (12)(8) (9) (10)

(15) (16) (17) (18) (19)

B(:,3)

B(:,1)

B(:,4)

B(:,2)

(21)

A(1,:)

A(3,:)

A(2,:)

A(4,:)

B(:,3)

B(:,1)

B(:,4)

B(:,2)

A(1,:)

A(3,:)

A(2,:)

A(4,:)

B(:,3)

B(:,1)

B(:,4)

B(:,2)

A(1,:)

A(3,:)

A(2,:)

A(4,:)

B(:,3)

B(:,1)

B(:,4)

B(:,2)

A(1,:)

A(3,:)

A(2,:)

A(4,:)

B(:,3)

B(:,1)

B(:,4)

B(:,2)

A(1,:)

A(3,:)

A(2,:)

A(4,:)

b
32

b
41

A(1,:)

A(3,:)

A(2,:)

A(4,:)

B(:,3)

B(:,1)

B(:,4)

B(:,2)

A(1,:)

A(3,:)

A(2,:)

A(4,:)

A(1,:)

A(3,:)

A(2,:)

A(4,:)

B(:,3)

B(:,1)

B(:,4)

B(:,2)

B(:,3)

B(:,1)

B(:,4)

B(:,2)

A(1,:)

A(2,:)

A(4,:)

A(3,:)

A(1,:)

A(3,:)

A(2,:)

A(4,:)

B(:,3)

B(:,1)

B(:,4)

B(:,2)

A(1,:)

A(3,:)

A(2,:)

A(4,:)

B(:,3)

B(:,1)

B(:,4)

B(:,2)

B(:,3)

B(:,1)

B(:,4)

B(:,2)

A(1,:)

A(3,:)

A(2,:)

A(4,:)

B(:,3)

B(:,1)

B(:,4)

B(:,2)

A(1,:)

A(3,:)

A(2,:)

A(4,:)

B(:,3)

B(:,1)

B(:,4)

B(:,2)

A(1,:)

A(3,:)

A(2,:)

A(4,:)

A(1,:)

A(3,:)

A(2,:)

A(4,:)

B(:,3)

B(:,1)

B(:,4)

B(:,2)

A(1,:)

A(3,:)

A(2,:)

B(:,3)

B(:,1)

B(:,4)

B(:,2)

A(4,:)

A(1,:)

A(3,:)

A(2,:)

A(4,:)

B(:,3)

B(:,1)

B(:,4)

B(:,2)

Figure 2: Data flow of a matrix multiplication C = A ·B for 4×4 matrices on 2×2 compute processors. Shaded

boxes on the periphery mark memory processors, and indicate the completion of an inner-product otherwise.

cij in row i and column j of product matrix C as the inner
product of row i of A and column j of B:

cij =

N
X

k=1

aik · bkj , (1)

where 1 ≤ i, j ≤ N .

Partitioning

We use a block-recursive partitioning for the matrix multi-
plication. We recurse along the rows of A and the columns
of B:

„

C11 C12

C21 C22

«

=

„

A11

A21

«

`

B11 B12

´

. (2)

For each of the matrices Cij we have Cij = Ai1B1j , where
Ai1 is an N/2 × N matrix and B1j an N × N/2 matrix.
Thus, the matrix multiplication can be partitioned into a
homogeneous set of subproblems.

Decoupling

We begin by observing that each product element cij can
be computed independently of all others by means of Equa-
tion 1. In addition, Equation 2 allows us to stream entire
rows of A and entire columns of B through the compute pro-
cessors. Furthermore, we partition a problem of size N ×N
until the Cij are of size R×R and fit into our array of com-
pute processors. We implement the resulting subproblems
as systolic matrix multiplications, illustrated in Figure 1 for
N = R = 2. Rows of A flow from the left to the right, and
columns of B from the top to the bottom of the array.

