
Generalized External Interaction with Tamper-Resistant
Hardware with Bounded Information Leakage

Xiangyao Yu
Massachusetts Institute of

Technology
yxy@mit.edu

Christopher W. Fletcher∗
Massachusetts Institute of

Technology
cwfletch@mit.edu

Ling Ren
Massachusetts Institute of

Technology
renling@mit.edu

Marten van Dijk
University of Connecticut

vandijk@engr.uconn.edu

Srinivas Devadas
Massachusetts Institute of

Technology
devadas@mit.edu

ABSTRACT
This paper investigates secure ways to interact with tamper-
resistant hardware leaking a strictly bounded amount of in-
formation. Architectural support for the interaction mecha-
nisms is studied and performance implications are evaluated.

The interaction mechanisms are built on top of a recently-
proposed secure processor Ascend [11]. Ascend is chosen
because unlike other tamper-resistant hardware systems,
Ascend completely obfuscates pin traffic through the use
of Oblivious RAM (ORAM) and periodic ORAM accesses.
However, the original Ascend proposal, with the exception
of main memory, can only communicate with the outside
world at the beginning or end of program execution; no in-
termediate information transfer is allowed.

Our system, Stream-Ascend, is an extension of Ascend
that enables intermediate interaction with the outside world.
Stream-Ascend significantly improves the generality and ef-
ficiency of Ascend in supporting many applications that fit
into a streaming model, while maintaining the same security
level. Simulation results show that with smart scheduling al-
gorithms, the performance overhead of Stream-Ascend rel-
ative to an insecure and idealized baseline processor is only
24.5%, 0.7%, and 3.9% for a set of streaming benchmarks
in a large dataset processing application. Stream-Ascend is
able to achieve a very high security level with small over-
heads for a large class of applications.

∗Christopher Fletcher was supported by a National Sci-
ence Foundation Graduate Research Fellowship, Grant No.
1122374, and a DoD National Defense Science and Engi-
neering Graduate Fellowship. This research was partially
supported by the DARPA Clean-slate design of Resilient,
Adaptive, Secure Hosts (CRASH) program under contract
N66001-10-2-4089. The opinions in this paper don’t neces-
sarily represent DARPA or official US policy.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCSW’13, November 8, 2013, Berlin, Germany.
Copyright 2013 ACM 978-1-4503-2490-8/13/11 ...$15.00.
http://–enter the whole DOI string from rightsreview form confirmation.

Categories and Subject Descriptors
B.4.2 [Input/Output Devices]: Channels and controllers;
C.2.0 [General]: Security and protection

Keywords
Ascend; tamper-resistant hardware; interaction; pin traffic;
streaming

1. INTRODUCTION
Privacy in cloud computing is a huge security problem.

For computation outsourcing, the user sends his/her jobs
to the server who does the computation for the user. To
be secure, the server should convince the user that his/her
privacy is not leaked. In an ideal setting, the user’s sensitive
data and perhaps the sensitive program as well, should be
completely protected such that no adversary (including the
server) can learn any information about it.

One solution to achieve security is to use tamper-resistant
hardware and secure processors. In this setting, the user
sends his/her encrypted data (and program as well if the
program is private) to the trusted hardware, inside which
the data is decrypted and computed upon. The results of
computation are encrypted and sent back to the user. Many
such hardware platforms have been proposed, including In-
tel’s TPM+TXT [15], which is based on TPM [35, 3, 26],
eXecute Only Memory (XOM) [17, 18, 19] and Aegis [33,
34].

Among all previously-proposed tamper-resistant hard-
ware, Ascend [11] is the first to completely obfuscate the
traffic on the processor’s pins. As a result, Ascend does not
require any trust in the program or operating system that is
running on the processor as in other tamper-resistant hard-
ware proposals. Ascend achieves this level of security mainly
through two techniques:
• Oblivious RAM (ORAM) is used to obfuscate main

memory accesses, and
• Main memory accesses are made at public and fixed

intervals, protecting against timing attacks.
To protect leakage through program input and output, As-

cend adopts a two-interactive protocol where the user spec-
ifies encrypted input of fixed and public length to Ascend.
Ascend will run the program for a fixed amount of time
and also return an encrypted final result of fixed and public
length.

