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ABSTRACT

The history and mechanism of molecular evolution
in DNA have been greatly elucidated by contribu-
tions from genetics, probability theory and bioinfor-
matics—indeed, mathematical developments such
as Kimura’s neutral theory, Kingman’s coalescent
theory and efficient software such as BLAST,
ClustalW, Phylip, etc., provide the foundation for
modern population genetics. In contrast to DNA,
the function of most noncoding RNA depends on
tertiary structure, experimentally known to be lar-
gely determined by secondary structure, for which
dynamic programming can efficiently compute the
minimum free energy secondary structure. For this
reason, understanding the effect of pointwise muta-
tions in RNA secondary structure could reveal fun-
damental properties of structural RNA molecules
and improve our understanding of molecular evolu-
tion of RNA. The web server RNAmutants provides
several efficient tools to compute the ensemble of
low-energy secondary structures for all k-mutants
of a given RNA sequence, where k is bounded by a
user-specified upper bound. As we have previously
shown, these tools can be used to predict putative
deleterious mutations and to analyze regulatory
sequences from the hepatitis C and human immu-
nodeficiency genomes. Web server is available at
http://bioinformatics.bc.edu/clotelab/RNAmutants/,
and downloadable binaries at http://rnamutants
.csail.mit.edu/.

INTRODUCTION

Understanding the molecular evolution of DNA has
proven essential to modern biology. One of the main

fields that has contributed to our understanding of molec-
ular evolution is population genetics, in its modern form
founded by Fisher (1) and Wright (2) in the early part of
the last century, when they posed and partially solved the
question of expected time (number of generations) for
gene allele fixation or extinction, known subsequently as
the (discrete) Fisher–Wright problem. This difficult prob-
lem of probability theory was solved using various tech-
niques, including the Fokker–Planck single-variable
diffusion equation (1–4), the coalescent (5,6), and a
direct analysis of Markov chains (7). The Fisher–Wright
model forms the foundation of Kimura’s widely accepted
neutral theory of molecular evolution, now a cornerstone
of modern genetics (8).
A mutation in a protein coding gene may be deleterious

depending on whether it causes a change of the coded
amino acid. A measure of selective pressure on protein
coding genes is the term Ka/Ks (also known as dN/dS),
which is the ratio of the rate of nonsynonymous substitu-
tions (Ka) to synonymous substitutions in a protein coding
region (CDS). In contrast, a mutation in a nonprotein
coding RNA gene may be deleterious if the underlying
functional structure is changed. At present, there is no
widely adopted measure of selective pressure in noncoding
RNA genes; however, as explained in Waldispühl et al.
(9), RNAmutants can be used to quantify the deleterious
nature of pointwise mutations in noncoding RNA genes.
The rationale for the consideration of mutational effects
on RNA secondary structure is explained in the next
paragraph.
The function of structural noncoding RNA [ribozymes

(10), riboswitches (11), precursor microRNA (12), seleno-
cysteine insertion sequence (SECIS) elements (13), transfer
RNA, etc.] depends on tertiary structure, which Banerjee
et al. (14) have shown experimentally to largely depend on
secondary structure. Secondary structure can be predicted
using dynamic programming energy minimization (15);
indeed, Mathews et al. (16) have shown that the minimum
free energy (MFE) structure, as determined in mfold (17)
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or RNAfold (18), includes 73% of the base pairs in the
native as inferred from the X-ray structure or by compara-
tive sequence analysis secondary structure, on average,
when tested on RNA sequences of length 700 nt.
Computational tools like mfold of Zuker (17), Vienna

RNA Package of Hofacker et al. (18), RNAStructure of
Mathews and Turner (19), Sfold of Ding et al. (20,21),
RNAbor of Freyhult et al. (22,23) and RNAsat of
Waldispühl and Clote (24) probe the landscape of second-
ary structures of a given RNA sequence. RNA sequence/
structure alignment tools like Dynalign by Mathews and
Turner (25), FOLDALIGN by Havgaard et al. (26), MSARI
of Coventry et al. (27), RNAz of Washietl et al. (28), etc.,
can be considered to be the RNA analog of BLAST and
ClustalW, whereby conservation of secondary structure
base pairing is taken into account.
Understanding the effect of pointwise mutations on

RNA secondary structure reveals fundamental properties
of structurally important RNA and may suggest poten-
tially deleterious mutations in RNA viral pathogens.
Designed explicitly for this purpose, the algorithm
RNAmutants (9) allows users to analyze the low energy
ensemble of mutant RNA sequences and structures.
Given an RNA sequence s of length n, an upper bound
K for the number of mutations allowed, a desired number
N of secondary structures samples to be generated, and a
temperature 0�T� 100 in degrees Celsius, RNAmutants
computes the following for all k�K simultaneously:
(i) the MFE structure MFET

k , its free energy and the
Boltzmann partition function ZT

k , over all secondary
structures of all k-point mutants; (ii) a plot of the ensem-
ble free energy �RT ln ZT

k , as a function of k; and (iii) a
collection of N RNA mutant sequences and their second-
ary structures, as sampled using the partition function.
By comparing low-energy structures from mutant
RNA with the consensus structures from the Rfam data-
base (29), one can infer putative deleterious mutations,
as performed in (9).

