
Proxy-Based Security Protocols in Networked Mobile DevicesMatthew Burnside, Dwaine Clarke, Todd Mills, Srinivas Devadas, and Ronald RivestMIT Laboratory for Computer Sciencefevent, declarke, mills, devadas, rivestg@mit.eduAbstractWe describe a resource discovery and communicationsystem designed for security and privacy. All objectsin the system, e.g., appliances, wearable gadgets, soft-ware agents, and users have associated trusted soft-ware proxies that either run on the appliance hard-ware or on a trusted computer. We describe how se-curity and privacy are enforced using two separateprotocols: a protocol for secure device-to-proxy com-munication, and a protocol for secure proxy-to-proxycommunication. Using two separate protocols allowsus to run a computationally-inexpensive protocol onimpoverished devices, and a sophisticated protocol forresource authentication and communication on morepowerful devices.We detail the device-to-proxy protocol forlightweight wireless devices and the proxy-to-proxy protocol which is based on SPKI/SDSI (SimplePublic Key Infrastructure / Simple Distributed Se-curity Infrastructure). A prototype system has beenconstructed, which allows for secure, yet e�cient,access to networked, mobile devices. We present aquantitative evaluation of this system using variousmetrics.1 IntroductionAttaining the goals of ubiquitous and pervasive com-puting [6, 2] is becoming more and more feasible asthe number of computing devices in the world in-creases rapidly. However, there are still signi�canthurdles to overcome when integrating wearable andembedded devices into a ubiquitous computing en-vironment. These hurdles include designing devicessmart enough to collaborate with each other, increas-ing ease-of-use, and enabling enhanced connectivitybetween the di�erent devices.When connectivity is high, the security of the sys-tem is a key factor. Devices must only allow access toauthorized users and must also keep the communica-tion secure when transmitting or receiving personalor private information.

Implementing typical forms of secure, private com-munication using a public-key infrastructure on alldevices is di�cult because the necessary crypto-graphic algorithms are CPU-intensive. A commonpublic-key cryptographic algorithm such as RSA us-ing 1024-bit keys takes 43ms to sign and 0.6ms toverify on a 200MHz Intel Pentium Pro (a 32-bit pro-cessor) [30]. Some devices may have 8-bit micro-controllers running at 1-4 MHz, so public-key cryp-tography on the device itself may not be an op-tion. Nevertheless, public-key based communicationbetween devices over a network is still desirable.We describe the architecture of our resource dis-covery and communication system in Section 2. Thedevice-to-proxy security protocol is described in Sec-tion 3. We review SPKI/SDSI and present the proxy-to-proxy protocol that uses SPKI/SDSI in Section 4.Related work is discussed in Section 5. The systemis evaluated in Section 6.1.1 Our ApproachTo allow the architecture to use a public-key securitymodel on the network while keeping the devices them-selves simple, we create a software proxy for each de-vice. All objects in the system, e.g., appliances, wear-able gadgets, software agents, and users have associ-ated trusted software proxies that either run on anembedded processor on the appliance, or on a trustedcomputer. In the case of the proxy running on an em-bedded processor on the appliance, we assume thatdevice to proxy communication is inherently secure.1If the device has minimal computational power,2 andcommunicates to its proxy through a wired or wire-less network, we force the communication to adhereto a device-to-proxy protocol (cf. Section 3). Proxiescommunicatewith each other using a secure proxy-to-proxy protocol based on SPKI/SDSI (Simple PublicKey Infrastructure / Simple Distributed Security In-1For example, in a video camera, the software that controlsvarious actuators runs on a powerful processor, and the proxyfor the camera can also run on the embedded processor.2This is typically the case for lightweight devices, e.g., re-mote controls, active badges, etc.1



