Simultaneous Alignment and Folding of Protein Sequences

Jérôme Waldispühl^{1,2}, Charles W. O'Donnell^{2,3}, Sebastian Will⁴, Srinivas Devadas^{2,3}, Rolf Backofen^{4,*}, and Bonnie Berger^{1,2,*}

- ¹ Department of Mathematics, MIT, Cambridge, USA,
- ² Electrical Engineering and Computer Science, MIT, USA,
- ³ Computer Science and AI Lab, MIT, Cambridge, USA,
- ⁴ Institut für Informatik, Albert-Ludwigs-Universität, Freiburg, Germany.

Abstract. Accurate comparative analysis tools for low-homology proteins remains a difficult challenge in computational biology, especially sequence alignment and consensus folding problems. We present partiFold-Align, the first algorithm for simultaneous alignment and consensus folding of unaligned protein sequences; the algorithm's complexity is polynomial in time and space. Algorithmically, partiFold-Align exploits sparsity in the set of super-secondary structure pairings and alignment candidates to achieve an effectively cubic running time for simultaneous pairwise alignment and folding. We demonstrate the efficacy of these techniques on transmembrane β -barrel proteins, an important yet difficult class of proteins with few known three-dimensional structures. Testing against structurally derived sequence alignments, partiFold-Align significantly outperforms state-of-the-art pairwise sequence alignment tools in the most difficult low sequence homology case and improves secondary structure prediction where current approaches fail. Importantly, partiFold-Align requires no prior training. These general techniques are widely applicable to many more protein families. partiFold-Align is available at http://partiFold.csail.mit.edu.

1 Introduction

The consensus fold of two proteins is their common minimum energy structure, given a sequence alignment, and is an important consideration in structural bioinformatics analyses. In structure-function relationship studies, proteins that have the same consensus fold are likely to have the same function and be evolutionarily related [1]; in protein structure prediction studies, consensus fold predictions can guide tertiary structure predictors; and in sequence alignment algorithms [2], consensus fold predictions can improve alignments. The primary limitations in achieving accurate consensus folding, however, is the difficulty of obtaining reliable sequence alignments for divergent protein families and the inaccuracy of folding algorithms.

^{*} Corresponding authors: bab@mit.edu, backofen@informatik.uni-freiburg.de.

The specific problem we address is predicting consensus folds of proteins from their unaligned sequences. This definition of consensus fold should not to be confused with the agreed structure between unrelated predictors [3]. Our approach succeeds by *simultaneously* aligning and folding protein sequences. By concurrently optimizing unaligned protein sequences for both sequence homology and structural conservation, both higher fidelity sequence alignment and higher fidelity structure prediction can be obtained. For sequence alignment, this sidesteps the requirement of correct initial profiles (because the best sequence aligners require profile/profile alignment [4]). For structure prediction, this harnesses powerful evolutionary corollaries between structure.

While this class of problems has received much attention in the RNA world [5,6,7,8,9,10], it has not yet been applied to proteins. Applying these techniques to proteins is more difficult and less defined. For proteins, the variety of structures is much more complicated and diverse than the standard RNA structure model, requiring our initial step of constructing an abstract template for the structure. Moreover, for proteins, there is no clear chemical basis for compensatory mutations [11], the energy models that define β -strand pairings are more complex, and the larger residue alphabet vastly increases the complexity of the problem.

This class of problems is also different than any that have been attempted for structure analysis. The closest related structure-prediction methods rely on sequence profiles, as opposed to consensus folds. Current protein threading methods such as Raptor [12] often construct sequence profiles of the query sequence before threading it onto solved structures in the PDB; however, given two query sequences, even if they are functionally related, it will output two structure matches but does not try to form a consensus from these. There are β -structure specific methods that 'thread' a profile onto an abstract template representing a class of structures [13,14], but do not generate consensus folds. Further, a new class of "ensemble" methods, e.g., partiFold TMB [15], "threads" a profile onto an abstract template, yet does not incorporate sequence alignment information nor generate consensus folds.

In this paper, we describe partiFold-Align, the first algorithm for simultaneous alignment and folding of pairs of unaligned protein sequences. Pairwise alignment is an important component in achieving reliable multiple alignments. Our strategy uses dynamic programming schemes to simultaneously enumerate the complete space of structures and sequence alignments and compute the optimal solution (as identified by a convex combination of ensemble-derived contact probabilities and sequence alignment matrices [16,17,18]). To overcome the intractability of this problem, we exploit sparsity in the set of likely amino acid pairings and aligned residues (inspired from the LocARNA algorithm [19]). partiFold-Align is thus able to achieve effectively cubic time and space in the length of its input sequences.

We demonstrate the efficacy of this approach by applying it to transmembrane β -barrel (TMB) proteins, one of the most difficult classes of proteins in terms of both sequence alignment and structure prediction [15,14]. In tests

on sequence alignments derived from structure alignments, we obtain significantly better pairwise sequence alignments, especially in the case of low homology. In tests comparing single-sequence versus consensus structure predictions, partiFold-Alignobtains improved accuracy, considerably for cases where single-sequence results are poor. The methods we develop in this paper specifically target the difficult case of alignment of low homology sequences and aim to improve the accuracy of such alignments.

Contributions: The main contribution of this work is that we introduce the new concept of consensus folding of unaligned protein sequences. Our algorithm partiFold-Align is the first to perform simultaneous folding and alignment for protein sequences. We use this to provide better sequence alignments and structure predictions for the important and difficult TMB proteins, particularly in the case of low-homology. Given the broad generality of this approach and its proven impact on the RNA world, we hope that this will become a standard in protein structure prediction.

2 Approach

To design an algorithm for simultaneous alignment and folding we must overcome one fundamental problem: predicting a consensus fold (structure) of two unaligned protein sequences requires a correct sequence alignment on hand, however, the quality of any sequence alignment depends upon the underlying unknown structure of the proteins. We adopt our solution to this issue from the approach introduced by Sankoff [5] to solve this problem in the context of RNAs—by predicting partial structural information that is then aligned through a dynamic programming procedure.

