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ABSTRACT
In this paper, we present the idea ofoffline count-limited certifi-
cates(or clics for short), and show how these can be implemented
using minimal trusted hardware functionality already widely avail-
able today. Offline count-limited certificates are digital certificates
that: (1) specify usage conditions that depend on irreversible coun-
ters, and (2) are used in a protocol that guarantees that any attempt
to use them in violation of these usage conditions will be detected
even if the user of the certificate and the verifying party have no
contact at all with the outside world at the time of the transaction.
Such certificates enable many interesting applications not possible
with traditional (unlimited use) certificates, including count-limited
delegation and access, offline commerce and trading using cash-
like migratablecertificates, and others. We show how all these
applications can be made possible by using only a simpletrusted
timestamping device (TTD), which can in turn be implemented us-
ing existing trusted hardware devices such as smartcards, and the
Trusted Platform Module (TPM) chips embedded in PCs available
today. Significantly, our solutions donot require trust in any other
components in the host machines aside from the TTD itself; they
remain tamper-evident as long as the TTD is not compromised,
even if the entire host system, including the BIOS, CPU, OS and
memory, is compromised. This not only provides better security
by minimizing the required trusted computing base, but also makes
implementation possible on present-day machines without requir-
ing a particular kind of OS. We demonstrate all these ideas by im-
plementing a prototype application that runs under both Linux and
Windows, and presenting experimental performance results.

Categories and Subject Descriptors:
D.4.6 [Operating Systems]: Security and Protection
C.3 [Special-Purpose and Application-based Systems]: Smartcards

General Terms: Security

Keywords: Trusted Platform Module (TPM), smartcards, offline
payments, authentication
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1. INTRODUCTION
Offline count-limited certificates (or clics for short) are dig-

ital certificates that: (1) specify usage conditions that depend on
irreversible counters, and (2) are used in a protocol that guarantees
that any attempt to use them in violation of these usage conditions
will be detectedeven if the user of the certificate and the verifying
party have no contact at all with the outside world at the time of the
transaction. Such certificates enable many interesting applications
not possible with traditional (unlimited use) certificates, including:

Offline count-limited delegation, access, and authorization.Us-
ing n-time-use certificates, we can allow a user, Alice, todelegate
to another user, Bob, the authority to execute transactions on her
behalf,but only at mostn times. This would be useful, for exam-
ple, if Bob is Alice’s stock broker, and Alice wants to enable Bob
to trade on her behalf but only to a limited extent.

Count-limited delegation in turn can be used to implement count-
limited access, in a way analogous to one-time orn-time-use tick-
ets, passes, or authorization letters in real life. For example, in real
life, if Alice wants to give a doctor one-time access to her medical
records at a hospital, she may write and sign an authorization letter
on a piece of paper. Once the doctor presents the letter to the hos-
pital, the hospital takes the piece of paper away (or stamps it with a
note saying it has been used). This way, the doctor can only access
the records once, but cannot return to get access again in the future
(unless he gets another letter from Alice).

Count-limited migratable certificates and offline trading and
payments. Counter-based usage conditions for certificates can be
used not only to specifyn-time-use limits, but also to allow for
limiting the migration of a certificate. For example, aone-copy
migratable certificateis a certificate that can be transferred from
one party to another under the condition that at most only one party
can use the certificate at any given time (i.e., after the transfer, the
previous holder of the certificate cannot use it anymore even if he
keeps a copy and tries to replay this copy offline). Applying this
mechanism to delegation, access, and other applications described
above can lead to many interesting applications. For example, Al-
ice can create a delegation certificate for Bob, and allow him to
pass on this certificate to Charlie (without needing to contact her),
but under the condition that once Bob does that, he cannot use the
certificate anymore (unless Charlie gives it back to him).

Note that in real-life, cash is actually a form of migratable one-
copy certificate, where the certificate is signed by a bank or the
government. This means that if we can implement migratable one-
copy-use certificates digitally, we can use these certificates as vir-
tual banknotes which would enable people to securely trade and
transactofflinewithout having to contact the original issuer or any
another trusted third party during the transaction. Furthermore, un-



like most existing digital cash schemes today, a scheme using mi-
gratable count-limited certificates would allow for “multi-hop” or
“circulatable” digital cash, which users can securely pass on to each
other without needing to contact the bank or the original issuer of
the certificates. (We note, however, that unlike other digital cash
schemes, schemes based on count-limited certificates may not nec-
essarily have the same anonymity properties as real cash.)