frastructure). Having two di�erent protocols allowsus to run a computationally-inexpensive security pro-tocol on impoverished devices, and a sophisticatedprotocol for resource authentication and communi-cation on more powerful devices. We describe bothprotocols in this paper.1.2 Prototype Automation SystemUsing the ideas described above, we have constructeda prototype automation system which allows for se-cure, yet e�cient, access to networked, mobile de-vices. In this system, each user wears a badge called aK21 which identi�es the user and is location-aware: it\knows" the wearer's location within a building. Useridentity and location information is securely trans-mitted to the user's software proxy using the device-to-proxy protocol.Devices themselves may be mobile and may changelocations. Attribute search over all controllable de-vices can be performed to �nd the nearest device, orthe most appropriate device under some metric.3By exploiting SPKI/SDSI, security is not compro-mised as new users and devices enter the system, orwhen users and devices leave the system. We believethat the use of two di�erent protocols, and the useof the SPKI/SDSI framework in the proxy-to-proxyprotocol has resulted in a secure, scalable, e�cient,and easy-to-maintain automation system.2 System ArchitectureThe system has three primary component types: de-vices, proxies and servers. A device refers to anytype of shared network resource, either hardware orsoftware. It could be a printer, a wireless securitycamera, a lamp, or a software agent. Since communi-cation protocols and bandwidth between devices canvary widely, each device has a unique proxy to unifyits interface with other devices. The servers providenaming and discovery facilities to the various devices.We assume a one-to-one correspondence betweendevices and proxies. We also assume that all usersare equipped with K21s, whose proxies run on trustedcomputers. Thus our system only needs to deal withdevices, proxies and the server network.The system we describe is illustrated in Figure 1.2.1 DevicesEach device, hardware or software, has an associatedtrusted software proxy. In the case of a hardware3For example, a user may wish to print to the nearestprinter that he/she has access to.
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Figure 1: System Overviewdevice, the proxy may run on an embedded proces-sor within the device, or on a trusted computer net-worked with the device. In the case of a softwaredevice, the device can incorporate the proxy softwareitself.Each device communicates with its own proxy overthe appropriate protocol for that particular device.A printer wired into an Ethernet can communicatewith its proxy using TCP/IP. A wireless camera usesa wireless protocol for the same purpose. The K21(a simple device with a lightweight processor) com-municates with its proxy using the particular device-to-proxy protocol described in Section 3. Thus, thedevice-side portion of the proxy must be customizedfor each particular device.2.2 ProxyThe proxy is software that runs on a network-visiblecomputer. The proxy's primary function is to makeaccess-control decisions on behalf of the device it rep-resents. It may also perform secondary functions suchas running scripted actions on behalf of the deviceand interfacing with a directory service.The proxy provides a very simple API to the de-vice. The sendToProxy() method is called by thedevice to send messages to the proxy. The send-ToDevice() method is a called by the proxy to sendmessages to the device. When a proxy receives a mes-sage from another proxy, depending on the message,the proxy may translate it into a form that can beunderstood by the proxy's particular device. It then2



forwards the message to the device. When a proxy re-ceives a message from its device, it may translate themessage into a general form understood by all proxies,and then forward the message to other proxies. Anytime a proxy receives a message, before performinga translation and passing the message on to the de-vice, it performs the access control checks describedin Section 4.For ease of administration, we group proxies bytheir administrators. An administrator's set of prox-ies is called a proxy farm. This set speci�cally in-cludes the proxy for the administrator's K21, whichis considered the root proxy of the proxy farm. Whenthe administrator adds a new device to the system,the device's proxy is automatically given a defaultACL, a duplicate of the ACL for the administrator'sK21 proxy. The administrator can manually changethe ACL later, if he desires.2.3 Servers and the Server NetworkThis network consists of a distributed collection ofindependent name servers and routers. In fact, eachserver acts as both a name server and a router. Thisis similar to the name resolvers in the IntentionalNaming System (INS) [1], which resolve device namesto IP addresses, but can also route events. If the des-tination name for an event matches multiple proxies,the server network will route the event to all match-ing destinations.When a proxy comes online, it registers the nameof the device it represents with one of these servers.When a proxy uses a server to perform a lookup on aname, the server searches its directory for all namesthat match the given name, and returns their IP ad-dresses.2.4 Communication via EventsWe use an event-based communication mechanism inour system. That is, all messages passed betweenproxies are signals indicating that some event hasoccurred. For example, a light bulb might generatelight-on and light-o� events. To receive these mes-sages, proxy x can add itself as an event-listener toproxy y. Thus, when y generates an event, x willreceive a copy.In addition, the system has several pre-de�nedevent categories which receive special treatment at ei-ther the proxy or server layer. They are summarizedin Figure 2. A developer can de�ne his own eventsas well. The server network simply passes developer-de�ned events through to their destination.The primary advantage of the event-based mecha-nism is that it eliminates the need to repeatedly poll