For our consensus folding algorithm, we define this partial information using probabilistic contact maps (i.e., a matrix of amino acid pairs with a high likelihood of forming hydrogen bonding partners in a protein conformation), based on Boltzmann ensemble methods, which predict the likelihood of possible residueresidue interactions given all possible in-vivo protein conformations [14]. This is

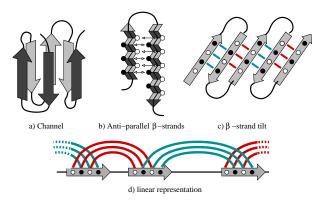


Fig. 1. Different structural elements of transmembrane β -barrels.

inspired by the recent *LocARNA* [19] algorithm, which improves upon Sankoff's through the use of such probabilistic contact maps. This technique is also somewhat related to the problem of *maximum contact map overlap* [20], although in such problems, contact maps implicitly signify the biochemical strength of a contact in a *solved* structured and not a well-distributed likelihood of interaction taken from a complete ensemble of possible structures.

Using such ensemble-based contact maps for simultaneous alignment and folding can be applied to other classes of proteins, however, in this work we describe our application to the class of transmembrane β -barrels. Unlike the RNA model used by Sankoff, TMB protein structure takes a complex form, with inclined, anti-parallel hydrogen-bonding β -strand forming a circular barrel structure, as depicted in Fig. 1. Partitioning such diversity of structure presents an intractable problem, so we apply a fixed parameter approach to restrict structural elements such as β -strand length, coil size, and the amount of strand inclination to biologically meaningful sizes.

Broadly speaking, our simultaneous alignment and folding procedure begins by predicting the ensemble-based probabilistic contact map of two unaligned sequences through an algorithm extended from partiFold TMB [14]. Importantly, β -strand contacts below a parameterizable threshold are excluded to allow for an efficient alignment of the most likely interactions. Alignment is then broken into two structurally different parts: the alignment of β -sheets, and the alignment of coils (seen in Fig. 2). Coil alignments can be performed independently at each position, however β -sheet alignments must respect residue pairs. Finally, to decompose the problem (Fig. 3), we first consider the optimal alignment of a single β -sheet with a given inclination, including the enclosed coil alignment. For energetic considerations, we must note the orientation of the β -strand residues (core-facing or membrane-facing), as well as whether the coil extends into the extra-cellular or periplasmic side of the membrane. Once all single alignments

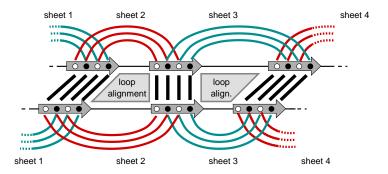


Fig. 2. Elements of TMB-alignment. Differently colored amino acids in the sheet denote exposure to the membrane and to the channel, respectively. In a valid sheet alignment, only amino acids of the same type can be matched, whereas no further constraint (except length restriction) are applied to the loop alignment

.

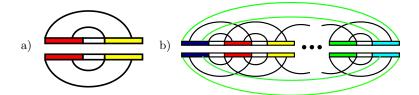


Fig. 3. Problem decomposition; a) alignment of a single sheet including the enclosed loop with positive shear; b) chaining of single sheet alignment to form a β -barrel. Green arcs indicate the closing sheet connecting beginning and end.

have been found, we "chain" these subproblems to arrive at a single consensus alignment and structure.

2.1 The TMB Alignment Problem

Formally, we define an alignment \mathcal{A} of two sequences a,b as a set of pairs $\{(p_1,p_2)\mid p_1\in [1..|a|]\cup \{-\}\land p_2\in [1..|b|]\cup \{-\}\}$ such that (i) for all $(i,j),(i',j')\in (\mathcal{A}\cap [1..|a|]\times [1..|b|)$ we have $i< j\implies i'< j'$ (non-crossing) and (ii) there is no $i\in [1..|a|]$ (resp. $j\in [1..|b|]$) where there are two different p,p' with $(i,p),(i,p')\in \mathcal{A}$ (resp. $(p,j),(p',j)\in \mathcal{A}$). Furthermore, for any position in both sequences, we must have an entry in \mathcal{A} . We say that \mathcal{A} is a partial alignment if there are some sequence positions for which there is no entry in \mathcal{A} . In this case, we denote with $def(a,\mathcal{A})$ (resp. $def(b,\mathcal{A})$) the set of positions in a (resp. b) for which an entry in \mathcal{A} exists.

With this, the result of structure prediction is not a single structure, but a set of putative structural elements, namely the set of possible contacts for the β -strand. As indicated in Fig. 1, we have two different side chain orientations, namely facing the channel (C) and facing the membrane (M). Since contacts can form only if both amino acids share the same orientation, a *TMB probabilistic contact map P of any TMB a* is a matrix $P = (P(i,i',x))_{1 \leq i < = i' \leq |a|,x \in \{C,M\}}$ where P(i,i',x) = P(i',i,x) and $\forall x \in \{C,M\}: \sum_i P(i,i',x) \leq 1$. To overcome the intractability of this problem, we exploit sparsity in the set of likely amino acid pairings. Thus, we use only those entries in the matrix P which have a likelihood above a parameterizable threshold.

We weight the alignments with a scoring function that sums a folding energy term $\mathcal{E}()$ with an alignment score $\mathcal{W}()$, where the energy term $\mathcal{E}()$ corresponds to the sum of the folding energies of the consensus structure mapped onto the two sequences. To allow a convex optimization of this function, we introduce a parameter α distributing the weights of the two terms. Thus, given two sequences a, b, an alignment \mathcal{A} and a consensus TMB structure \mathcal{S} of length $|\mathcal{A}|$, the score of the alignment is:

$$score(\mathcal{A}, \mathcal{S}, a, b) = (1 - \alpha) \cdot \mathcal{E}(\mathcal{A}, \mathcal{S}, a, b) + \alpha \cdot \mathcal{W}(\mathcal{A}, a, b)$$

Let $E_{ct}(x, y)$ be the energy value of a pairwise residue contact. Since by definition of a consensus structure these contacts are aligned, we define the energy component of the score() as:

$$\mathcal{E}(\mathcal{A}, \mathcal{S}, a, b) = \sum_{\substack{(i) \in \mathcal{A}, (i') \\ (i, i') \in \mathcal{S}_a^{\text{arcs}}, (j, j') \in \mathcal{S}_b^{\text{arcs}}}} \tau(i, i', j, j'), \text{ where } \tau(i, i', j, j') = E_{ct}(i, i') + E_{ct}(j, j')$$

In practice, *partiFold-Align* implements a slightly more complex stacking pair energy model as described in [15]. However, for pedagogical clarity, we use here only pairwise residue contact potentials.