1.1 The Problem
A major obstacle to implementing all these applications, how-

ever, is the problem ofreplay attacks. That is, in anofflinecontext
and without some form of trusted component, it is impossible to
prevent the holder of a count-limited certificate from reverting his
machine’s state and reusing the certificate beyond its limits with
different disconnected parties.

Consider, for example, the following scenario:

1. Alice gives Bob a one-time-use authentication certificate that
allows Bob to authenticate himself to anyone, but only at
most one time.

2. After receiving the certificate from Alice,but before he uses
it, Bob copies his machine’s entire state (e.g., by copying the
hard disk of the machine).

3. Bob uses the certificate with Dave, and succeeds (legally).

4. Bob restores the machine to its old state from step 2.

5. Bobre-uses the certificate with Ed, and succeeds (illegally).

This attack works because the states of Bob’s machine after steps
2 and 4 are indistinguishable, and because Dave and Ed are dis-
connected from each other and the outside world; since Ed has no
other point-of-reference except for Bob’s machine itself, there is
now way for Ed to know that Bob has already used the certificate.

In general, as long as Bob is able to restore theentire state of
his machine toexactlywhat it was before the certificate was used,
it is impossible to prevent him from illegallyre-using the same
certificate with different offline parties. This is the reason why
to date, it has not generally been possible to implement secure
offline count-limited certificates usingsoftware-onlysolutions on
commodity PCs — i.e., in today’s PCs, typically the only place to
store the machine’s non-volatile state is on the hard disk or some
other storage device whose contents are easily copyable and re-
versible by the owner of the machine (Bob).

Thus, one solution to this problem would be to employ some
form of irreversible state changein the usage mechanism for these
certificates. That is, what we need is some form oftrusted mem-
ory on Bob’s machine (other than the untrusted and reversible hard
disk) that is somehow changed irreversibly during the usage proto-
col, such that it would be infeasible for Bob to revert his machine
to a previous state. By including the contents of such a trusted
memory as part of Bob’s state, the replay attack above can then be
avoided because the state after step 4 wouldnot be the same any-
more as the state after step 2 — even if the adversary is able to
backup and restore the machine’s hard disk.

1.2 Overview
In this paper, we present a solution to the replay attack prob-

lem that uses minimal trusted hardware — namely, atrusted times-
tamping device (TTD). This minimal scheme is significant because
it allows implementation using trusted hardware components avail-
able today, including in particular, the current version of the Trusted

Platform Module (TPM 1.2) [20], an inexpensive secure coproces-
sor that is currently becoming a standard component in new com-
modity PCs and laptops today, and the MTM [19], a version of
the TPM for mobile devices. This is in contrast with the original
schemes introduced in [16], which enable the implementation of
offline count-limited and migratable delegation, authentication, and
authorization, but require new hardware features not yet present in
TPM 1.2 or the MTM. (These techniques are discussed further in
Sect. 5.)

Our paper is arranged as follows: We begin in Sect. 2 by pre-
senting our model of a trusted timestamping device, and giving an
overview of our log-based scheme for using such a device to imple-
ment offline count-limited certificates that are secure against replay
attacks. In Sect. 3, we describe in detail the different protocols for
creating, using, and migrating count-limited certificates. We then
present a proof-of-concept implementation of these protocols using
TPM 1.2 chips in Sect. 4, and some experimental results. Finally,
we discuss related work in Sect. 5, and conclude in Sect. 6.

2. SOLUTION OVERVIEW

2.1 Trusted Timestamping Device (TTD)
Abstractly, atrusted timestamping device (TTD)is a device with

the following key properties:

• It has anarithmetic monotonic counter, which is a variablet
whose value can be made to go up (by 1) using “increment”
operations, but which cannot be made to revert to an older
value — even by the owner of the timestamping device.

• It has aunique private signing key(SK), which can be used
in special timestamping operations to produce unforgeable
signatures that can only be produced using the device itself
(and which cannot be used to sign arbitrary data). This pri-
vate signing key has a correspondingunique public verifica-
tion key (PK), which is certified by a trusted certificate au-
thority (using a traditional certificate), and which can be used
by any third party to verify the signatures produced with the
signing key.

• It supports the followingtimestamping operations:

ReadSign(rec), which outputs
(X = (“Read”, t, rec), Sign(X)), and

IncSign(rec), which atomically incrementst and outputs
(X = (“Inc” , tnew, rec), Sign(X)),

whererec is a record containing arbitrary data, and where
Sign(X) indicates an unforgeable and verifiable signature
overX produced by the device using its unique signing key.

