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1 Introduction

Our goal is to develop a state-of-the-art protein secondary structure predictor,
with an intuitive and biophysically-motivated energy model. The lack of experi-
mentally determined free energy values makes it difficult to design accurate cost
functions that can be optimized by predictors. Our technique uses a cost func-
tion comprised of unknown parameters, and applies Support Vector Machines
(SVMs) to learn parameters that correctly predict known protein structures. So
far, we have focused on the prediction of all-alpha proteins and have shown that
a model with 302 parameters can achieve a Qα value (percent of correctly pre-
dicted residues) of 77.6% and a SOV 99α (see [3]) value of 73.4%. As detailed
in an accompanying technical report [1], these performance numbers are among
the best for techniques that do not rely on multiple sequence alignments.

2 Method

Our method assumes that a protein’s secondary structure can be found by min-
imizing a free-energy function G that is computed as a sum of elementary free-
energies. For example, an elementary free-energy might represent the energetic
cost of a given residue appearing in an alpha helix. The predicted structure min-
imizes the sum of these costs. For fixed values of the free-energy parameters,
there are well-known algorithms to perform such a minimization (for example,
dynamic programming). Thus, our main task is to find the unknown elementary
free-energies by using a database of known protein structures. A general Support
Vector Machine algorithm has been proposed that can be applied to this task [2].

The key ideas of the algorithm are illustrated in Figure 1. First, the problem is
converted into an exponentially large system of inequalities that the elementary
free-energies must satisfy: for each sequence xi, the correct secondary structure
yi must have a lower free-energy G′(xi, yi) than for any of the incorrect sec-
ondary structures yj . Next, a tractable subset of these inequalities is selected.
This subset may not have any solutions, because there might not exist a set of
free-energies that is compatible with the whole database of training structures.
Alternately, if the problem does have solutions, it will probably have many. The
SVM techniques of margin maximization and slack variables are used to translate
the reduced problem into a quadratic program that has a unique solution.



2

Add slack variables

Reduced problemsFull−problem SVM problems

Linearization
Margin maximization

Constraint selection

Solve

Find G′ ∈ G such that:
G′(x1,y1) < G′(x1,y

0)
G′(x1,y1) < G′(x1,y

1)
G′(x1,y1) < G′(x1,y

2)
· · ·
G′(x1,y1) < G′(x1,y

m)

Find G′ ∈ G such that:

G′(x1,y1) < G′(x1,y
1)

G′(x1,y1) < G′(x1,y
7)

G′(x1,y1) < G′(x1,y
245)
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Fig. 1. Overview of the learning algorithm.Fig. 1. Overview of the learning algorithm.

The quadratic program is solved to produce a candidate set of elementary
free-energies, which is used by a structure predictor (not shown) to find a new
structure for each sequence xi. If any of these structures are incorrect, they
are added to the subset of incorrect structures yj , a new quadratic program is
created, and a new candidate solution is found. We repeat these steps until all
generated structures are correct (or a suitable termination condition is satisfied).

3 Results
We applied this method to the case of all-alpha protein secondary structure
prediction. We worked with a set of 300 non-homologous all-alpha proteins taken
from EVA’s sequence-unique subset of the PDB, July 2005.

For each run of our algorithm, we randomly selected a 150 protein training
set and an independent 150 protein test set. The training set is used to learn
elementary free-energies, and the test set is used to evaluate the result. Our
predictor minimizes the free-energy function G using the Viterbi algorithm on
a simple 7-state Finite State Machine. Table 1 summarizes our results. The
prediction accuracy is competitive with other state-of-the-art predictors that do
not rely on sequence alignment data. Further, while some techniques require
upwards of 10,000 parameters, our predictor uses only 302 parameters in the
form of elementary free-energies [1].

Description SOV99α (%) SOV99α (%) Qα (%) Qα (%) Training
(train) (test) (train) (test) time (s)

Best run for SOV99α 76.4 75.1 79.6 78.6 123
Average of 20 runs 75.1 73.4 79.1 77.6 162

Table 1. Performance of our algorithm on all-alpha protein structure prediction.

4 Conclusion
This work is a promising first pass at using SVM techniques to find the elemen-
tary free-energies needed to predict protein secondary structure. The method we
use is general and can be extended beyond the all-alpha case described here. In
future work, we plan to extend this method to super-secondary structure pre-
diction, generating contact maps of individual hydrogen bonds in beta sheets.
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