Now, let $\sigma(x, y)$ be the substitution score of the amino acids x by y, and g(x) an insertion/deletion cost. Then, the sequence alignment component of the score() is given by:

$$\mathcal{W}(\mathcal{A}, a, b) = \sum_{\binom{i}{j} \in \mathcal{A}} \sigma(a_i, a_j) + \sum_{\binom{i}{j} \in \mathcal{A}} g(a_i) + \sum_{\binom{i}{j} \in \mathcal{A}} g(a_j)$$

Again, in practice, a penalty for opening gaps is added but not described here for clarity. Finally, the optimization problem our algorithm solves is, given two sequences a and b:

$$\underset{\mathcal{S} \text{ TMB structure of length } |\mathcal{A}|}{\arg\max} \left\{ \operatorname{score}(\mathcal{A}, \mathcal{S}, a, b) \right\}.$$

To account for the side-chain orientation of residues in TM β -strands toward the channel or the membrane, the $\mathcal{E}()$ and $\mathcal{W}()$ recursion equations require a slightly more detailed version of the scoring. An additional condition is that contacts only happen between amino acids with the same orientation, and that this orientation alternates between consecutive contacts. Hence, we introduce in τ an additional parameter env standing for this side-chain orientation environment feature. The same holds for the edit scores σ and g, where the orientation can also be the loop environment. For the strands, we use $\sigma_s(i,j,env)$, while for loops we distinguish inner from outer loops (indicated by the loop type lt) with the amino acids in the loops scored using $\sigma_l(i,j,lt)$. The gap function is treated analogously.

2.2 Decomposition

We now define the dynamic programming tables used for the decomposition of our problem. The alignment of a single anti-parallel strand pair as shown in Fig. 3a has nested arcs and an outdegree of at most one. We introduce for this configuration a table ShA() (where ShA stands for *sheet alignment*) aligning pairs of subsequences $a_{i..i'}$ and $b_{j..j'}$. Another parameter to account for is the shear number which represents the inclination of the strands in the TM β -barrel. Since the strand pair alignments also include a loop alignment, and the scoring function of this loop depends on the loop type (inner/outer loop), we need to set the loop type as an additional parameter. Similarly, we need to know the orientation of the final contact to ensure the succession of channel and membrane orientations. Given an orientation environment of a contact env, the term

 $\operatorname{next}_c(\mathit{env})$ return the orientation of the following contact. Thus, we have a table $\operatorname{ShA}(i,i';j,j';\mathit{env},\mathit{lt};s)$ with the following recursion:

$$\operatorname{ShA}(i,i';j,j';\mathit{env};\mathit{lt};s) = \max \begin{cases} ShA\mathit{gap}(i,i';j,j';\mathit{env};\mathit{lt};s) \\ ShA\mathit{shear}(i,i';j,j';\mathit{env};\mathit{lt};s) & \text{if } s \neq 0 \\ ShA\mathit{contact}(i,i';j,j';\mathit{env};\mathit{lt}) & \text{if } s = 0 \\ \operatorname{LA}(i,i';j,j';\mathit{lt}) & \text{if } s = 0 \end{cases}$$

where

$$\begin{split} ShAcontact(i,i';j,j';env;lt) &= ShA(i+1,i'-1;j+1,j'-1;next_c(env);lt;0) \\ &+\tau(i,i';j,j';env) + \sigma_s(a_i,b_j,env) + \sigma_s(a_{i'},b_{j'},env) \end{split}$$

$$ShAgap(i,i';j,j';env;lt;s) &= ShAshear(i,i';j,j';env;lt;s) = \\ ShA(i+1,i';j,j';env;lt;s) + g_s(a_i,env) \\ ShA(i,i'-1;j,j';env;lt;s) + g_s(b_j,env) \\ ShA(i,i';j,j'-1;env;lt;s) + g_s(b_{j'},env) \end{split}$$

$$\max \begin{cases} ShA(i+1,i';j+1,j';env;lt;s+1) \\ + \sigma_s(a_i,b_j,env) & \text{if } s < 0 \\ ShA(i,i'-1;j,j'-1;env;lt;s-1) \\ + \sigma_s(a_{i'},b_{j'},env) & \text{if } s > 0 \end{cases}$$

ShAgap, ShAcontact and ShAshear are introduced for better readability and will not be tabulated. The matrix LA(i, i'; j, j'; lt) represents an alignment of two loops $a_{i..i'}$ and $b_{j..j'}$, with a loop type lt. This table can be calculated using the usual sequence alignment recursion. Thus, we have

$$LA(i, i'; j, j'; lt) = \begin{cases} LA(i, i' - 1; j, j'; lt) + g_{l}(a_{i'}, lt) \\ LA(i, i'; j, j' - 1; lt) + g_{l}(b_{j'}, lt) \\ LA(i, i' - 1; j, j' - 1; lt) + \sigma_{l}(a_{i'}, b_{j'}, lt) \end{cases}$$

As we have already mentioned in the definition of a contact map, we use a probability threshold to reduce both space and time complexity of the alignment problem, in a similar way as is done in the LocARNA-approach [19]. Thus, we will tabulate only values in the ShA-matrix for those positions i, i' and j, j' where the contact probability is above a threshold in both sequences. This is handled at the granularity of strand pairs in practice to reduce complexity.