• It is secure— i.e., there must not be any commands or at-
tacks that would allow an adversary (even one that owns
and can give arbitrary commands to the device) to success-
fully rewind the value oft, or produce validReadSign and
IncSign outputs without actually invoking theReadSign
andIncSign commands themselves.

Note that although we call our device atimestamping device, our
form of the device does not actually use real time values, as usually
done in secure timestamping (e.g., [9]).



2.2 Protocols Overview
Assuming a trusted timestamping device (TTD) on all users’ ma-

chines, we can implement count-limited certificates by using alog-
basedscheme — i.e., a scheme that uses logs of the timestamps
generated by the TTDs. The idea is roughly as follows (a more
detailed and accurate version will be described in Sect. 3):

1. Creation. First, the issuer, Alice, gets and verifies Bob’s
current counter value by asking Bob to do aReadSign op-
eration on a random nonce. Then, she creates a certificate
C (signed with her key), which includes Bob’s TTD’sPKB

and Bob’s counter value. This links the certificate to Bob’s
TTD, as well as to a particular point in time on Bob’s TTD.

2. Usage. In order for Bob to use his certificate with another
party, Dave, Bob needs to do two things: First, he uses his
machine’s TTD to perform anIncSign operation on aus-
age recordcontaining (among other things): a random nonce
from Dave (to prove freshness to Dave), the desired usage
type oropcode(e.g., “spend”), and the identity of the cer-
tificate which he wants to use. Then, he sends Dave the
original certificateC, together with aproof-of-right-to-use
(PRU), which consists of a log of all timestamps produced
by IncSign operations on Bob’s TTD, covering all values
of the counter from the creation time signed by Alice up to,
and including the timestamp he has just created.

3. Verification. The PRU proves to Dave that Bob actually has
the right to use the certificate, and that this right has not ex-
pired or been depleted. Dave can verify the PRU by going
through the log of timestamped usage records to check that
Bob is not using the certificate in a way that would violate the
conditions signed by Alice in the original count-limited cer-
tificate. For example, if the original count-limited certificate
is a one-time-use certificate, Dave would check thatnoneof
the usage records in the log refer to that particular certificate
exceptfor the very last one which Bob has just timestamped
in the usage step above.

Note that this scheme istamper-evident, and satisfies the secu-
rity properties required for offline count-limited certificates as long
as the TTD itself is secure. Suppose, for example, that after using
the certificate once with Dave, Bob tries to use it again with Ed.
Nothing prevents Bob fromtrying to use the certificate again by
callingIncSign again. However, even if he does so, Bob would
not be able to produce avalid PRU after the first time he uses the
certificate. This is because the log he needs to show Ed would still
need to start from the creation time of the certificate, and would
thus necessarily include the usage record created when Bob used
the certificate with Dave. Thus,even if Ed is offlineand has no con-
tact with Dave, Alice, or anyone else, Ed would still know that Bob
has used the certificate before, and would not accept Bob’s PRU.

The basic schemes for usage and verification can also be slightly
modified to implementmigration. First, if Bob wants to migrate
his certificate to Dave, he begins by getting and verifying Dave’s
current counter value (by asking Dave to do aReadSign on a
random nonce). Then, using this counter value, he creates a usage
record which indicates “migrate” (instead of “spend”) as the op-
eration type, and includes Dave’s TTD’sPK, and Dave’s current
counter value in it. Given this usage record, Bob then proceeds
to use theIncSign operation and give Dave the PRU, just as in
the standard usage step. Dave can now verify this PRU (which in
this case can be called a “proof-of-migration”), by checking that
Bob has indeed used the irreversibleIncSign operation,and that
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Figure 1: Data structures used in (a) the creation protocol and
(b) the usage protocol. Arrows represent containment (i.e., the
lower data structures are contained in the upper ones). Ovals
represent operations on the data in the rectangles, which pro-
duce a tuple containing the data and a signature.

Bob’s log does not contain any otherpreviousmigration operations
for the same certificate (which would mean that he does not have
the right to migrate the certificate anymore). If Bob’s PRU is valid,
then the certificate is now considered to be migrated to Dave, and
Dave can now himself use or migrate this certificate with/to another
party, Ed. Now the usage protocol between Dave and Ed is the same
as before, except that in this case, the PRU Dave would present to
Ed would not just include the certificateC, and a log of timestamps
from his own TTD, but will also include the log of timestamps from
Bob’s TTD (i.e., the proof-of-migration which Bob had previously
presented to Dave). In this way, Ed can then check the whole chain
of timestamps (all the way back to the original certificate from Al-
ice) to verify that the usage conditions of the original certificate
have not been violated.