For N > R, the compute processor in row r and col-
umn s computes the product elements cij for all i mod R = r
and j mod R = s. To supply the compute processors with
the proper data streams, we use R memory processors to
store the rows of A and R additional memory processors
to store the columns of B. Thus, for the matrix multipli-
cation, we use P = R2 compute processors and M = 2R
memory processors. Figure 2 illustrates the data flow of

a decoupled systolic matrix multiplication for N = 4 and
R = 2. Note how the memory processors on the periph-
ery determine the schedule of the computations by stream-
ing four combinations of rows of A and columns of B into
the compute processors. First, we compute C11 by stream-
ing {A(1, :), A(2, :)} and {B(:, 1), B(:, 2)} through the ar-
ray. Second, we stream {A(1, :), A(2, :)} against {B(:, 3),
B(:, 4)}, third, {A(3, :), A(4, :)} against {B(:, 1), B(:, 2)},
and finally {A(3, :), A(4, :)} against {B(:, 3), B(:, 4)}. As a
result, we compute C11, C12, C21, and C22 in that order.

If product matrix C cannot be streamed into a neighbor-
ing array of consuming compute processors or off the chip
altogether, but shall be stored in memory processors, we
may have to invest another R memory processors for a to-
tal of M = 3R. In any case, we have P = Θ(R2) and
M = Θ(R), and hence M = o(P ).

Note that we could use a similar organization to compute
a matrix-vector product Ax, where A is an N × N matrix
and x an N × 1 vector. However, using only one column of
R× 1 compute processors requires M = R + 1 memory pro-
cessors. Since M 6= o(P ), this organization is not efficient.
However, there exists a different design that is efficient by
storing matrix A and vector x on one memory processor and
by distributing the inner products across a linear array of
compute processors.

Convolution

The convolution of sequence [a] of length Nsamples with se-
quence [w] of length Ntaps produces an output sequence [b]
of length Nsamples +Ntaps −1. Without loss of generality, we
assume that Nsamples ≥ Ntaps . Element k of [b] is given by

bk =
X

i+j=k+1

ai · wj (3)

4



where

1 ≤ k ≤ Nsamples + Ntaps − 1

1 ≤ i ≤ Nsamples

1 ≤ j ≤ Ntaps .

Partitioning

We partition the convolution into Ntaps/R subproblems by
partitioning the sum in Equation 3 as follows:

bk =

Ntaps/R
X

l=1

X

i+j=k+1

ai · wj (4)

where

1 ≤ k ≤ Nsamples + R − 1

1 ≤ i ≤ Nsamples

(l − 1)R + 1 ≤ j ≤ lR + 1.

This partitioning expresses the convolution of [a] and [w]
as the sum of convolutions of [a] with Ntaps/R weight se-
quences [w]j . Intuitively, we partition weight sequence [w]
into chunks of length R, compute the partial convolutions,
and exploit the associativity of the addition to form the sum
of the partial convolutions when convenient.

Decoupling

We use the systolic design of Figure 3 to implement a con-
volution with Ntaps = R. This design is independent of the
length Nsamples of sequence [a]. For the example in Figure 3
we have chosen Ntaps = R = 4 and Nsamples = 5. Both se-
quence [a] and weight sequence [w] enter the array from the
left, and output sequence [b] leaves the array on the right.
Computation tile pi is responsible for storing element wi of
the weight sequence. Thus, the stream of elements wi folds
over on the way from left to right through the array. In con-
trast, sequence [a] streams from left to right without folding
over. During each time step, the compute processors multi-
ply their local value wi with the element of aj arriving from
the left, add the product to an intermediate value of bk that
is also received from the left, and send the new intermediate
value to the right. The elements of [b] leave the array on the
right.