2.3 Chaining

The next problem is to chain the different single sheet alignments, as indicated by Fig. 3b. To build a valid overall alignment, we have to guarantee that the sub-alignments agree on overlapping regions. A strand alignment \mathcal{A}_s is just a partial alignment. The solution is to extend the matrices for sheet alignments by an additional entry for the alignment of strand regions. Albeit there are exponentially many alignments in general, there are several restrictions on the set of allowed alignments since they are alignments of strand regions. In the case of TMB-barrels, we assume no strand bulges since they are a rare event. Hence, one can insert or delete only a complete contact instead of a single amino acid. When chaining sheet alignments, the gap in one strand is then transferred to the chained sheet (by the agreement of sub-alignments).

The first step is to extend the matrices of sheet alignments by an alignment descriptor which is used to ensure the compatability of sub-solutions used in the recursion. Note that although the alignment is fixed for the strands of a sheet, the scoring is not since we could still differentiate between a match of two bases or a match of a contact. Thus, the new matrix is $\mathrm{ShA}(i,i';j,j';env;lt;s;\mathcal{A}_{\mathrm{s}})$, where we enforce \mathcal{A}_{s} to satisfy $\mathrm{def}(a,\mathcal{A}_{\mathrm{s}})=[i..l_1]\cup[r_1..i']$ and $\mathrm{def}(b,\mathcal{A}_{\mathrm{s}})=[j..l_2]\cup[r_2..j']$ for some $i< l_1< r_1< i'$ and $j< l_2< r_1< j'$. The new version of $\mathrm{ShA}()$ is

$$ShA(i, i'; j, j'; env; lt; s; \mathcal{A}_{s}) = \max \begin{cases} ShAgap(i, i'; j, j'; env; lt; s; \mathcal{A}_{s}) \\ ShAshear(i, i'; j, j'; env; lt; s; \mathcal{A}_{s}) & \text{if } s \neq 0 \\ ShAcontact(i, i'; j, j'; env; lt; \mathcal{A}_{s}) & \text{if } s = 0 \\ LA(i, i'; j, j'; lt) & \text{if } s = 0 \end{cases}$$

LA(i, i'; j, j'; lt) does receive an additional parameter since sub-alignment agreement in chaining is restricted to strands. For definitions ShAgap(), ShAcontact() and ShAshear(), we now must check whether the associated alignment operations are compatible with A_s . Thus, the new definition of ShAcontact() is

$$ShAcontact(i, i'; j, j'; env; lt; \mathcal{A}_{s}) = \begin{cases} ShA(i+1, i'-1; j+1, j'-1; env; lt; 0; \mathcal{A}_{s}) & \text{if } (i, j) \in \mathcal{A}_{s} \\ + \tau(i, i'; j, j'; env) + \sigma_{s}(a_{i'}, b_{j'}, env) & \text{and } (i', j') \in \mathcal{A}_{s} \\ -\infty & \text{else} \end{cases}$$

If all entries are incompatible with A_s , then $-\infty$ is returned. Note that we add an amino acid match score only for a single specified end of the contact. Thus, $\sigma_s(a_i, b_j)$ is skipped. The reason is simply that otherwise this score would be added twice in the course of chaining. The new definition of ShAshear is then

$$ShAshear(i, i'; j, j'; env; lt; s, \mathcal{A}_{s}) =$$

$$\max \begin{cases} ShA(i+1, i'; j+1, j'; env; lt; s+1; \mathcal{A}_{s}) & \text{if } s < 0 \land (i, j) \in \mathcal{A}_{s} \\ ShA(i, i'-1; j, j'-1; env; lt; s-1; \mathcal{A}_{s}) & \text{if } s > 0 \land (i', j') \in \mathcal{A}_{s} \\ + \sigma_{s}(a_{i'}, b_{j'}, env) \end{cases}$$

The new variant of ShAgap() is defined analogously. Now we can define the matrix Dchain() for chaining the strand pair alignments. At the end of its construction, the sheet is closed by pairing its first and last strands to create the barrel. To construct this, we need to keep track of the leftmost and rightmost strand alignments $\mathcal{A}_s^{\text{chain}}$ and $\mathcal{A}_s^{\text{cyc}}$ of the sheet. We add two parameters, first, a variable ct used to determine if the closing strand pair has been added or not. Here, ct = c means that the sheet is not closed while $ct = l_f$ indicates that the barrel has been built. Second, to control the number of strand in the barrel, we add the variable nos storing the number of strands in the sheet.

We initialize the array Dchain for every i, j and any strand alignment $\mathcal{A}_s^{\text{cyc}}$ such that $\mathsf{def}(a, \mathcal{A}_s^{\text{cyc}}) = [i..i']$ and $\mathsf{def}(b, \mathcal{A}_s^{\text{cyc}}) = [j..j']$. This initializes the array to a non-barrel solution. Then

$$Dchain(i, j; \mathcal{A}_s^{\text{cyc}}; \mathcal{A}_s^{\text{cyc}}; c; lt; 1) = LA(i, |a|; j, |b|; lt; 1),$$

where lt represents the orientation environment. Note that the strand alignment has not yet been scored. We now describe the chain rules used to build a sheet (an unclosed barrel). To account for the alignment of the first strand of this sheet (so far unscored in ShA) we introduce a function $\mathrm{ShA}_{start}(\mathcal{A},nos)$ returning the cost of this alignment when nos=2, and returning 0 otherwise. A function prev() returning the previous loop type is also used to alternate loop environments between both sides of the membrane. In addition, given two alignments $\mathcal{A}_s, \mathcal{A}'_s$, we say that $\mathcal{A}_s, \mathcal{A}'_s$ agree on the strands i..i' in the first sequence and j..j' in the second sequence, written $agr(\mathcal{A}'_s; \mathcal{A}_s; i, i'; j, j')$. With this notation, the recursion used to build the unclosed sheets is:

$$\begin{aligned} Dchain(i,j;\mathcal{A}_{\mathbf{s}};\mathcal{A}_{\mathbf{s}}^{\mathrm{cyc}};c;lt;nos) &= \\ \max_{\substack{i',j',\mathcal{A}'_{\mathbf{s}},s,lt',env\\ \text{with}}} \begin{pmatrix} \operatorname{ShA}(i',i;j,j';env;lt';s;\mathcal{A}'_{\mathbf{s}}) \\ + Dchain(r_1,r_2;\mathcal{A}'_{\mathbf{s}};\mathcal{A}_{\mathbf{s}}^{\mathrm{cyc}};c;prev(lt);nos-1) \\ + \operatorname{ShA}_{start}(\mathcal{A}'_{\mathbf{s}},nos) \end{pmatrix}. \\ \operatorname{ShA}(i,i';j,j';lt';s;\mathcal{A}'_{\mathbf{s}}) &> -\infty, \\ \operatorname{def}(a,\mathcal{A}_{\mathbf{s}}) &= [i..l_1] \cup [r_1..i'], \\ \operatorname{def}(b,\mathcal{A}_{\mathbf{s}}) &= [j..l_2] \cup [r_2..j'], \\ \operatorname{and} agr(A':A:i.l.i.i') \end{aligned}$$