The limitation of this protocol is that Ascend cannot ac-
cept inputs or produce outputs during program execution.
This significantly limits the types of applications that can
run on Ascend: both input and output must be transmit-
ted one-time. For example, packet processing in routers has
unceasing input coming from the network; a database ap-
plication needs to read data from disks that cannot fit in
the ORAM in Ascend; and many applications need to in-
teract with the user during program execution. All of these
applications cannot run on Ascend.

In this paper, we introduce a general model that allows
any tamper-resistant hardware to interact with the outside
world during program execution without leaking informa-
tion through chip pins (cf., Section 3). Only small and user-
controlled amount of leakage occurs before execution and
does not grow over time. The interaction model is based on
data streaming as in private stream search [23, 6] and is also
applicable to database query processing and packet process-
ing. Though the interaction model discussed in this paper is
general and applicable to any tamper-resistant hardware, we
will use Ascend as an example to explain the mechanisms,
since Ascend is the only secure processor that successfully
obfuscates chip pin traffic.

We make crucial modifications to Ascend and design a
new system called Stream-Ascend. Stream-Ascend extends
Ascend by allowing the processor to interact with the out-
side world during program execution while preserving the
security of Ascend by making all the interactions data- and
program-independent. We also make a key observation that
the performance overhead of Ascend can be largely elim-
inated by taking advantage of the streaming computation
model. That is, if the working set of the currently-processed
record fits in the cache, Stream-Ascend can significantly re-
duce both the ORAM capacity requirement and the number
of ORAM accesses.

In particular, we make the following contributions:
• A general model is proposed to securely interact with

any tamper-resistant hardware. The model guarantees
that privacy cannot be leaked through chip pins.
• Based on this model, we present an architecture and

execution model for Stream-Ascend, which is built on
top of Ascend [11]. Stream-Ascend significantly ex-
tends the generality and efficiency of Ascend. To
the best of our knowledge, Stream-Ascend is the
first tamper-resistant hardware-based system that ef-
ficiently supports complex streaming queries while al-
lowing untrusted query programs.
• By adopting a streaming model and exploiting the

fact that a query’s working set will likely fit in on-
chip cache, the performance bottleneck of ORAM is
largely avoided. Simulation results using large dataset
processing benchmarks show that Stream-Ascend only
imposes less than 24.5% performance overhead relative
to an insecure baseline system.

The rest of this paper is organized as follows: Section 2
presents the necessary details of the Ascend processor on
which Stream-Ascend is based. Section 3 discusses the gen-
eral model to securely interact with tamper-resistant hard-
ware without leaking information through chip pins. Sec-
tion 4 describes Stream-Ascend. Section 5 describes appli-
cation scenarios. Section 6 evaluates Stream-Ascend with re-
spect to baseline systems. Section 7 describes related work.
Section 8 concludes the paper.

2. BACKGROUND
A recently proposed tamper-resistant hardware processor,

called Ascend [11] is designed to protect against all software-
based and some hardware-based attacks when running un-
trusted batch programs. Ascend is a single-chip coprocessor
that runs on the server-side. In this paper, we consider
an honest-but-curious server who may try to learn user’s
private information by observing the pin traffic of Ascend.
In this section, we describe Ascend and discuss some of its
drawbacks.

2.1 Ascend Architecture
Ascend was designed for batch computation, where all the

program data must be present in the main memory after ini-
tialization. The key idea to guarantee privacy is obfuscated
program execution in hardware; to evaluate an arbitrary in-
struction, Ascend gives off the signature of having evalu-
ated any possible instruction. In particular, for an arbitrary
batch program P , any two encrypted inputs x and x′ (the
user’s private query), and any two sets of public input y and
y′ (server’s public data), Ascend guarantees that from the
perspective of the chip’s input/output (I/O) pins P (x, y)
is indistinguishable from P (x′, y′), therefore satisfying the
criterion for oblivious computation [14].

To get this level of security, Ascend (a) encrypts all
data sent over its I/O pins using dedicated/internal crypto-
processors (e.g., AES) (b) obfuscates the address going
off-chip using Oblivious-RAM (ORAM), and (c) accesses
ORAM at fixed and public intervals to obfuscate when a
request is made. ORAM (details explained in Section 2.2)
is conceptually a DRAM whose contents are encrypted and
shuffled data blocks. It hides program memory address pat-
terns as well as the data read from or written to memory,
but not the timing of ORAM accesses. The timing channel
is protected by periodic accesses.