CommandEvent Used to instruct a device to turn on or o�,for example.ErrorEvent Generated and broadcast to all listeners whenan error condition occurs.StatusChangeEvent Generatedwhen, for example, a devicechanges its location.QueryEvent When a server receives a QueryEvent, it per-forms a DNS (Domain Name Service) or INS lookup onthe query, and returns the results of the lookup in a Re-sponseEvent.ResponseEvent Generated in response to a QueryEvent.Figure 2: Prede�ned Event Typesa device to determine changes in its status. Instead,when a change occurs, the device broadcasts an eventto all listeners. Systems like Sun Microsystem's Jini[26] issue \device drivers" (RMI stubs) to all whowish to control a given device. It is then possible tomake local calls on the device driver, which are trans-lated into RMI calls on the device itself. Repeatedlypolling the device driver to determine a change ofstatus is not necessarily e�cient.2.5 Resource discoveryThe mechanism for resource discovery is similar tothe resource discovery protocol used by Jini. When adevice comes online, it instructs its proxy to repeat-edly broadcast a request for a server to the local sub-network. The request contains the device's name andthe IP address and port of its proxy. When a serverreceives one of these requests, it issues a lease to theproxy.4 That is, it adds the name/IP address pair toits directory. The proxy must periodically renew itslease by sending the same name/IP address pair tothe server, otherwise the server removes it from thedirectory. In this fashion, if a device silently goes of-ine, or the IP address changes, the proxy's lease willno longer get renewed and the server will quickly no-tice and either remove it from the directory or createa new lease with the new IP address.For example, imagine a device with the name[name=foo] which has a proxy running on10.1.2.3:4011. When the device is turned on, itinforms its proxy that it has come online, usinga protocol like the device-to-proxy protocol de-scribed in Section 3. The proxy begins to broadcastlease-request packets of the form h[name=foo],10.1.2.3:4011i on the local subnetwork. When (orif) a server receives one of these packets, it checksits directory for [name=foo]. If [name=foo] is not4Handling the scenario where the device is making falseclaims about its attributes in the lease request packet is thesubject of ongoing research.3
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UDP RFFigure 3: Device-to-Proxy Communication overviewthere, the server creates a lease for it by addingthe name/IP address pair to the directory. If[name=foo] is in the directory, the server renewsthe lease. Suppose at some later time the device isturned o�. When the device goes down, it bringsthe proxy o�ine with it, so the lease request packetsno longer get broadcast. That device's lease stopsgetting renewed. After some short, pre-de�nedperiod of time, the server expires the unrenewedlease and removes it from the directory.3 Device-to-Proxy Protocol forWireless Devices3.1 OverviewThe device-to-proxy protocol varies for di�erent typesof devices. In particular, we consider lightweight de-vices with low-bandwidth wireless network connec-tions and slow CPUs, and heavyweight devices withhigher-bandwidth connections and faster CPUs. Weassume that heavyweight devices are capable of run-ning proxy software locally (i.e., the proxy for aprinter could run on the printer's CPU). With a localproxy, a sophisticated protocol for secure device-to-proxy communication is unnecessary, assuming crit-ical parts of the device are tamper resistant. Forlightweight devices, the proxy must run elsewhere.This section gives an overview of a protocol whichis low-bandwidth and not CPU-intensive that we usefor lightweight device-to-proxy communication.3.2 CommunicationOur prototype system layers the security protocoldescribed below over a simple radio frequency (RF)protocol. The RF communication between a deviceand its proxy is handled by a gateway that translatespacketized RF communication into UDP/IP packets,which are then routed over the network to the proxy.