We conclude this section by defining the recursions used to close the barrel and perform a sequence alignment of the N-terminal sequences. Since the anti-parallel or parallel nature of the closing strand pair depends of the number of strands in the barrel, we introduce here a function ShAclose() which returns the folding energy of the parallel strand pairings of the leftmost and rightmost strands of the sheet if the number of strands nos is odd, and folding energy of the anti-parallel strand pairings if nos is even.

$$\begin{aligned} & Dchain(i,j;\mathcal{A}_{\mathbf{s}};\mathcal{A}_{\mathbf{s}}^{\mathrm{cyc}};l_{f};lt) = \\ & \max \begin{cases} & Dchain(i+1,j;\mathcal{A}_{\mathbf{s}};\mathcal{A}_{\mathbf{s}}^{\mathrm{cyc}};l_{f};lt) + g_{l}(a_{i},lt) \\ & Dchain(i,j+1;\mathcal{A}_{\mathbf{s}};\mathcal{A}_{\mathbf{s}}^{\mathrm{cyc}};l_{f};lt) + g_{l}(b_{j},lt) \\ & Dchain(i+1,j+1;\mathcal{A}_{\mathbf{s}};\mathcal{A}_{\mathbf{s}}^{\mathrm{cyc}};l_{f};lt) + \sigma_{l}(a_{i},b_{j},lt) \end{cases} \\ & \max_{i',j',\,env,\,nos} \begin{cases} & Dchain(i,i';\mathcal{A}_{\mathbf{s}};\mathcal{A}_{\mathbf{s}}^{\mathrm{cyc}};c;lt) \\ & + ShAclose(i,i';j,j';env;s;\mathcal{A}_{\mathbf{s}};\mathcal{A}_{\mathbf{s}}^{\mathrm{cyc}};dir(nos)) \end{cases} \end{aligned}$$

The final value of the consensus folding problem is then found in the function $Dchain(1,1;\mathcal{A}_s;\mathcal{A}_s^{\text{cyc}};l_f;lt)$ for some lt and $\mathcal{A}_s,\mathcal{A}_s^{\text{cyc}}$ with $agr(\mathcal{A}_s;\mathcal{A}_s^{\text{cyc}};1,i;1,j)$, where $def(a,\mathcal{A}_s)=[1..i]\cup[r..i']$ and $def(b,\mathcal{A}_s)=[1..j]\cup[r..j']$. Solutions are built using classical backtracking procedures.

These final Dchain() equations assume that the strand inclinations, modeled using the shear number s, are independent. However, in practice this parameter must be used to determine when a strand pair can be concatenated at the end of an existing sheet to ensure the coherency of the barrel structure and conserve a constant inclination of the strands (see Fig. 1).

3 Results

Here we demonstrate the benefits of the partiFold-Align algorithm when applied to the problems of pairwise sequence alignment and structure prediction of transmembrane β -barrel proteins. Our sequence alignment performance greatly improves upon comparable alignment techniques, and surpasses state-of-the-art alignment tools (which use additional algorithmic filters) in the case of low homology sequences. It is also shown that a partiFold-Align consensus fold can better predict secondary structure when aligning proteins within the same superfamily. We begin with a description of our test dataset and scoring metrics as well as the partifold-Align parameters chosen for the analysis, followed by our specific sequence alignment and structure prediction results.

Dataset and evaluation technique 3.1

By implementing our algorithmic framework to align and fold transmembrane β barrels, we highlight how this approach can significantly improve the alignment accuracy of protein classes with which current alignment tools have difficulty. Specifically, few TMB structures have been solved through X-ray crystallography or NMR (less-than 20 non-homologous to-date), and often known TMB sequences exhibit very low sequence homology (e.g. less-than 20%), despite sharing structure and function.

To judge how well partiFold-Align aligns proteins in this difficult class, we select 13 proteins from five superfamilies of TMBs found in the Orientation of Proteins in Membranes (OPM) database [21] (using the OPM database definition of class, superfamily, and family). This constitutes all solved TMB proteins with a single, transmembrane, β -barrel domain, and excludes proteins with significant extracellular or periplasmic structure and limits the sequence length to a computationally-tractable maximum of approximatedly 300 residues. With the assumption that structural alignment best mimics the intended goal of identifying evolutionary and functional similarities, we perform structural alignments between all pairs of proteins within large superfamilies, and across smaller superfamilies (28 alignments, see supplementary material for an illustration of the breakdown), and for testing purposes consider this the "correct" pairwise alignment. For structural alignments, the Matt [22] algorithm is used, which has demonstrated state-of-the-art structural alignment accuracy. During analvsis, the resulting alignments are then sorted by relative sequence identity ⁵ (assuming the Matt alignment) [23,24].

Our partiFold-Align alignments are then compared against structural alignments using the Q_{Cline} [25,26] scoring metric, restricted to transmembrane regions as defined by the OPM (since structural predictions in the algorithm only contribute to transmembrane β -strand alignments; coils are effectively aligned on sequence-alone). Q_{Cline} can be considered a percentage accuracy, and resembles the simplistic $Q_{combined}$ score ⁶, measuring combined under- and over-prediction

of aligned pairs, but more fairly accounts for off-by-n alignments. Such shifts often occur from energetically-favorable off-by-n β -strand pairings that remain useful alignments. The Q_{Cline} parameter ϵ is chosen to be 0.2, which allows alignments displaced by up to five residues to contribute (proportionally) toward the total accuracy. The higher the Q_{Cline} score, the more closely the alignments match (ranging $[-\epsilon, 1]$).