3. SOLUTION DETAILS
Section 2 describes the general intuition behind our ideas. In this

section, we present the actual protocols in more detail.
Note that a given assumption in all these protocols is that the

identity certificates that certify the public verification keys of the
different parties’ TTDs (i.e., the traditional non-count-limited iden-
tity certificates signed by the trusted certificate authority) are avail-
able to the parties beforehand. In practice, such certificates would
be presented by transacting parties to each other during their first
encounter. Each party would then verify the authenticity of the
other’s certificate and then save thePK in the certificate in a list
of “verified” PK ’s, so that if they meet again in the future, “veri-
fying” the PK ’s would just involve checking whether it is on the
“verified” list.

3.1 Creation
Figure 2 summarizes the creation protocol in which Alice creates

and issues a certificateC to Bob. The relationships between the dif-
ferent data structures used in the protocol are depicted in Fig. 1(a).
Note that the final output of this protocol is the certificateC, which
is given by Alice to Bob. As shown, it contains the following: the
issuer’s identity (A’s PK from step 2), the holder’s identity (B’s
PK from step 1), the usage conditions (requested by Bob in step
1) Bob’s current counter value (signed by the TTD in step 3, to-
gether with a random nonce from Alice from step 2, which proves



freshness), and finally, Alice’s signature over the entire structure
(produced in step 4). As noted in Sect. 2, this signature serves to
unforgeably link the certificate to Bob’s particular TTD, and a par-
ticular point in time on that TTD.

3.2 Basic Usage and Verification
Figure 3 depicts and explains thegeneralform of the usage pro-

tocol, which is used for both spending and migration (as well as
any other type of usage). The relationships between the different
data structures used in the protocol are depicted in Fig. 1(b). Note
that the usage protocol is actually very similar to the create proto-
col. The difference is only in the final step of the protocol where a
valid PRU forC is contructed and transmitted.

Figure 4 depicts an example of spending, wherein Alice creates
a count-limited spending certificateC which she issues to Bob, and
Bob then spends it once with Dave, and then a second time with Ed.
The vertical column on the left depicts the steps of the creation pro-
tocol, ending with the creation of the certificateC. The middle box
in this column shows Bob’s current counter value,tB , which marks
the creation time of the certificate, and is included in the certificate
signed by Alice. The row of boxes marked withtB + 1 to tB + m

representincproofs(i.e., outputs of theIncSign operation) pro-
duced by Bob’s TTD at different times after the creation ofC. As
shown, most of these incproofs refer toothercertificates, while the
incproofs at timestB +n andtB +m correspond to the spending of
C with Dave and Ed respectively (depicted by the vertical columns
at those times).

Note that at step 4 of the spending protocol, as depicted in Fig. 3,
Bob is required to present the PRU forC, which consists of the log
of incproofs since the creation ofC. In Fig. 4, the PRU that Bob
shows to Dave consists of the incproofs from timetB +1 to tB +n,
while the one that Bob shows to Ed consists of the incproofs from
tB + 1 to tB + m (including the one attB + n). Given this PRU,
and the original certificateC, the verifier (Dave in the first case, and
Ed in the second), can then check all the entries to verify that the
usage conditions are not violated. In the case of Ed, for example,
Ed would go through the following steps to verify the certificateC

and the PRU presented by Bob:

1. Ed verifies the signatures of certificateC and distills the
counter valuetB andB’s PK. Ed then verifiesB’s PK.

2. Ed usesB’s PK to verify the incproof signatures ofall the
incproofs in the PRU. This is necessary even for incproofs
that are not labeledH(C). (Otherwise, Bob can replace a
real incproof forH(C) with a fake incproof with a different
label, and thus hide a previous usage ofC.)

3. Ed distills the counter values from each incproof, and verifies
that valid incproofs for all counter values from the time after
C ’s creation time,tB , to the current time, are presented.

4. Ed extracts asublistof incproofs that correspond to the usage
of C. These are exactly those incproofs that are labeled with
H(C). In this example, only then-th andm-th incproofs are
extracted.