The gateway also works in the opposite direction byconverting UDP/IP packets from the proxy into RFpackets and transmitting them to the device.An overview of the communication is shown in Fig-ure 3. This �gure shows a computer running threeproxies; one for each of three separate devices. The�gure also shows how multiple gateways can be used;device A is using a di�erent gateway from devices Band C.3.3 SecurityThe proxy and device communicate through a securechannel that encrypts and authenticates all the mes-sages. The HMAC-MD5 [13][20] algorithm is used forauthentication and the RC5 [21] algorithm is used forencryption. Both of these algorithms use symmetrickeys; the proxy and the device share 128-bit keys.3.3.1 AuthenticationHMAC (Hashed Message Authentication Code) pro-duces a MAC (Message Authentication Code) thatcan validate the authenticity and integrity of a mes-sage. HMAC uses secret keys, and thus only someonewho knows a particular key can create a particularMAC or verify that a particular MAC is correct.HMAC with the MD5 hash function produces a16-byte MAC. The eight most signi�cant bytes of theMAC are appended to the end of each packet. Thislimits the amount of data that must be transmittedwith each packet, but has the disadvantage of allow-ing an attacker to have to guess fewer bits to forge aMAC. We feel this is an acceptable tradeo�, since ifall 16 MAC bytes are included in every packet, thenmore of each packet would be devoted to authentica-tion instead of useful data.3.3.2 EncryptionThe data is encrypted using the RC5 encryption al-gorithm. We chose RC5 because of its simplicity andperformance. Our RC5 implementation is based onthe OpenSSL [16] code. RC5 is a block cipher, whichmeans it usually works on eight-byte blocks of data.However, by implementing it using output feedback(OFB) mode, it can be used as a stream cipher. Thisallows for encryption of an arbitrary number of byteswithout having to worry about blocks of data. Alsoby using OFB mode, only the encryption routine ofRC5 is needed; not the decryption routine.OFB mode works by generating an encryption padfrom an initial vector and a key. The encryption padis then XOR'ed with the data to produce the ciphertext. Since X � Y � Y = X, the cipher text canbe decrypted by producing the same encryption pad4



and XOR'ing it with the cipher text. Since this onlyrequires the RC5 encryption routines to generate theencryption pad, separate encrypt and decrypt rou-tines are not required.For our implementation, we use 16 rounds for RC5.We use di�erent 128-bit keys for encryption and au-thentication.3.4 LocationDevice location is determined using the Cricket lo-cation system[18, 17]. Cricket has several useful fea-tures, including user privacy, decentralized control,low cost, and easy deployment. Each device deter-mines its own location. It is up to the device to decideif it wants to let others know where it is.In the Cricket system, beacons are placed on theceilings of rooms. These beacons periodically broad-cast location information (such as \Room4011") thatcan be heard by Cricket listeners. At the same timethat this information is broadcast in the RF spec-trum, the beacon also broadcasts an ultrasound pulse.When a listener receives the RF message, it measuresthe time until it receives the ultrasound pulse. Thelistener determines its distance to the beacon usingthe time di�erence.4 Proxy to Proxy ProtocolSPKI/SDSI (Simple Public Key Infrastruc-ture/Simple Distributed Security Infrastructure)[7, 22] is a security infrastructure that is designedto facilitate the development of scalable, secure,distributed computing systems. SPKI/SDSI provides�ne-grained access control using a local name spacearchitecture and a simple, exible, trust policymodel.SPKI/SDSI is a public key infrastructure with anegalitarian design. The principals are the public keysand each public key is a certi�cate authority. Eachprincipal can issue certi�cates on the same basis asany other principal. There is no hierarchical globalinfrastructure. SPKI/SDSI communities are builtfrom the bottom-up, in a distributed manner, anddo not require a trusted \root."4.1 SPKI/SDSI IntegrationWe have adopted a client-server architecture for theproxies. When a particular principal, acting on behalfof a device or user, makes a request via one proxy to adevice represented by another proxy, the �rst proxyacts like a client, and the second as a server. Re-sources on the server are either public or protectedby SPKI/SDSI ACLs. If the requested resource is

protected by an ACL, the principal's request must beaccompanied by a \proof of authenticity" that showsthat it is authentic, and a \proof of authorization"that shows the principal is authorized to perform theparticular request on the particular resource. Theproof of authenticity is typically a signed request, andthe proof of authorization is typically a chain of cer-ti�cates. The principal that signed the request mustbe the same principal that the chain of certi�catesauthorizes.This system design, and the protocol between theproxies, is very similar to that used in SPKI/SDSI'sProject Geronimo, in which SPKI/SDSI was inte-grated into Apache and Netscape, and used to pro-vide client access control over the web. ProjectGeronimo is described in two Master's theses [3, 14].4.2 ProtocolThe protocol implemented by the client and serverproxies consists of four messages. This protocol isoutlined in Figure 4, and following is its description:1. The client proxy sends a request, unauthenti-cated and unauthorized, to the server proxy.2. If the client requests access to a protected re-source, the server responds with the ACL pro-tecting the resource5 and the tag formed fromthe client's request. A tag is a SPKI/SDSIdata structure which represents a set of requests.There are examples of tags in the SPKI/SDSIIETF drafts [7]. If there is no ACL protectingthe requested resource, the request is immedi-ately honored.3. (a) The client proxy generates a chain of certi�-cates using the SPKI/SDSI certi�cate chaindiscovery algorithm [4, 3]. This certi�catechain provides a proof of authorization thatthe user's key is authorized to perform itsrequest.The certi�cate chain discovery algorithmtakes as input the ACL and tag from theserver, the user's public key (principal), theuser's set of certi�cates, and a timestamp.If it exists, the algorithm returns a chain ofuser certi�cates which provides proof thatthe user's public key is authorized to per-form the operation(s) speci�ed in the tag,5The ACL itself could be a protected resource, protectedby another ACL. In this case, the server will return the latterACL. The client will need to demonstrate that the user's key ison this ACL, either directly or via certi�cates, before gainingaccess to the ACL protecting the object to which access wasoriginally requested.5