To judge the accuracy of a partiFold-Align consensus structure against a structure predicted from single-sequence alone, we test against the same OPM database proteins described above. For all 13 proteins, a structure prediction is computed using the exact same ensemble structure prediction methodology as in partiFold-Align, only applied to a single sequence. The transmembrane-region Q_2 secondary structure prediction score between the predicted structures and the solved PDB structure (annotated by STRIDE [27]) can then be computed; where $Q_2 = (TP + TN)/(sequence\ length)$.

3.2 Model parameter selection

For our analyses, parameters must be chosen for the abstract structural template defined in Section 2. In transmembrane β -barrels, the choice of allowable (minimum and maximum) β -strand and coil region lengths, as well as shear numbers can be assigned based on biological quantities such as membrane thickness, etc. (Even in the absence of all other information, the sequence length alone of a putative transmembrane β -barrel can suggest acceptable ranges.) Other algorithmic parameters, such as the pairwise contact threshold (which filters which β -strand pairs are used in the alignment), the Boltzmann Z constant (found within $E_{ct}()$ in $\mathcal{E}()$, effecting the structural energy score [15]), the gap penalty, the choice of substitution matrix, and the α balance parameter require selection without as clear a biological interpretation.

For results presented in this paper, one of three sets of structural parameters were chosen according to protein superfamily, with a fairly wide range of values permitted. To determine the algorithmic parameters listed above in a principled manner, we chose a single set of algorithmic parameters for all alignments, with the exception of varying the β -strand pair probability threshold used in the initial step of the algorithm, and the α score-balancing parameter. In all cases, our choices are made obliviously to the known structures in our testing sets. The substitution matrix we use is a combination of the BATMAS [16] matrix for transmembrane regions, and BLOSUM [17] for coils. For alignments with a sequence homology below 10%, we chose a higher probability threshold value $(1 \times 10^{-5} \text{ versus } 1 \times 10^{-10})$ to restrict alignments to highly-likely β -strand pairs, reducing signal degradation from low-likelihood β -strand pairs with very distant sequence similarities. For these same alignments (below 10%), we chose a lower α parameter (0.6 versus 0.7) to boost the contribution of the structural prediction to the overall solution when less sequence homology could be exploited. As seen in Fig. 4, consensus predictions from lower α parameters more closely resemble predictions based solely on structural scores, and thus, an optimal alignment should correlate α with sequence homology.

Admittedly, this naive, single (or few) parameter solution does not enable the full potential of our algorithm. A protein-specific machine learning approach would allow for a better parameter fit, and is the focus of ongoing research.

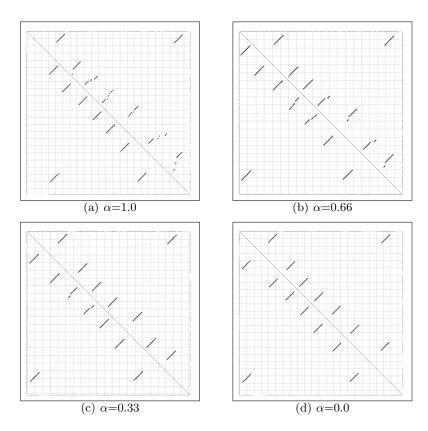


Fig. 4. Stochastic contact maps from a partiFold-Align run on the proteins 1BXW and 2F1V. For each of the four plots, the sequence of 1BXW and 2F1V is given on the axes (with gaps), and high probability residue-residue interactions indicated for 1BXW on the lower left half of the graph and 2F1V on the upper right half (i.e., the single-sequence probabilistic contact maps). Structural contact map alignment can be judged by how well the the plot is mirrored across the diagonal. Subfigure (a) ($\alpha=1.0$) shows an alignment which ignores the contribution of the structural contact map, while (d) ($\alpha=0.0$) shows an alignment wholly-dependent on the structural contact map, and ignorant of sequence alignment information.

3.3 Alignment accuracy of low sequence identity TMBs

To compare the accuracy of alignments generated by partiFold-Align against current sequence alignment algorithms, we perform the same TMB pairwise

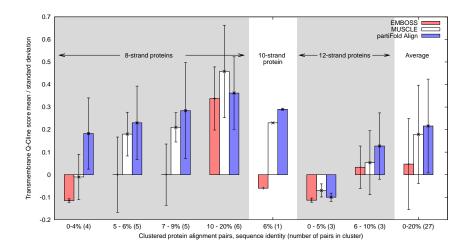


Fig. 5. Mean and standard deviation Q_{Cline} scores for 8-, 10-, and 12- stranded TMBs. Each of the 3 categories of proteins are clustered and ordered according to sequence identity, with the number of alignments in each cluster in parentheses. Note: By definition, Q_{Cline} scores range between $-\epsilon$ and 1.0, where $\epsilon = 0.2$; negative values indicate very poor alignments.

sequence alignments using partiFold-Align, EMBOSS (Needleman-Wunsch) [18], and MUSCLE [28,29]. EMBOSS may be considered the best Needleman-Wunsch style global sequence alignment algorithm (a straight-forward, widely applicable method of alignment), while MUSCLE is widely thought the most accurate of the "fast" alignment programs, Though it incorporates several position-specific gap penalty heuristics similar to those found in MAFFT and LAGAN [30]. ⁷ Since the partiFold-Align algorithm utilizes Needleman-Wunsch style dynamic programming, comparisons between EMBOSS and partiFold-Align represent a fair analysis of what simultaneous folding and alignment algorithms specifically contribute to the problem. Comparisons with MUSCLE alignment scores necessitate inclusion to portray the practical benefits partiFold-Align provides. However, no technical reason prevents MUSCLE's gap penalty heuristics to be incorporated with partiFold-Align; this stands as future work.