DEFINITIONS AND METHODS

Definitions

Given RNA sequence s= s1, . . . , sn, for all 0� k� n, let
ZT

k denote the Boltzmann partition function at absolute
temperature T for the collection of all secondary struc-
tures on all k-point mutants; i.e.

ZT
k ¼

X

s0;dHðs;s0Þ¼k

X

S

e�EðSÞ=RT 1

where the first sum is taken over all k-point mutants
s0= s01, . . . , s0n of s= s1, . . . , sn, and the second sum
is taken over all secondary structures S of the (fixed)
k-point mutant. Similarly, let mfeTK denote the k-point
mutant s0= s01, . . . , s0n of s whose secondary structure has
least free energy over all k-point mutants of s, and let
MFET

K denote its secondary structure. In the sequel, mfeTK
is called the k-superoptimal mutant andMFET

K is called the
k-superoptimal secondary structure. Finally, we let Zk,
mfek, MFEk denote the corresponding values at default
temperature T=378C.

Partition function and superoptimal structures

In (30), we introduced a novel algorithm to compute the
partition function ZT

k for all k-point mutants of a given
RNA sequence at absolute temperature T, with respect to
the Nussinov energy model (31). In contrast to the
Nussinov energy model, where each base pair contributes
energy term of �1, the widely accepted Turner energy
model (32) includes negative, stabilizing free energy
terms for stacked base pairs as well as positive, destabiliz-
ing free energy terms for hairpins, bulges, internal loops
and multiloops. With the exception of multiloops, for
which an affine approximation is applied, these free
energy parameters were obtained from UV absorption
(optical melting) experiments first pioneered by Tinoco’s
Lab (33) and systematically carried out by Turner’s Lab
(32,34). For instance, at 378C, Turner’s rules assign stack-
ing free energy of �2.24 kcal/mol to

50-AC-30

30-UG-50
and of �3.26 kcal/mol to

50-CC-30

30-GG-50

Waldispühl et al. (35) developed a general algorithm
AMSAG, applicable both to RNA and transmembrane
protein structure prediction. Subsequently, Clote et al.
(30) designed an algorithm to compute the partition func-
tion ZT

k with respect to the Nussinov energy model (31),
and applied AMSAG to determine the k-superoptimal sec-
ondary structures with respect to an energy model inter-
mediate between the Nussinov and Turner models.
Recently, Waldispühl et al. (9) created a unified frame-
work for simultaneously computing k-superoptimal sec-
ondary structures MFET

K as well as the partition
functions ZT

k with respect to the full Turner energy
model. The resulting program, RNAmutants, was then
applied to the analysis of regulatory portions of the hep-
atitis C and human immunodeficiency viral genomes. Of
particular interest is the determination of putative delete-
rious mutations, many of which were validated in prior
experimental work.

Using dynamic programming, RNAmutants computes
mfeTk , MFET

K and ZT
k for all values of 0� k�K in worst-

case time O(n3K2) and space O(n2K). From statistical
mechanics, it is known that the expected internal energy
hEki of all k-point mutants and their secondary structures
is equal to RT2 times the partial derivative of ln ZT

k ,
and hence can be approximated using the difference
ZTþ1

k � ZT
k (30). Ensemble free energy �RT lnZT

k can be
computed as well and plotted as a function of k. Similarly,
other thermodynamic parameters (heat capacity, etc.) can
be obtained from the partition function.

WEB SERVER

Input

The web server (http://bioinformatics.bc.edu/clotelab
/RNAmutants) runs on a Linux cluster with head and
file server nodes, and 25 compute nodes, including 6
Dell Power Edge 1750, 2x Intel Xeon P4 (2.80 GHz),
2GB RAM, 11 Dell Power Edge 1750, 2x Intel Xeon
P4 (2.80 GHz), 4GB RAM, and 8 Dell Power Edge
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1950, 2x Intel Xeon E5430 Quad core (2.80 GHz),
16GB RAM.