at the time speci�ed in the timestamp. Ifthe algorithm is unable to generate a chainbecause the user does not have the neces-sary certi�cates,6 or if the user's key is di-rectly on the ACL, the algorithm returnsan empty certi�cate chain. The client gen-erates the timestamp using its local clock.(b) The client creates a SPKI/SDSI sequence[7] consisting of the tag and the timestamp.It signs this sequence with the user's privatekey, and includes copy of the user's publickey in the SPKI/SDSI signature. The clientthen sends the tag-timestamp sequence, thesignature, and the certi�cate chain gener-ated in step 3a to the server.4. The server veri�es the request by:(a) Checking the timestamp in the tag-timestamp sequence against the time on theserver's local clock to ensure that the re-quest was made recently.7(b) Recreating the tag from the client's requestand checking that it is the same as the tagin the tag-timestamp sequence.(c) Extracting the public key from the signa-ture.(d) Verifying the signature on the tag-timestamp sequence using this key.(e) Validating the certi�cates in the certi�catechain.(f) Verifying that there is a chain of autho-rization from an entry on the ACL to thekey from the signature, via the certi�catechain presented. The authorization chainmust authorize the client to perform the re-quested operation.If the request veri�es, it is honored. If it doesnot verify, it is denied and the server proxy re-turns an error to the client proxy. This error isreturned whenever the client presents an authen-ticated request that is denied.6If the user does not have the necessary certi�cates, theclient could immediately return an error. In our design, how-ever, we choose not to return an error at this point; instead,we let the client send an empty certi�cate chain to the server.This way, when the request does not verify, the client can pos-sibly be sent some error information by the server which letsthe user know where he should go to get valid certi�cates.7In our prototype implementation, the server checks thatthe timestamp in the client's tag-timestamp sequence is within�ve minutes of the server's local time.
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Figure 4: SPKI/SDSI Proxy to Proxy Access ControlProtocolThe protocol can be viewed as a typical challenge-response protocol. The server reply in step 2 of theprotocol is a challenge the server issues the client,saying, \You are trying to access a protected �le.Prove to me that you have the credentials to performthe operation you are requesting on the resource pro-tected by this ACL." The client uses the ACL to helpit produce a certi�cate chain, using the SPKI/SDSIcerti�cate chain discovery algorithm. It then sendsthe certi�cate chain and signed request in a secondrequest to the server proxy. The signed request pro-vides proof of authenticity, and the certi�cate chainprovides proof of authorization. The server attemptsto verify the second request, and if it succeeds, ithonors the request.The timestamp in the tag-timestamp sequencehelps to protect against certain types of replay at-tacks. For example, suppose the server logs requestsand suppose that this log is not disposed of properly.If an adversary gains access to the logs, the times-tamp prevents him from replaying requests found inthe log and gaining access to protected resources.84.2.1 Additional Security ConsiderationsThe SPKI/SDSI protocol, as described, addresses theissue of providing client access control. The protocoldoes not ensure con�dentiality, authenticate servers,or provide protection against replay attacks from thenetwork.8In order to use timestamps, the client's clock and server'sclock need to be fairly synchronized; SPKI/SDSI alreadymakes an assumption about fairly synchronized clocks whenvalidity time periods are speci�ed in certi�cates. An alter-native approach to using timestamps is to use nonces in theprotocol.6