2.2 Oblivious-RAM
Oblivious-RAM (ORAM) [13, 22, 14, 27, 31] is one of the

most important building blocks in Ascend. ORAM prevents
any leakage from a program’s memory access pattern. That
is, an adversary should not be able to tell (a) whether a
given memory request is a read or write, (b) which location
in memory is accessed, or (c) what data is read/written to
that location.

In the original proposal, Ascend used a recent construc-
tion called Path ORAM [32] for its practical performance
and simplicity. We note that Ascend can be built on top of
other ORAMs, and we experiment with Path ORAM and
the ORAM of [27] in Section 6. In this paper, we treat
ORAM as a black box which serves as a secure main mem-
ory. The key feature of ORAM is its high access latency:
according to [24], each Path ORAM access is translated to
multiple DRAM accesses which consume 3752 processor cy-
cles for the ORAM configurations in Table 1. Readers can
refer to [24, 32] for details of Path ORAM.

2.3 User-Ascend Interaction
Ascend uses a two-interactive protocol (shown in Figure 1)

to securely interact with users. First, the user chooses
a secret session (symmetric) key K, encrypts it with As-
cend’s public key and sends it to Ascend. Second, the user
sends its encrypted private inputs encryptK(xuser), a pub-
lic running time T and a public number of bytes to in-
clude in the final result S. At the same time, the server

Batch Ascend	

ORAM	
Interface�

Public Input	
T: program run time
S: length of final result
xserver : input from the server

Private Input	
xuser: input from the user

Processor�
ORAM latency: 3752 cycles

Main Memory
(4GB ORAM)	

Ascend Output	

z: result of the program, |z| = S

P:	 program	 can	 be	 either	
public	 or	 private	

Figure 1: Ascend Architecture and user-Ascend
interaction.

sends the public input xserver to Ascend. The program
P can be provided by either the user or the server. As-
cend then runs for T time (execution step) and produces
zfinal = encryptK(P (xuser, xserver)) if T was sufficient to
complete P , else zint = encryptK(“did not finish′′) where
|zfinal| = |zint| = S (termination step). During execu-
tion, the program P owns the entire Ascend chip—Ascend
currently supports a single user running a single thread at a
time.

2.4 Ascend Limitations
Ascend was shown to have reasonable overheads (≈ 2×)

for compute-bound batch applications, e.g., most of the
SPEC benchmarks ([24]). However, the computation model
of Ascend is still very limited.

2.4.1 Two-Interactive Protocol
As described in Section 2.3, Ascend uses a two-interactive

protocol to process users’ queries. All input to the program
should be specified at the beginning of the execution and
only the final results can be returned to the user. This
model does not allow the use of Ascend in applications that
require constant input/output from/to the outside world,
e.g., network traffic, user input, etc.

For example, data filtering at a network router cannot be
implemented using Ascend because, first, input data arrives
constantly during execution instead of at one time, and sec-
ond, the user needs output constantly.

For the rest of the paper, we will refer to the original
Ascend proposal as Batch-Ascend.

2.4.2 ORAM scalability
For certain applications, instead of constantly requesting

data during program execution, Ascend can conceivably load
all the data it needs before any computation starts. In a
database application for example, Ascend can load all the
tables into its main memory (which is implemented as an
ORAM) and obfuscate the access pattern. This usually re-
quires an ORAM size on the order of terabytes which does
not fit in DRAM. Thus, the ORAM would be implemented
over both DRAM and disk. Such a huge “Oblivious disk” is
impractical in an Ascend context due to ORAM scalability.

Take a Path ORAM on 100 TB disks as an example. In-
stead of accessing a single data block as in an insecure sys-
tem, Path ORAM needs to touch ∼ 660 blocks. Though
small chunks of blocks (e.g., 4 blocks) can be grouped to-
gether in Path ORAM—decreasing the effective number of
disk accesses down to ∼ 165, each access still turns into
hundreds of accesses to random locations over many disks.