5. Ed considers theOpcode in each of the extracted incproofs
and determines the remaining rights of usage ofC and ver-
ifies whether the usages ofC ’s in the log were valid. For
example, note that Ed would see in the log that theOpcodes
in the two extracted incproofs are equal to “spend”. IfC ’s
usage conditions describeC as a 3-time-spending certificate,
then Ed concludes thatC ’s usages were valid, and accepts
Bob’s proof. However, ifC is only a one-time-use certificate,

then Ed would see that the last spending (i.e., the current one
with Ed) is invalid because there has already been another
spending in the past (i.e., with Dave at timetB + n). Thus,
Ed would reject Bob’s proof and not give him the goods that
he is trying to purchase.

3.3 Migration
Figure 5 depicts an example in which Alice issues a certficateC

to Bob, Bob migratesC to Dave, and then Dave spendsC with Ed.
The vertical column in the middle depicts the migration step

from Bob to Dave. This step is just like the usage protocol ex-
cept that the opcode used in Bob’s incproof is “migrate” instead of
“spend”. The PRU at this stage consists of the incproofs from time
tB + 1 to tB + n. Dave verifies this PRU as in the spending proto-
col, checking that no violations have occured. This time, however,
he also needs to make sure that the final incproof (at timetB + n)
includes his (Dave’s) identity and current counter value (which he
gave to Bob as part of his commitment in step 3 of the usage pro-
tocol). If Dave is satisfied with Bob’s proof, Dave saves the entire
log for future use. At this point, the certificate has now been mi-
grated to Dave, and Dave now has the right to use it. (Bob does not
have the right to use it anymore, and will not be able to use it in
the future because if he ever tries to spend or migrate the certificate
again, the verifier at that time would see the “migrate” incproof at
time tB + n and know that Bob no longer has the right to use the
certificate.)

The vertical column on the right represents Dave spendingC

with Ed. In this case, the usage protocol proceeds as before, except
that now, the PRU consists not only of the log of incproofs gener-
ated by Dave’s TPM (i.e., the incproofs from timetD+1 to tD+k),
butalsothe log of incproofs generated by Bob’s TPM (fromtB +1
to tB + n). The verifier (Ed) would then verify the PRU as in the
spending protocol, with the additional step of also verifying the mi-
gration step from Bob to Dave. That is, in addition to verifying the
signature of the incproof from Bob at timetB + n, Ed also distills
Dave’s counter valuetD from the incproof (it is included as part
of CommitD), and then verifies that the log on Dave’s side starts
from tD + 1 and is complete up to the current timetD + k.

3.4 Complex Usage Conditions and General-
Purpose Count-Limited Certificates.

Note that a count-limited certificate can have separate and arbi-
trarily complex conditions for spending and migration. Different
conditions would lead to different kinds of certificates.

For example, the most basic and common kind of migratable cer-
tificate would probably be aone-copy migratable certificate, which
can be migrated from one host to another, but which can only be
used by at most one host at any one time. Such a certificate can be
implemented by a condition which requires that in order for a user
Dave to be able to use the certificate, he must be able to present a
valid log wherein themost recentincproof that contains a “migrate”
opcode in the log is one which designates the user himself as the
destination. Note that this maintains the one-copy property because
only at most one user (the last one in the chain) would be able to
satisfy this property. For all the previous holders, the most recent
incproof with a “migrate” opcode would be the one migrating the
certificateawayfrom the host to another host.

Given, a one-copy migratable certificate, however, many varia-
tions are possible depending on the exact usage conditions. One
could have an “infinitely circulatable certificate”, which can be mi-
grated any number of times, or one could also limit the total number
of migrations allowed, creating a “hop-limit” to the certificate. One
could also vary the spending condition orthogonally to the migra-



Alice: Bob:

Request = (RandomNonceB ,
B’s PK,Usageconditions)Verify B’s PK,

(1) Request
←−−−−−−−−−−−−−−−−−−−−−−−−−

CommitA = ReadSignA(
RandomNonceA,A’s PK,request)

(2) CommitA

−−−−−−−−−−−−−−−−−−−−−−−−−→ Verify A’s PK,
Verify CommitA,
CommitB = ReadSignB(CommitA)Verify CommitB ,

(3) CommitB

←−−−−−−−−−−−−−−−−−−−−−−−−−
Opcode = “Create”,
C = ReadSignA(Opcode,CommitB), (4) CertificateC

−−−−−−−−−−−−−−−−−−−−−−−−−→ Save and verifyC

Figure 2: Creation protocol for certificate C. Steps (1-3) authenticate Alice and Bob to one another as well as commit both Alice and
Bob to the create protocol. Note that the output of step (3) includes the current counter value of Bob’s timestamping device. In step
(4), certificateC is created and issued.