We illustrate the data movement in Figure 3 by discussing
the computation of b4 = a4w1 + a3w2 + a2w3 + a1w4. We
begin with time step 5 in Figure 3 when element a4 enters
tile p1 on the left. Element w1 is already resident. Tile p1

computes the intermediate value b1
4 = a4 ·w1, and sends it to

tile p2. At time step 6, p2 receives a3 and b1
4 from tile p1 on

the left. With weight w2 already resident, tile p2 computes
intermediate value b2

4 = b1
4+a3 ·w2. In time step 7, values b2

4,
a2, and w3 are available for use by tile p3. It computes and
sends intermediate value b3

4 = b2
4 + a2 ·w3 toward tile p4. At

time step 8, p4 receives b3
4, a1, and w4 from p3, and computes

b4 = b3
4 + a1 · w4. At time step 9, b4 exits the computation

array.
We use the partitioning of Equation 4 to reduce a convo-

lution with a weight sequence of length Ntaps into Ntaps/R
systolic convolutions that match network size R of a linear
array of compute processors. In addition, we employ one
memory tile on the left of the array to buffer sequences [a]
and [w], and another memory tile on the right of the array
to store intermediate values of the computation as well as

to compute the sum of the subproblems. Figure 4 illustrates
the computation of a convolution on a linear processor array.
Our decoupled systolic convolution requires P = R compute
processors and M = 2 memory processors. We observe that
M = o(P ) and, therefore, our convolution is efficient.

Performance

This section shows the performance and scalability bene-
fits that are possible using the systolic software approach.
Results in this section use the Raw simulator. Raw is one
example of a multicore processor featuring a scalar operand
network2, and its simulator allows simulations of Raw fab-
rics of up to 1024 cores.

We explore the scalability of software designed with this
approach by reconfiguring the Raw simulator to support
larger numbers of cores and measuring the compute effi-
ciency of matrix multiplication and the QR factorization as
a function of the number of cores. For this experiment we
fix the problem size so that each matrix operates on square
matrices of size 1024 × 1024 and we vary the total number
of processors. We measure the compute efficiency of these
algorithms as the fraction of the peak flop rate that they
achieve.

P Matrix Multiply QR Factorization

16 0.95 0.92
64 0.96 0.88

256 0.96 0.80
1024 0.95 0.68

Table 1: Compute efficiency of two algorithms im-

plemented on Raw using the systolic software pat-

tern. P is the number of processors used. Each

problem uses 1024 × 1024 matrices. Compute effi-

ciency is measured as the fraction of the peak flop

rate achieved by that implementation.

As shown in Table 1, the systolic software pattern can
lead to highly scalable parallel implementations. The matrix
multiply achieves nearly perfect scaling moving from 16 to
1024 processing cores. The QR factorization also achieves
good scaling and is able to achieve 68% of the peak flop rate
on 1024 cores.

These results show that the use of the systolic software
pattern can result in high-performance scalable implemen-
tations. Users will have to weigh these benefits against the
tradeoffs of programming difficulty and lack of portability
as described in the forces section.

Forces Resolved

• Computational efficiency. As demonstrated above,
the use of this pattern results in code that is compu-
tationally efficient when executed on a multicore with
a scalar operand network. This efficiency comes from
the structure of the computation. Loads and stores
are removed from the critical path and instead proces-
sors execute only operations defined by the computa-
tion and possibly branch instructions. By eliminating
memory accesses on the critical path, the program ex-
ecutes fewer dynamic instructions; more importantly,

2In fact, raw has four.

5



w1

a 1

b 1

w1 w2

a 2 a 1

b 1

b 2

1

a 2

w1

a 3

w2

a 1

b 1

w3

b 2b 3

1

b 2

1

w1

a 1a 2a 4a 5

w2

a 3

w3w4 w2w3w4

a 2a 3a 4a 5

w3

a 3

w4

a 4a 5

w4

a 4a 5

w1 w2 w3 w4

b 3

a 1a 2a 3a 4

b 5

2
b 4

3

b
3

5
b 4

a 5

w1 w2 w3

a 1a 2a 3a 4

b 2b 3

w4

b 4

2

b 5

2
b

3

4

b 5

1

a 5

w1 w2 w3

b 2

w4

a 2 a 1a 3a 4

b 1b 3

2

b 4

2 b 3

b 4

1

5

1
b

a 5

w1 w2

a 1a 2a 3a 4

w4

b 1b 2

w3

b 3

2
b 4

1

b 3

1

a 5

b
1

6

(5) (6) (7) (8)

w1 w2 w3 w4

a 2a 3a 4a 5

b 5

w1 w2 w3 w4

a 1a 2a 3a 4a 5

b 5

3

b 5

a 3a 5

b 6

1

b
2

6 b 6b
1

7

b 6

2 b 6

b 7

a 4

b 7

1

w4w1 w2 w3 w4w1 w2 w3

a 4a 5

b 8

b 7b 4

(10)(9) (11) (12)

(4)(3)(2)(1)

Figure 3: Systolic convolution of a sequence of input values ai of length Nsamples = 5 with Ntaps = 4 weights wj.