Fig. 5 presents transmembrane Q_{Cline} accuracy scores for EMBOSS, MUSCLE, and partiFold-Align across 27 TMB pairwise alignments. (The absent 28^{th} alignment, between 1BXW and 2JMM (50% sequence-homologous), is aligned with a nearly-perfect Q_{Cline} score of 0.98 by all three algorithms). Results are separated into the 3 categories according to the number of circling strands within a protein's β -barrel: seven 8-stranded OMPA-like proteins account for 21 align-

⁷ We note, that while EMBOSS uses only the BLOSUM substitution matrix, and partiFold-Align a combination of BATMAS and BLOSUM, Forrest et al. [4] show that BATMAS-style matrices do not show improvement for EMBOSS-style algorithms.

ments, two 10-stranded OMPT-like proteins account for one alignment, and finally, four 12-stranded Autotransporters, OM phospholipases,' and Nucleoside-specific porins make up the final six alignments (a full summary can be found in supplementary material). Equal-sized clusters of pairwise alignments are then formed and ordered according to sequence identity, with cluster mean Q_{Cline} and standard deviation reported. All individual alignment-pair statistics, as well as alternative accuracy metrics (e.g. $Q_{combined}$) can be found in supplementary material.

Across all TMBs, partiFold-Align alignments are more accurate than EMBOSS alignments by an average Q_{Cline} of 16.9% (4.5x). Most importantly, partiFold-Align significantly improves upon the EMBOSS Q_{Cline} score for all alignments with a sequence identity lower than 9% (by a Q_{Cline} average of 28%), and roughly matches or improves 24/28 alignments overall. Excluding the 12-strand alignments, which align proteins across different superfamilies, our intra-superfamily alignments exhibit even higher improvements in average Q_{Cline} , besting EMBOSS by 20.3% (27.4% versus 7.1%). Even compared with MUSCLE alignments, partiFold-Align is able to achieve a 4% increased Q_{Cline} on average, despite its lack of gap penalty heuristics employed by MUSCLE.

3.4 Secondary structure prediction accuracy of consensus folds

Here we investigate how the consensus structure resulting from our simultaneous alignment and folding algorithm can improve structure prediction accuracy over a prediction computed from a single sequence alone. We report in Tab. 1 Q_2 accuracies computed from alignments of all pairs of TMB sequences within the same n-stranded category. For each protein, the Q_2 score from the single sequence minimum folding energy (m.f.e.) structure is given (as done in [14]), and compared against the Q_2 score from the best alignment partner, and the average Q_2 score obtained when aligning that protein with all others in its category.

The results for 8- and 10-stranded categories show a clear improvement (more than 8%) by the best consensus fold in 6/9 instances (1P4T, 2F1V, 1THQ, 2ERV, 1K24, 1I78), and roughly equivalent results for the remaining 3 (2F1V, 1K24, 1I78). Further, on average, nearly all proteins show equivalent or improved scores when aligned with any other protein, with the exception of 1BXW. However, the single sequence structure prediction Q_2 for 1BXW is not only high, but significantly higher than all other 8-stranded proteins; the contact maps of any other aligning partner may simply add noise, diluting accuracy. Conversely, the proteins which have poor single sequence structure predictions benefit the greatest from alignment (e.g. 2F1V). This relationship is certainly not unidirectional, though, as we see that the consensus fold of 1K24 and 1I78 improves upon both proteins' single sequence structure prediction.

In contrast, the results compiled on the 12-strands category do not show any clear change in the secondary structure accuracy. However, recalling that this category covers 3 distinct superfamilies in the OPM database, such results may make sense. The Autotransporter, OM phospholipase, and Nucleoside-specific porin families all exhibit reasonably different structures, and perform quite unrelated tasks. Further, unlike the original partifold TMB algorithm [15], the

Category	PDB id	single seq.	consensus	
			best	average
8-stranded	1BXW	72	70(-2)	63(-9)
	1P4T	60	68(+8)	58(-2)
	1QJ8	65	68(+3)	66(+1)
	2F1V	47	63(+22)	62(+15)
	1THQ	50	69(+13)	52(+2)
	2ERV	57	67(+10)	59(+2)
	2JMM	62	65(+3)	62(+0)
10-stranded	1K24	60	69(+9)	69(+9)
	1I78	76	83(+7)	83(+7)
12-stranded	1QD6	54	61(+7)	56(+2)
	1TLY	59	59(+0)	58(-1)
	1UYN	56	56(+0)	53(-3)
	2QOM	51	55(+4)	53(+2)

Table 1. Secondary structure assignment accuracy. Percentage Q_2 of secondary structure prediction correctly assigned residues (transmembrane and non-transmembrane regions). Third column reports the performance of a single strand folding (no alignments). Fourth and fifth columns report respectively the best and the average Q_2 scores of a consensus structure over all possible alignment pairs for this PDB ID.

abstract structural template used in this work does not take into account β strands that extend far beyond the cell membrane (since our alignments focus
on membrane regions). This may also effect the structure prediction accuracy of
more complex TMBs.

We conclude from this benchmark that the consensus folding approach can be used to improve the structure prediction of low homology sequences, provided both belong to the same superfamily. However, we emphasize the importance parameter selection may play in these results; a different parameter selection method may enable accuracy improvement for higher-level classes of proteins.

4 Conclusions

We have presented partiFold-Align, a new approach to the analysis of proteins, which simultaneously aligns and folds pairs of unaligned protein sequences into a consensus to achieve both improved sequence alignment and structure prediction accuracy. To demonstrate the efficacy of this approach, we designed and tested the algorithm for the difficult class of transmembrane β -barrel, low sequence homology proteins. However, we believe this technique to be generally applicable to many classes of proteins where the structure can be defined through a chaining procedure as described in Section 2 (e.g., most β -sheet structures). This could open new areas of analysis that were previously unattainable given current tools' poor ability to construct functional alignments on low sequence homology proteins.

While we have shown that consensus folds can significantly improve upon pairwise sequence alignment, we believe this approach can also translate into considerable improvements in multiple sequence alignments. This is because many multiple alignment procedures use pairwise alignment information at their core [25]. Such an extension would be an obvious next step for our approach to be added in combination with other, more elaborate techniques found in sequence alignment algorithms (e.g., MUSCLE).