The Secure Sockets Layer (SSL) protocol is themost widely used security protocol today. The Trans-port Layer Security (TLS) protocol is the successorto SSL. Principal goals of SSL/TLS [19] include pro-viding con�dentiality and data integrity of tra�c be-tween the client and server, and providing authentica-tion of the server. There is support for client authen-tication, but client authentication is optional. TheSPKI/SDSI Access Control protocol can be layeredover a key-exchange protocol like TLS/SSL to pro-vide additional security. TLS/SSL currently uses theX.509 PKI to authenticate servers, but it could just aswell use SPKI/SDSI in a similar manner. In additionto the features already stated, SSL/TLS also providesprotection against replay attacks from the network,and protection against person-in-the-middle attacks.With these considerations, the layering of the proto-cols is shown in Figure 5. In the �gure, `ApplicationProtocol' refers to the standard communication pro-tocol between the client and server proxies, withoutsecurity.SSL/TLS authenticates the server proxy. However,it does not indicate whether the server proxy is au-thorized to accept the client's request. For example,it may be the case that the client proxy is requestingto print a `top secret' document, say, and only cer-tain printers should be used to print `top secret' doc-uments. With SSL/TLS and the SPKI/SDSI ClientAccess Control Protocol we have described so far, theclient proxy will know that the public key of the proxywith which it is communicating is bound to a partic-ular address, and the server proxy will know that theclient proxy is authorized to print to it. However,the client proxy still will not know if the server proxyis authorized to print `top secret' documents. If itsends the `top secret' document to be printed, theserver proxy will accept the document and print it,even though the document should not have been sentto it in the �rst place.To approach this problem, we propose extendingthe SPKI/SDSI protocol so that the client requestsauthorization from the server and the server proves tothe client that it is authorized to handle the client'srequest (before the client sends the document o� tobe printed). To extend the protocol, the SPKI/SDSIprotocol described in Section 4.2 is run from the clientproxy to the server proxy, and then run in the reversedirection, from the server proxy to the client proxy.Thus, the client proxy will present a SPKI/SDSI cer-ti�cate chain proving that it is authorized to per-form its request, and the server proxy will presenta SPKI/SDSI certi�cate chain proving that it is au-thorized to accept and perform the client's request.Again, if additional security is needed, the extended

SPKI/SDSI Access Control ProtocolApplication ProtocolKey-Exchange Protocol with Server AuthenticationTCP/IPFigure 5: Example Layering of Protocolsprotocol can be layered over SSL/TLS.Note that the SPKI/SDSI Access Control Protocolis an example of the end-to-end argument [23]. Theaccess control decisions are made in the uppermostlayer, involving only the client and the server.5 Related Work5.1 Device to Proxy CommunicationThe Resurrecting Duckling is a security model for ad-hoc wireless networks [25, 24]. In this model, whendevices begin their lives, they must be \imprinted"before they can be used. A master (the mother duck)imprints a device (the duckling) by being the �rst oneto communicate with it. After imprinting, a deviceonly listens to its master. During the process of im-printing, the master is placed in physical contact withthe device and they share a secret key that is thenused for symmetric-key authentication and encryp-tion. The master can also delegate the control of adevice to other devices so that control is not alwayslimited to just the master. A device can be \killed"by its master then resurrected by a new one in orderfor it to swap masters.5.2 Proxy to Proxy CommunicationJini [26] network technology from Sun Microsystemscenters around the idea of federation building. Jiniavoids the use of proxies by assuming that all devicesand services in the system will run the Java VirtualMachine. The SIESTA project [8] at the HelsinkiUniversity of Technology has succeeded in building aframework for integrating Jini and SPKI/SDSI. Theirimplementation has some latency concerns, however,when new authorizations are granted. UC Berke-ley's Ninja project [27] uses the Service DiscoveryService [5] to securely perform resource discovery ina wide-area network. Other related projects includeHewlett-Packard's CoolTown [9], IBM's TSpaces [11]and University of Washington's Portolano [29].5.3 Other projects using SPKI/SDSIOther projects using SPKI/SDSI include Hewlett-Packard's e-Speak product [10], Intel's CDSA release7