Both the weights and input sequence are fed into the linear array of R = 4 compute processors. Intermediate

results are shown above the corresponding processors. Value bi
k represents an intermediate value of bk after

the first i products have been computed according to Equation 3.

+ + + +

w1

a 1 a 2

w2 w1

a 1

b 1

a 3

w1 w2

a 2 a 1

b 1

a 4 a 2

w1

a 3

w2

a 1

b 2

b 12

1,1b

b 3

1,1

w1

b 5

1,1 b 4

1,2

b 4

1,1 b 3

1,2

w3w1 w2

a 5

b 4

1 b 3

1,2

b 3

1,1 b 2

b 2

1,1

b 5

1,1

b 5

1,2

b 4

1,2

b 3

1,2

a 4 a 3a 5a 1 a 4a 5a 1

w3

b 3

2,1

w4

a 2

w3 w2w2 w4

a 5a 1a 2a 3

b 3

2,1

b 4

2,1 b 6

1,1

b 5

1,2

b 3

1,2

b 4

1,2

w4 b 4

1,2

b 5

1,2

b 3

1,2

b 3

2,1

b 6

1,1

b 4

2,2

b 4

2,1

a 1a 2 a 2a 3a 4

w4w3 w3

a 4 a 5

b 5

2,2b 5

2,1 b 6

2,1

b 5

2,1 b 4

2,2

b 4

1,2

b 6

1,1

b 5

1,2

b 3 b 4 b 5

w3 w4

b 6

2,1

a 3a 4a 5

b 6

2,2b 7

2,1

b 5

1,2

b 5

2,2

b 6

1,1

w4w3

a 4a 5

b 6

1,1

b 6

2,2

b 7

b 7

2,1

b 6

b 7

a 5

w4

b 8

b 8

w2

(1) (2) (3) (4)

(6)(5)

a 4 a 3 a 2

(7) (8)

(9)

a 3

(10) (11) (12)

(13) (14)

Figure 4: Systolic software convolution of an input sequence of length Nsamples = 5 with Ntaps = 4 weights on

a linear array of R = Ntaps/2 = 2 compute processors and M = 2 memory processors. Value bl,i
k represents

the computation of bk when the outer summation of Equation 4 has been executed l times and the inner

summation has been executed i times. Note that the memory processor on the right performs an addition

to accumulate the results of the partial convolutions.

6



it also removes cache misses from the critical path. As
shown in the example, the systolic software pattern can
provide as much as 5× the speed of a design which uses
loads and stores.

• Power efficiency. Use of the systolic software pattern
produces implementations which favor near-neighbor
communication over the access of their own local caches.
Sending data to a neighbor rather than storing it lo-
cally can save considerable energy on modern multi-
core processors [25]. Clearly programs which favor
communication over local storage can greatly reduce
energy consumption.

• Scalability. The systolic software pattern captures
the scalability of the original systolic array pattern for
hardware. Using the systolic software pattern all net-
work communication is limited to a processor’s near-
est neighbors so there are no bottlenecks in the net-
work. Furthermore, memory access is removed from
the critical path of computation. Following this pat-
tern the number of processors that access memory (M)
is asymptotically smaller than the number of proces-
sors which perform the computation (P); M = o(P ).
Thus, memory is also prevented from becoming a bot-
tleneck. As demonstrated the matrix multiplication
based on this pattern achieves 95% floating-point effi-
ciency on an 1024 core multicore, while systolic soft-
ware implementation of a QR factorization achieves a
floating point efficiency of 68% on the same 1024 core
multicore [10].