Bob: Dave:

Request = (RandomNonceD,
D’s PK,Usageconditions)Verify D’s PK,

(1) Request
←−−−−−−−−−−−−−−−−−−−−−−−−−

CommitB = ReadSignB(
RandomNonceB ,B’s PK,request)

(2) CommitB

−−−−−−−−−−−−−−−−−−−−−−−−−→ Verify B’s PK,
Verify CommitB ,
CommitD = ReadSignD(CommitB)Verify CommitD,

(3) CommitD

←−−−−−−−−−−−−−−−−−−−−−−−−−
Opcode ∈ {“spend”, “migrate”},
IncProofB = IncSignB(
Opcode,CommitD, H(C)),
Construct a log of incproofs, calledPRU,
from C ’s creation till and including the
currentIncProofB ,
SaveIncProofB

(4) C andPRU
−−−−−−−−−−−−−−−−−−−−−−−−−→ Verify the incproofs inPRU,

SaveC andPRU

Figure 3: General usage protocol forC (used for both spending and migration). Steps (1-3) authenticate Bob and Dave to one another
as well as commit both Bob and Dave to the usage protocol. Note that the output of step (3) includes the current counter value of
Dave’s timestamping device. In step (4), the output of theIncSign operation, called theincproof, forms part of the PRU which Bob
presents to Dave, and serves to prove to Dave that Bob has irreversibly spent or migrated the certificateC. The PRU also contains a
log of past incproofs to prove that Bob has not already over-spent (or over-migrated) the certificate in the past.
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Figure 5: The proof of right to use C during migration.

tion condition. Thus, one might have a one-copy migratableunlim-
ited usecertificate, or a one-copy migratablen-time-use certificate,
which can be migrated many times but can only be spent at mostn

times total across all holders in the chain. All this and many other
conditions are possible, and can be enforced by simply having the
verifier check the sequence of opcodes in the log.

Generalizing this idea to the extreme, we note that the usage and
verification protocols can actually allow for an arbitrary set of dif-
ferent opcodes (aside from spending and migration), and for arbi-
trarily complex usage conditions. This leads to the idea ofgeneral-
purpose count-limited certificates, which can be used to imple-
ment many potential applications, such as secure mobile agents,
and complex authorization and delegation systems.

3.5 Limitations and Possible Solutions
One obvious drawback of our scheme as described so far is the

need for the user of a certificateC to keep and present a log ofall
the increment operations done using the TTD’s monotonic counter
since the creation of the certificate — even those increments which
do not refer to the particular certificateC itself. As will be shown
in Sect. 4, this issue limitsperformance, since the communication
time required during a transaction will be proportional to the length
of this log. At the same time, it also limitsprivacy since the log
exposes to the recipient the details ofall the transactions that the
certificate’s user has executed since the certificate’s creation. For
example, in Fig. 4, Ed (the recipient) can see the PK’s of all the
parties that Bob (the user) has transacted with since timetB .

The issue of privacy can partly be addressed by using the hash
H(CommitD) instead ofCommitD in the argument toIncSign
in step 4 of Fig. 3. In this way, Ed can verify the incproofs given
onlyOpcode, H(CommitD), andH(C), for each incproof in the
log. These allow Ed to see whether the incproof refers to the de-
sired certificate, and to see and check the opcodes that have already
been executed using that certificate, but does not reveal any of the
PKs in any of the intermediate transactions since timetB , includ-
ing Dave’s, in the case of Fig. 4. (Note thatCommitD includes
random nonces unknown to Ed, so Ed cannot use dictionary attacks
to deriveD’s PK fromH(CommitD).)

This solution, however, still has its limitations. First, in the case
above, even if Bob is able to hide the identity of the parties he
has transacted with, Ed would still be able to see at least the num-
ber of transactions he has performed, as well aswhichcertificates

were used in these transactions (as identified by their respective
H(C)’s). Second, note that when a certificate is used by its holder
(Bob) the verifier needs to be given the public key of the holder’s
TTD in order be able to verify the validity of the incproofs. Also, in
the case of migratable certificates, the verifier would similarly need
to know the public keys (and thus the identities) of all the senders
and receivers of the certificate in the whole migration chain from
the issuer all the way to the last user of the certificate.