Similarly, we believe that the effectiveness of partiFold-Align can be enhanced significantly by a well-formulated machine learning approach to parameter optimization as has been applied to the case of RNA [6,31]. Supporting this notion, we experimented with parameters selected based on a known test set, and saw pairwise sequence alignment accuracies with an average Q_2 accuracy $\sim 20\%$ greater than MUSCLE (versus the reported $\sim 4\%$ improvement for test-set blind parameter selections). However, for the case of TMBs, one notable problem that would need to be overcome is the relatively small set of know structure or alignments with which to use for training. Supplementary materials, including more detailed results, can be found at http://partiFold.csail.mit.edu.

References

- Shakhnovich, B.E., Deeds, E., Delisi, C., Shakhnovich, E.: Protein structure and evolutionary history determine sequence space topology. Genome Res 15 (2005 Mar) 385–392
- Edgar, R.C., Batzoglou, S.: Multiple sequence alignment. Curr Opin Struct Biol 16 (2006 Jun) 368–373
- Selbig, J., Mevissen, T., Lengauer, T.: Decision tree-based formation of consensus protein secondary structure prediction. Bioinform. 15 (1999 Dec) 1039–1046
- Forrest, L.R., Tang, C.L., Honig, B.: On the accuracy of homology modeling and sequence alignment methods applied to membrane proteins. Biophys J 91 (2006 Jul 15) 508–517
- Sankoff, D.: Simultaneous solution of the RNA folding, alignment and protosequence problems. SIAM J. Comput. 45 (1985) 810–825
- 6. Do, C.B., Foo, C.S., Batzoglou, S.: A max-margin model for efficient simultaneous alignment and folding of RNA sequences. Bioinformatics $\bf 24$ (2008) i68–0i76
- Hofacker, I.L., Bernhart, S.H.F., Stadler, P.F.: Alignment of RNA base pairing probability matrices. Bioinformatics 20 (2004 Sep 22) 2222–2227
- 8. Mathews, D.H., Turner, D.H.: Dynalign: an algorithm for finding the secondary structure common to two RNA sequences. J Mol Biol 317 (2002 Mar) 191–203
- 9. Havgaard, J.H., Torarinsson, E., Gorodkin, J.: Fast pairwise structural RNA alignments by pruning of the dynamical programming matrix. PLoS Comput Biol 3 (2007 Oct) 1896–1908
- Backofen, R., Will, S.: Local sequence-structure motifs in RNA. J Bioinform Comput Biol 2 (2004 Dec) 681–698
- 11. Fariselli, P., Olmea, O., Valencia, A., Casadio, R.: Progress in predicting interresidue contacts of proteins with neural networks and correlated mutations. Proteins **Suppl 5** (2001) 157–162
- 12. Xu, J., Li, M., Kim, D., Xu, Y.: RAPTOR: Optimal protein threading by linear programming. J. of Bioinform. and Comp. Biol. (JBCB) (2003)

- Bradley, P., Cowen, L., Menke, M., King, J., Berger, B.: Betawrap: Successful prediction of parallel beta-helices from primary sequence reveals an association with many microbial pathogens. Proceedings of the National Academy of Sciences 98 (2001) 14819–14824
- 14. Waldispuhl, J., Berger, B., Clote, P., Steyaert, J.M.: Predicting transmembrane beta-barrels and interstrand residue interactions from sequence. Proteins $\bf 65$ (2006 Oct 1) $\bf 61-74$
- Waldispuhl, J., O'Donnell, C.W., Devadas, S., Clote, P., Berger, B.: Modeling ensembles of transmembrane beta-barrel proteins. Proteins 71 (2008 May 15) 1097–1112
- 16. Sutormin, R.A., Rakhmaninova, A.B., Gelfand, M.S.: Batmas30: amino acid substitution matrix for alignment of bacterial transporters. Proteins **51** (2003) 85–95
- 17. Henikoff, S., Henikoff, J.: Amino acid substitution matrices from protein blocks. PNAS **89** (1992) 10915–10919
- 18. Rice, P., Longden, I., Bleasby, A.: Emboss: the european molecular biology open software suite. Trends Genet 16 (2000 Jun) 276–277
- Will, S., Reiche, K., Hofacker, I.L., Stadler, P.F., Backofen, R.: Inferring noncoding RNA families and classes by means of genome-scale structure-based clustering. PLoS Comput Biol 3 (2007 Apr 13) e65
- Caprara, A., Carr, R., Istrail, S., Lancia, G., Walenz, B.: 1001 optimal PDB structure alignments: integer programming methods for finding the maximum contact map overlap. J Comput Biol 11 (2004) 27–52
- Lomize, M., Lomize, A., Pogozheva, I., Mosberg, H.: OPM: Orientations of Proteins in Membranes database. Bioinformatics 22 (2006) 623–625
- 22. Menke, M., Berger, B., Cowen, L.: Matt: local flexibility aids protein multiple structure alignment. PLoS Comp Bio 4 (2008 Jan) e10
- 23. Doolittle, R.: Similar amino acid sequences: chance or common ancestry? Science **214** (1981) 149–159
- Raghava, G., Barton, G.: Quantification of the variation in percentage identity for protein sequence alignments. BMC Bioinformatics 7 (2006) 415
- 25. Dunbrack, R.L.J.: Sequence comparison and protein structure prediction. Curr Opin Struct Biol 16 (2006 Jun) 374–384
- Cline, M., Hughey, R., Karplus, K.: Predicting reliable regions in protein sequence alignments. Bioinformatics 18 (2002 Feb) 306–314
- Frishman, D., P., A.: Knowledge-based protein secondary structure assignment. Proteins 23 (1995) 566–579
- Edgar, R.C.: Muscle: multiple sequence alignment with high accuracy and high throughput. NAR 32 (2004) 1792–1797
- Edgar, R.C.: Muscle: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5 (2004 Aug 19) 113
- 30. Brudno, M., Do, C.B., Cooper, G.M., Kim, M.F., Davydov, E., Green, E.D., Sidow, A., Batzoglou, S.: Lagan and multi-lagan: efficient tools for large-scale multiple alignment of genomic dna. Genome Res 13 (2003 Apr) 721–731
- 31. Do, C.B., Woods, D.A., Batzoglou, S.: CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics **22** (2006) e90–8