• Flexibility and problem size independence. The
methodology provided with this pattern allows the flex-
ibility and problem size independence associated with
the simulation of systolic arrays without resorting to
local memory access.

Limitations

• Programming effort and maintainability. Per-
haps the biggest limitation affecting the use of this pat-
tern is the increased effort of developing the program.
Several factors contribute to this difficulty. First, achiev-
ing the above benefits requires understanding some
low-level details of the underlying hardware. Second,
making use of this pattern requires programmers to
schedule communication and computation on a word-
level granularity. Such fine grain scheduling is often
difficult for engineers who are used to thinking in terms
of phases of bulk processing interleaved with bulk com-
munication. Finally, developing programs with this
pattern tends to result in steep slope development where
the program does not work at all until all scheduling
issues are fixed when it suddenly works and runs ex-
tremely efficiently. This steep slope tends to frustrate
programmers more than other patterns which allow for
incremental improvement towards a performance goal.

• Hardware support and portability. Although a
programming model could be implemented allowing
the systolic software pattern to be applied on any hard-
ware platform, the benefits are only achievable with
proper hardware support. Because proper hardware
support can provide such benefits in efficiency, power,

and scalability, several hardware platforms have been
designed explicitly to support systolic software devel-
opment such as the Wavefront Array Processor [19],
PSC [3], Warp [1], iWarp [8], Saxpy’s Matrix-1 [4],
and the CM2 [9].

Looking forward, compiler research on instruction level
parallelism (ILP) [26, 20] is influencing the design of
multicore processors. Such compilers also require hard-
ware support for fine-grain scheduling of communi-
cation and computation and benefit from the same
network architecture needed to take full advantage of
the systolic software pattern. Processors such as the
TILE processor [33], Raw [30], Trips [23], Scale [15],
Wavescalar [28], and Synchroscalar [24] all provide sup-
port for ILP using programmable processing elements
with small amounts of memory communicating via on-
chip scalar operand networks. Given this trend, it
is possible that many future multicore processors will
support such networks and thus provide good targets
for the systolic software pattern.

• Applicability. The benefits of the systolic software
pattern are, of course, limited to those applications for
which systolic formulations can be found. Systolic al-
gorithms currently exist for a wide range of dense ma-
trix problems commonly found in scientific computing
and digital signal processing [18, 2] as well as some
sorting and graph problems [21]. The systolic pattern
is not a good match for highly irregular applications
where communication patterns cannot be predicted in
advance.

Known Uses

H.T. Kung advocates systolic communication for the Warp
and iWarp machines, and reports on software implementa-
tions for these architectures show various combinations of
a systolic software approach similar to that advocated in
this pattern and the less-efficient, but easier to implement,
simulation of systolic arrays[1, 8, 16, 17, 6]. Additionally,
Gross and Lam describe a compiler for Warp that exploits
the systolic software pattern when possible [7].

Several programmable systolic architectures are designed
to run software exploiting the systolic software pattern [19,
3, 4].

This pattern was used to generate highly efficient software
implementations of several dense linear algebra problems for
the Raw architecture as described in [31].

The StreamIt compiler produced a back-end for Raw, which
exploited the systolic software pattern when possible [5].

Related Patterns

The systolic software pattern may be useful for many appli-
cations based on OPL’s Dense Linear Algebra pattern and
possibly some applications or kernels which fall under the
Graph Algorithms pattern [13].

Systolic arrays themselves exploit extremely fine grain
pipelines and data parallelism, so the systolic software pat-
tern could be viewed as a concurrent execution pattern com-
bining OPL’s Pipeline and Data Parallel algorithm strategy
patterns [13].

To exploit the systolic software pattern a program must
have loop level parallelism so a systolic implementation may

7



be worth exploring for applications that use OPL’s Loop
Parallelism pattern.

Acknowledgements

Thanks to the attendees of ParaPLoP 2010, and especially
Ralph Johnson, who provided many helpful comments on
earlier versions of this paper.