Occasional log validation by a Trusted Third Party (TTP). One
possible solution that can help address both the performance and
privacy problems is to allow users tooccasionallyconnect to a
trusted third party (TTP),not during transactions with other users,
but at a separate time – i.e., at the users’ leisure, and/or when
the user has a higher-bandwidth connection to the Internet (e.g.,
at home at night). At such a time, a user’s device can contact an
(online) TTP and transmit to the TTP the device’s log of incproofs
since the last time it has contacted the TTP. From this log, the TTP
can check the usage status of each of the user’s certificates, and
producevalidation certificatesthat attest to the usage status of the
user’s certificates at that time. Thus, in a future transaction with an-
other user (not requiring contact with the TTP), the user need only
present a PRU containing the validation certificate plus anynewin-
cproofs, and does not anymore need to present any old incproofs
that have been seen and validated by the TTP. This approach not
only improves performance (since it decreases the size of the PRUs,
and thus decreases communication time), but also improves privacy
(since the user’s activity before validation certificate is no longer
visible to other users). At the same time, it still retains the benefits
of offline usability of the certificates since contact with the TTP is
not required during user-to-user transactions.

4. IMPLEMENTATION AND RESULTS
We have implemented our protocols and tested them on ma-

chines equipped with a TPM 1.2 chip. We implemented the ab-
stract secure timestamping device described in Sect. 2 by: (1) using
the TPM’sbuilt-in monotonic counteras the arithmetic monotonic
counter, (2) using anattestation identity key (AIK)as the unique
private signing key, and (3) implementing theReadSign(rec)
andIncSign(rec) operations by using the TPM’sTPM Read-
Counter andTPM Increment Counter command (respec-

tively) inside anexclusive and logged transport session, using the
AIK as the signing key, and the hash ofrec as the input nonce.



Figure 6: The graphical user interface of our simple prototype
application.
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Figure 7: Performance Measurements.

We implemented our prototype application using TPM/J [15], a
cross-platform Java-based API for the TPM which provides support
for using transport sessions and monotonic counters on TPM 1.2
chips. Figure 6 shows the graphical user-interface of this prototype
application. To use this application, a user would start the program
on his host, and then type in or select the address or hostname of
another host (also with a TPM and running the same program) with
which he wants to transact. He can either create a new certificate
for that host, or use an existing one from the list on the left. He can
also migrate a certificate to another host (if the certificate’s usage
conditions allow it).

Figure 7 shows some experimental performance results using two
laptops with TPM 1.2 chips connected by a bandwidth-limited LAN
connection. This setup simulates a scenario where two users’ ma-
chines are connected to each other using a local connection (e.g.,
Bluetooth, infrared, etc.), but are disconnected from the Internet.
As shown, for each transaction, about 3-4 s in total were spent
performing TPM operations (theReadSign andIncSign op-
erations, including the monotonic counter operation and the signed
transport session takes about 0.9 to 1.4 s each on the TPM chips
that we used), and the rest was spent mostly on communication
time, increasing proportionally to PRU’s length.

Although the performance of our prototype may not be good
enough for applications such as allowing access to subway turn-
stiles by swiping one’s device via a contactless interface, we note
that it can be acceptable for many other less time-critical appli-
cations such as count-limited delegation or access, or even trading
between two people with TPM-enabled devices. Note, for example,
that when purchasing an item by credit card in a store or through a
web site, it is still not unusual for the credit card verification pro-
cess, which is online, to take 10-15 s or more. We also note that
our current implementation of the timestamp operations produces
some redundancy in the timestamp data structures, which can be

removed at the cost of increasing complexity of the marshalling,
unmarshalling, and verifying code. We expect that doing so would
result in 30%-50% less communication time.

5. RELATED WORK
Traditional solutions to solving the problems of replay attacks

and “double-spending” in distributed computing applications have
followed one, or a combination, of three general approaches.

The first approach is to require contact with anonline trusted
third party (TTP), which keeps track of and limits the usage of
the object. Online transactions done with credit cards, for exam-
ple, use this approach, as do certain online multi-player games, and
online music and media services. Bauer et al. have presented an
interesting idea they call “consumable credentials” [1], which has
some similarities to our idea of count-limited certificates. Their im-
plementations, however, require the use of online trusted verifiers
(known as “ratifiers”) to ensure security. The problem with online
solutions like this is that they are not usable in offline situations,
and thus have more limited scalability and availability.

The second approach is to use mathematical techniques that en-
sure that if a user uses an object beyond its allowed limit, such use
will be detectedeventuallyand the user can be identified and pun-
ished. Electronic cash schemes (e.g., [7]) use this approach, as do
other more recent applications involving certain “one-time” or “n-
time” authentication, authorization, or delegation (e.g., [5, 10, 12,
18, 6]). This approach has the advantage of requiring neither an
online TTP nor any trusted components during user-to-user trans-
actions. Its disadvantage, however, is that it does notimmediately
detect illegal use, and is thus not effective in cases where it is possi-
ble for the adversary to escape from being punished, or where one
must catch the malicious activity on-the-spot.