The input form for RNAmutants is shown in Figure 1.
The user must submit an RNA sequence, either by pasting
in the space provided, or by uploading a file. As well, the
user must enter a valid email address (This email may be
bogus; however, for long jobs that cannot be done inter-
actively, the results will be sent to the email address pro-
vided), an upper bound for the number of pointwise
mutations, the desired number of sampled structures,
and optionally the temperature in degrees Celsius. Input
for each job is saved under a unique anonymized job ID,
sent to the user’s email address, thus allowing the user to
retrieve information from the old runs. As long as the
user’s browser is open, updates to the results page will
be made; however, for long runs, the user will receive an
email with job ID and link to the completed results page.

Output

If K denotes the user-specified upper bound for the
number of mutations, then RNAmutants computes for

each k�K the k-superoptimal sequence mfek, secondary
structure MFEk and free energy Ek, where we recall that
the superoptimal secondary structure MFEk is that which
has lowest free energy over all secondary structures of
all k-point mutants of the input RNA sequence.
Additionally, RNAmutants computes the Boltzmann par-
tition function Zk=

P
S e�E(S)/RT for each k�K, and

using this computes a sample of structures from the low
energy ensemble, following a technique similar to (but dis-
tinct from) that of Ding and Lawrence (20). RNAmutants,
output ofmfek, MFEk and Ek is depicted in Figure 2, while
sampled sequence/structure pairs are given in Figure 3.
By writing scripts to postprocess the output, a number

of interesting results can be obtained, as exemplified in
Figures 4–6. Figure 4 was generated using RNAplot and
RNAfold from the Vienna RNA Package (18), using the
51 nt portion of the 30-untranslated region from murine
b-galactoside binding protein mRNA, with NCBI acces-
sion code MUSGBPA (29). This figure shows the Rfam
consensus structure (29), the MFE structure and the
20-superoptimal structure. The upper triangular portion
of Figure 5A shows the base pairing frequencies over all

Figure 1. Input form for RNAmutants.

Figure 2. Initial portion of one output file from RNAmutants for 51-nt portion of the 30-untranslated region from murine b-galactoside binding
protein mRNA, with NCBI accession code MUSGBPA. Web server displays all 51 superoptimal secondary structures, their free energy and mutation
locations. Mutated nucleotides are shown in lower case. Each line contains the partition functin value Z(K), the sampled mutated sequence, its
minimum free energy structure and the free energy of that structure.
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sampled structures for the 88-nt hepatitis delta virus ribo-
zyme with EMBL accession code X85253.1/682-769, while
the lower triangular portion shows the base pairs in the
MFE structure. (We follow the dot plot conventions of
Vienna RNA Package.) Figure 5B shows superoptimal
and ensemble free energy (y-axis), plotted as a function
of number of pointwise mutations (x-axis). Figure 6 dis-
plays the mutational profile of the 48-nt HAR1 region, an
important region of the novel RNA gene HAR1F (36),
expressed in Cajal–Retzius neurons in the developing
human neocortex, a gene believed to show significant
evolutionary acceleration. The RNAmutants Web server
provides a tool to display the mutational profile deter-
mined for nc RNA genes.

CONCLUSION

RNAmutants is a novel application which computes, for
each k�K; (i) the MFE structure MFET

K, free energy ET
k

and the Boltzmann partition function ZT
k , over all

Figure 4. Rfam consensus structure (left), MFE structure (middle) and 20-superoptimal structure (right) for hepatitis delta virus ribozyme with
EMBL accession number X85253.1/682-769. Free energies Rfam data from (29); structure images produced with RNAplot (18).

dot.psA B

Figure 5. (A) Base pair frequencies for sampled sequence/structure pairs for hepatitis delta virus ribozyme with EMBL accession number
X85253.1/682-769. The upper triangular portion of (A) represents the base pair frequencies over all 20 000 sampled structures (1000 samples
for each k-point mutant, for 1� k� 20), while the lower triangular portion represents the MFE structure of the wild-type sequence. (B) Plot of
k-superoptimal and k-ensemble free energies, where the latter is defined by �RT ln(Zk), where Zk is the partition function over all k-point mutants.

Figure 3. Initial portion of output file of 100 mutant sequence/structure
pairs from RNAmutants for the 51-nt portion of the 30-untranslated
region from murine b-galactoside binding protein mRNA, with NCBI
accession code MUSGBPA. Mutated nucleotides are shown in
lower case.
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secondary structures of all k-point mutants; (ii) a plot
of the ensemble free energy �RT lnZT

k , as a function of
k; and (iii) a collection of RNA mutant sequences and
their secondary structures, as sampled using the partition
function. Since RNAmutants runs in worst-case O(n3K2)
time, where n is the length of input RNA sequence, and
K is an upper bound for the number of mutations, the web
server cannot provide computational resources for
large values of n and K. In such cases, the user should
download executable code, which can be retrieved from
the web server. RNAmutants allows the user to estimate
the impact of mutations on the structure of functional

RNA, and better understand the evolutionary process of
RNA molecules.
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