1. REFERENCES

[1] M. Annaratone, E. Arnould, T. Gross, H. T. Kung,
M. S. Lam, O. Menzilcioglu, K. Sarocky, and J. A.
Webb. Warp Architecture and Implementation. In
13th Annual Symposium on Computer Architecture,
pages 346–356, 1986.

[2] R. P. Brent, F. T. Luk, and C. F. V. Loan.
Computation of the Singular Value Decomposition
Using Mesh-Connected Processors. Journal of VLSI

and Computer Systems, 1(3):242–260, 1985.

[3] A. L. Fisher, H. T. Kung, L. M. Monier, and Y. Dohi.
Architecture of the PSC—A Programmable Systolic
Chip. In 10th International Symposium on Computer

Architecture, pages 48–53. IEEE Computer Society
Press, 1983.

[4] D. E. Foulser and R. Schreiber. The Saxpy Matrix-1:
A General-Purpose Systolic Computer. IEEE

Computer, 20(7):35–43, July 1987.

[5] M. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S.
Meli, C. Leger, A. A. Lamb, J. Wong, H. Hoffmann,
D. Z. Maze, and S. Amarasinghe. A stream compiler
for communication-exposed architectures. In
International Conference on Architectural Support for

Programming Languages and Operating Systems, 2002.

[6] T. Gross, S. Hinrichs, D. R. O’Hallaron, T. Stricker,
and A. Hasegawa. Communication Styles for Parallel
Systems. IEEE Computer, 27(12):34–44, Dec. 1994.

[7] T. Gross and M. S. Lam. Compilation for a
High-performance Systolic Array. In SIGPLAN 86

Symposium on Compiler Construction, ACM

SIGPLAN, pages 27–38, 1986.

[8] T. Gross and D. R. O’Hallaron. iWARP: Anatomy of

a Parallel Computing System. MIT Press, Cambridge,
MA, 1998.

[9] D. W. Hillis. The Connection Machine. MIT Press,
Cambridge, MA, 1985.

[10] H. Hoffmann and A. Agarwal. A quantitative analysis
of stream algorithms on raw compute fabrics. In Third

Annual Boston Area Architecture Workshop.

[11] H. Hoffmann, V. Strumpen, and A. Agarwal. Stream
Algorithms and Architecture. Technical Memo
MIT-LCS-TM-636, Laboratory for Computer Science,
Massachusetts Institute of Technology, Mar. 2003.

[12] E. Ipek, O. Mutlu, J. F. MartŠnez, and R. Caruana.
Self-optimizing memory controllers: A reinforcement
learning approach. In ISCA ’08: Proc. of the 35th

Inter. Symp. on Comp. Arch., 2008.

[13] K. Keutzer and T. Mattson. Our Pattern Language
(OPL): A design pattern language for engineering
(parallel) software.

[14] R. R. Koch, F. T. Leighton, B. M. Maggs, S. B. Rao,
A. L. Rosenberg, and E. J. Schwabe. Work-Preserving

Emulations of Fixed-Connection Networks. Journal of

the ACM, 44(1):104–147, Jan. 1997.

[15] R. Krashinsky, C. Batten, M. Hampton, S. Gerding,
B. Pharris, J. Casper, and K. Asanovic. The
Vector-Thread Architecture. In 31st International

Symposium on Computer Architecture, München,
Germany, June 2004. (publication pending).

[16] H. T. Kung. Systolic Communication. In International

Conference on Systolic Arrays, pages 695–703, San
Diego, CA, May 1988.

[17] H. T. Kung. Warp Experience: We Can Map
Computations Onto a Parallel Computer Efficiently.
In 2nd International Conference on Supercomputing,
pages 668–675. ACM Press, 1988.

[18] H. T. Kung and C. E. Leiserson. Algorithms for VLSI
Processor Arrays. In C. A. Mead and L. A. Conway,
editors, Introduction to VLSI Systems, chapter 8.3,
pages 271–292. Addison-Wesley, 1980.

[19] S.-Y. Kung, R. J. Gal-Ezer, and K. S. Arun.
Wavefront Array Processor: Architecture, Language
and Applications. In Conference of Advanced Research

in VLSI, pages 4–19, M.I.T., Jan. 1982.