The third approach is to use some form oftrusted component
that enablesirreversibility as described in Sect. 1. Unlike the two
previous approaches, this approach allows offline transactionsand
can catch malicious behavior immediately during the transaction
itself. For this reason, this approach is the most widely used in
offline applications today. For example, many electronic offline
payment systems today rely on special smartcards [14] for storing
and keeping track of digital tokens. Similarly, media player devices
and software that implement a Digital Rights Management (DRM)
scheme that limits the number of times media files can be used
or shared typically make use of “secure” modules in the form of
special hardware and/or proprietary obfuscated software.

Our solution follows the third approach, but reduces the trusted
component to a very simple hardware device (a TTD), and does not
rely on the security of any other hardware or software components.
This means, for example, that even if a malicious user has the abil-
ity to hack the BIOS and OS of his system, tap and alter memory,
alter the protocol software, and even alter the execution of the CPU,
he still cannot successfully perform replay attacks without being
caught by the parties he is transacting with. Thus, our techniques
provide better security (since hardware is harder to break than soft-
ware, and also since simpler hardware is easier to secure than more
complex hardware), and also better interoperability and personal
freedom (since our techniques can be implemented on any OS on
any machine with anystandardtrusted device capable of imple-
menting a TTD, such as a TPM 1.2 chip, MTM, or smartcard, and
do not require new trusted operating systems such as Microsoft’s
NGSCB [13] or new or proprietary secure hardware features).

As noted in Sect. 1, the work here is related to, but not the same
as the work described in [16]. In that paper, we proposed tech-
niques for achieving count-limited delegation, authentication, and
authorization usingcount-limited objects, specificallycount-limited



keys, which are encrypted blobs containingsomeone else’sprivate
key, the ID of avirtual monotonic counterdedicated to that key, and
the count-limit condition for the blob. Although these techniques
are potentially more efficient (i.e., no logs are required for veri-
fication), they require proposed features that are not yet available
in existing TPM chips today (and will not be available unless they
are included by the TCG in future TPM specifications). In con-
trast, the techniques here are implementabletodayusing existing
TPM 1.2 chips, and should also be implementable using the Mo-
bile Trusted Module (MTM) recently defined by the TCG [19] (as-
suming an MTM that implements monotonic counters and signed
transport sessions, which are optional in the MTM).

Moreover, even if the features proposed in [16] become available
in future TPMs, our techniques in this paper can still be useful for
certain applications. Specifically, we note that count-limitedcer-
tificatesare different from count-limitedkeysin that they do not
involve allowing the TPM to usesomeone else’sprivate key, even
internally. This may provide better security in cases where the com-
promisability of a TPM chip is a concern. Also, given the ability
to create unlimited virtual monotonic counters through the mech-
anisms proposed in [16], we can actually use the same log-based
protocols described here but with a separatededicatedmonotonic
counter for each certificate. This would significantly improve ef-
ficiency since the log of incproofs in the PRUs would then only
include incproofs pertaining to the certificate itself, and not to any
other certificate. (Note that the log-based protocols we introduce in
this paper are similar to, but different, from the log-based scheme
described in [16] for implementing non-deterministic counters us-
ing TPM 1.2 chips. Here, we extend the technique and define new
protocols, not proposed in [16], that implement count-limited cer-
tificates in general, and support the use of arbitrary opcodes and
usage conditions.)

Finally, we note that our techniques also bears similarities with
other well-known security techniques. The idea of verifying valid
usage by checking a log of secure timestamps has similarities to
work in digital notarization[9] andsecure audit logson untrusted
machines [17]. Also, it is already common practice to limit the us-
age of traditional digital certificates through things such as policies
(e.g., [4, 3, 8, 2]), expiration dates, and certificate revocation lists
(e.g., [11]. Our work can be considered as another way of imple-
menting limited-use certificates in anofflinemanner, using simple
and widely available trusted hardware devices instead of an online
trusted third party.

6. CONCLUSION
In this paper, we have presented the idea ofoffline count-limited

certificates, and have shown how these can be implemented using
commodity TPM-enabled PCs availabletoday, without requiring
any changes to these machines or requiring new operating systems.
Our implemented prototype applications show promising results,
and encourage us to pursue future research in building actual real-
world applications using these count-limited certificates.
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