Component Code Size Data Size(KB) (bytes)Device Functionality 2.0 191RF Code 1.1 153HMAC-MD5 4.6 386RC5 3.2 256Miscellaneous 1.0 0Total 11.9 986Table 1: Code and data size on the Atmel processor[12], and Berkeley's OceanStore project [28]. HP'seSpeak uses SPKI/SDSI certi�cates for specifyingand delegating authorizations. Intel's CDSA release,which is open-source, includes a SPKI/SDSI serviceprovider for building certi�cates, and a module (Au-thCompute) for performing authorization computa-tions. OceanStore uses SPKI/SDSI names in theirnaming architecture.6 Evaluation6.1 Hardware DesignDetails on the the design of a board that can actas the core of a lightweight device, or as a wearablecommunicator, are given in Appendix A.6.2 Device-to-Proxy ProtocolIn this section we evaluate the device-to-proxy pro-tocol described in Section 3 in terms of its memoryand processing requirements.6.2.1 Memory RequirementsTable 1 breaks down the memory requirements forvarious software components. The code size repre-sents memory used in Flash, and data size representsmemory used in RAM. The device functionality com-ponent includes the packet and location processingroutines. The RF code component includes the RFtransmit and receive routines as well as the Cricketlistener routines. The miscellaneous component iscode that is common to all of the other components.The device code requires approximately 12KB ofcode space and 1KB of data space. The security al-gorithms, HMAC-MD5 and RC5, take up most ofthe code space. Both of these algorithms were opti-mized in assembly, which reduced their code size bymore than half. The code could be better optimized,but this gives a general idea of how much memoryis required. The code size we have attained is smallenough that it can be incorporated into virtually anydevice.

Function Time (ms) Clock CyclesRC5 encrypt/decrypt (n bytes) 0:163n+ 0:552 652n+ 2208HMAC-MD5up to 56 bytes 11.48 45,920Table 2: Performance of encryption and authentica-tion code6.2.2 Processing RequirementsThe security algorithms put the most demand onthe device. Table 2 breaks down the approximatetime for each algorithm. The RC5 processing timevaries linearly with the number of bytes being en-crypted or decrypted. The HMAC-MD5 routine, onthe other hand, takes a constant amount of time upto 56 bytes. This is because HMAC-MD5 is designedto work on blocks of data, so anything less than 56bytes is padded. Since we limit the RF packet size to50 bytes, we only analyze the HMAC-MD5 runningtime for packets of size less than or equal to 50 bytes.We now examine how long it takes the device to re-ceive a packet, process it, and send a response. In thisanalysis, we assume the device is receiving a packetthat has 10 data bytes, making the total packet size27 bytes, since each packet contains 17 header bytesmade up of a 9-byte address �eld and an 8-byte mes-sage authentication �eld. The device broadcasts at19.2 Kbps and we encode 8 bits into 12 bits for DCbalance. To receive the packet it takes:packet size + RF headerbandwidth = 12 � (27 + 4)19200 = 19:38msThe device then takes 11.48ms to authenticate thepacket and 0:163 � 10 + 0:552 = 2:18ms to decrypt it.Thus, the time for the device to receive a packet andprocess it is 19:38+ 11:48+ 2:18 = 33:04ms. The de-vice always sends back a response. In this analysis,we will assume the device responds with a packet ofthe same size, so the device must encrypt, authenti-cate, and then transmit the response which will takeanother 33:04ms. Thus, the device can handle ap-proximately 100033:04�2 � 15 transactions per second. Wethink that �fteen transactions per second is su�cientfor most purposes, with a simple device.6.3 SPKI/SDSI EvaluationThe protocol described in Section 4 is e�cient. The�rst two steps of the protocol are a standard re-quest/response pair; no cryptography is required.The signi�cant steps in the protocol are step 3, inwhich a certi�cate chain is formed, and step 4, wherethe chain is veri�ed. Table 3 shows analyses of these8