[20] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb,
V. Sarkar, and S. Amarasinghe. Space-Time
Scheduling of Instruction-Level Parallelism on a Raw
Machine. In Proceedings of the Eighth ACM

Conference on Architectural Support for Programming

Languages and Operating Systems, pages 46–57, San
Jose, CA, Oct. 1998.

[21] F. T. Leighton. Introduction to Parallel Algorithms

and Architectures: Arrays, Trees, Hypercubes. Morgan
Kaufmann, 1992.

[22] D. R. Martinez, R. A. Bond, and M. M. Vai. High

Performance Embedded Computing Handbook. CRC
Press, Boca Raton, 2008.

[23] R. Nagarajan, K. Sankaralingam, D. C. Burger, and
S. W. Keckler. A Design Space Evaluation of Grid
Processor Architectures. In 34th Annual International

Symposium on Microarchitecture, pages 40–51, Dec.
2001.

[24] J. Oliver, R. Rao, P. Sultana, J. Crandall,
E. Czernikowski, L. W. Jones IV, D. Copsey, D. Keen,
V. Akella, and F. T. Chong. Synchroscalar: A
Multiple Clock Domain Power-Aware Tile-Based
Embedded Processor. In 31st International

Symposium on Computer Architecture, München,
Germany, June 2004. (publication pending).

[25] J. Psota, J. Eastep, J. Miller, T. Konstantakopoulos,
M. Watts, M. Beals, J. Michel, K. Kimerling, and
A. Agarwal. Atac: On-chip optical networks
formulticore processors. In Fifth Annual Boston Area

Architecture Workshop, January.

[26] B. R. Rau and J. A. Fisher. Instruction-Level Parallel
Processing: History, Overview and Perspective. The

Journal of Supercomputing, 7(1):9–50, May 1993.

[27] J. E. Smith. Decoupled Access/Execute Computer
Architectures. ACM Transactions on Computer

Systems, 2(4):289–308, Nov. 1984.

[28] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin.
WaveScalar. In 36th International Symposium on

Microarchitecture, pages 291–302, San Diego, CA,
Dec. 2003. IEEE Computer Society.

8



[29] M. Taylor, W. Lee, S. Amarasinghe, and A. Agarwal.
Scalar Operand Networks: On-Chip Interconnect for
ILP in Partitioned Architectures. In Proceedings of

HPCA 2003, February 2003. Also
http://www.cag.lcs.mit.edu/raw/.

[30] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff,
F. Ghodrat, B. Greenwald, H. Hoffmann, P. Johnson,
J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski,
N. Shnidman, V. Strumpen, M. Frank,
S. Amarasinghe, and A. Agarwal. The Raw
Microprocessor: A Computational Fabric for Software
Circuits and General-Purpose Programs. IEEE Micro,
22(2):25–36, March/April 2002.

[31] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt,
B. Greenwald, H. Hoffmann, P. Johnson, J. Kim,
J. Psota, A. Saraf, N. Shnidman, V. Strumpen,
S. Amarasinghe, and A. Agarwal. Evaluation of the
Raw Microprocessor: An Exposed-Wire-Delay
Architecture for ILP and Streams. In International

Symposium on Computer Architecture, June 2004.

[32] S. Toledo. A Survey of Out-of-Core Algorithms in
Numerical Linear Algebra. In J. Abello and J. S.
Vitter, editors, External Memory Algorithms and

Visualization, pages 161–180. American Mathematical
Society Press, Providence, RI, 1999.

[33] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao,
B. Edwards, C. Ramey, M. Mattina, C.-C. Miao, J. F.
Brown III, and A. Agarwal. On-chip interconnection
architecture of the Tile Processor. IEEE Micro,
27(5):15–31, 2007.

[34] R. F. Woods, J. V. Mccanny, and J. G. Mcwhirter.
From bit level systolic arrays to hdtv processor chips.
J. Signal Process. Syst., 53(1-2):35–49, 2008.

9