Protocol step Timing analysis Approx CPU timeCert chain discovery The worst case is O(n3l), where n = num-ber of certs, and l = length of longest sub-ject. However, the expected time is O(nl). 330ms, with n = 2 and l = 2.Chain validation The worst case is O(n), where n = num-ber of certs. 200ms, with n = 2.Table 3: Proxy-to-Proxy Protocol analysis.two steps. The paper on Certi�cate Chain Discov-ery in SPKI/SDSI [4] should be referred to for a dis-cussion of the timing analyses. The CPU times areapproximate times measured on a Sun MicrosystemsUltra-1 running SunOS 5.7.7 ConclusionsWe believe that the trends in pervasive computingare increasing the diversity and heterogeneity of net-works and their constituent devices. Developing secu-rity protocols that can handle diverse, mobile devicesnetworked in various ways represents a major chal-lenge. In this paper, we have taken a �rst step to-ward meeting this challenge by observing the need formultiple security protocols, each with di�erent char-acteristics and computational requirements. Whilewe have described a prototype system with two dif-ferent protocols, other types of protocols could beincluded if deemed necessary.The two protocols we have described have vastlydi�erent characteristics, because they apply to di�er-ent scenarios. The device-to-proxy protocol was de-signed to enable secure communication of data froma lightweight device. The SPKI/SDSI-based proxy-to-proxy protocol was designed to enable communi-cation between sophisticated devices, whose accesscontrol policies can change frequently. The proxy ar-chitecture and the use of two di�erent protocols hasresulted, we believe, in a secure, yet e�cient, resourcediscovery and communication system.References[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan,and J. Lilley. The Design and Implementation ofan Intentional Naming System. Operating Sys-tems Review, 34(5):186-301, December 1999.[2] G. Banavar, J. Beck, E. Gluzberg, J. Munson,J. Sussman, and D. Zukowski. Challenges: AnApplication Model for Pervasive Computing. InProc. ACM MOBICOM, August 2000.
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Figure 6: Picture of the circuit board[30] M. Weiner. Performance Comparison of Public-key Cryptosystems. RSA Laboratories' Crypto-Bytes, 4(1), 1998.A Board DesignThis section describes a circuit board that can act asthe core of a device, or by itself as a wearable com-municator. It contains the necessary components forRF communication, interfacing to the Cricket system,implementing the security algorithms, and interfacingwith devices. With a slightly di�erent con�gurationof software and hardware, the same circuit board canact as a gateway. A photograph of the board is shownin Figure 6. It highlights the major components ofthe design which are: the battery, RF transceiver,Cricket listener, CPU, and serial port. The currentboard is 43mm x 102mm, a little large for a wearablecommunicator but future prototypes will be consid-erably smaller.The battery is a 3-volt lithium battery with a nom-inal capacity of 1,200mAh. This battery has a longlife so debugging the system is simpler, since thereare fewer battery outages. However, it is fairly large,relative to the size of the circuit board. In futureboards a coin-type battery will be used to make theboard smaller.The serial port allows the device to communicatewith a personal computer, or to control other devicesthat also have a serial port. Gateways use the serialport to send and receive RF packets from a personal10



computer.The device uses the Cricket listener to determineits location. It consists of an RF receiver to listen forthe location information fromCricket beacons, as wellas an ultrasound receiver to listen for the ultrasoundpulses. This component is not needed on all devices,only those that need to know their location.The CPU is representative of the processors thesimplest devices might have. It is an Atmel AT-Mega103L; an 8-bit CPU that uses the Atmel AVRinstruction set and operates at 3 volts. It has 128KBof Flash memory, 2KB of RAM, and 512 bytes ofEEPROM. It runs at 4MHz. The CPU's ash mem-ory is quite large and may not represent what mostsimple devices have, but it is useful for software de-velopment. All of the memory is internal so the chipsize is small. It is programmed via a simple cableplugged into the parallel port of a computer.The RF Monolithics TR-3001 is used for device togateway communication. It has a reasonable amountof bandwidth (19.2 Kbps), does not take much cur-rent, and does not require many external compo-nents.The Cricket listener uses a Linx TechnologiesRFM-418-LC RF receiver, since the beacons use thecorresponding transmitter. The Cricket listener op-erates at 418 MHz, while the device to gateway com-munication operates at 315 MHz. Thus, there is nointerference between them.The board was not speci�cally designed for lowpower consumption, but power considerations are sig-ni�cant in mobile devices. When the RF transceiveris in receive mode, the board draws 22mA of current,or 66mW of power. At this rate, in nominal condi-tions, the battery will last 54 hours. When the boardtransmits, it draws 29.5mA of current, or 88.5mWof power. Most of the time, the board is in receivemode. For devices that do not need to know theirlocation, the Cricket listener can be removed to savepower. The Cricket listener draws 10mA of currentor 30mW of power so removing the listener reducesthe board's power consumption by almost half.Swapping the Atmel ATMega103L for a MicrochipPIC16F877 processor would reduce power by 15 mW,but would require considerable compression of thealready tightly packed code. Other methods for re-ducing power includingmodifying the communicationprotocol to shut down the RF chips for short periodsof time or putting the processor to sleep when it isinactive. More details of the device implementationcan be found in [15].We believe that a redesign with o�-the-shelf com-ponents will result in a wearable communicator witha coin-type battery that lasts for several days. This

can be improved even further by building customizedsilicon.
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