Previous work proposed parallelizing ORAM operations
with coprocessors in data centers [20]. In their approach,
multiple trusted coprocessors split a single ORAM access
into parallel accesses in order to reduce access latency. How-
ever, the power consumption of each ORAM access is not
reduced (actually, more power is consumed). Furthermore,
parallelization requires user’s trust in many coprocessors in-
stead of one.

Recent work, namely ObliviStore [30], significantly im-
proved ORAM performance in a cloud storage setting. How-
ever, with a 1 TB file system, a throughput of only several
MB/s is achieved with SSDs, and less than 1 MB/s with
HDDs.

3. INTERACTION WITH TAMPER-
RESISTANT HARDWARE

Tamper-resistant hardware may interact with external
equipment like memory, network interfaces, user input de-
vices, etc. In order to not leak information through chip
pins, these interactions must happen in a data-independent
way such that an adversary cannot figure out what mes-
sages are being transferred or the pattern of message flow.
The one-time input/output in Batch-Ascend is a secure
way to interact with tamper-resistant hardware. However,
the model can only support limited applications (c.f., Sec-
tion 2.4.1).

As discussed in the previous section, Ascend obfuscates
the access pattern over the memory channel by using Obliv-
ious RAM. However, ORAM does not help much with net-
work interfaces or user inputs which require different com-
munication strategies.

3.1 Streaming Model
Streaming computation is a simple model that achieves

a very high security level. In this model, all the data is
streamed into the trusted hardware, the results are streamed
out and the operations on each data record look indistin-
guishable to an adversary. Security of the system relies on
the fact that all the data records exhibit data-independent
behaviors. The streaming model is quite general and many
applications fit into it. Examples are sequential scan in
databases, network routers, data filtering, online news feeds,
user input, etc. Though it is true that streaming limits the
programming model to certain types of applications, this is
the price to pay in order to fully obfuscate pin traffic. The
streaming model has been widely adopted in private stream
search [23, 6].

The methods of securely interacting with tamper-resistant
hardware can be extended to a stream of interaction.

3.2 General Interaction Model
Figure 2 shows the basic structure of the interaction

model. Similar to Batch-Ascend, the system is assumed to
contain two parts: the untrusted server and the tamper-
resistant hardware. The key security insight of our interac-
tion model is the following: if the pin traffic of the tamper-
resistant hardware is completely controlled by the server and

Tamper-Resistant
Hardware (trusted)

Input Scheduler
(public FSM)

Output Scheduler
(public FSM)

Input
Data

Ack

Input Rqmt.
Input data is
always accepted

Output
Req. (Z)

Result

Output Rqmt.
§  encryption
§  fixed D and R

User

Network package,
user input, etc.

Disk	

Server
(untrusted)

Public Information
package size,
arrival time, etc.

Figure 2: General model of interaction with tamper-resistant hardware.

the server does not know any private information of the user,
then the pin traffic will not leak any privacy. We will show
how this insight is realized by going through each block in
the figure in the sequel.

3.2.1 Untrusted Server
The server can load data from data sources (e.g., network

interfaces, disks, etc.) into the internal buffers and transfer
these data to the trusted tamper-resistant hardware. For
security reasons, how the data is sent to the trusted hard-
ware must happen in data-independent ways. Specifically,
an input scheduler is introduced to achieve this goal.

The input scheduler is a public finite state machine (FSM)
which takes public information as input and generates a pub-
lic scheduling which indicates when the data in the server’s
buffer is sent to the tamper-resistant hardware. The input
to the input scheduler can be any public information observ-
able by the server, including input arrival rate, input size,
packet type (which may be public for certain applications),
ORAM latency, network congestion, etc. The public input
scheduler, which may be specified either by the user or by
the server, collects these inputs and switches internal state
accordingly. Based on its state the input scheduler will oc-
casionally send data blocks to the trusted hardware which
will consume the data blocks in a data-independent way.

Similarly, the output scheduler is also a public FSM spec-
ified either by the user or by the server. Outputs of the
output scheduler are requests to the tamper-resistant hard-
ware with a result size Z. Upon receiving a request, the
tamper-resistant hardware will return a fixed amount of en-
crypted data of size Z in a fixed pattern back to the user.

The tamper-resistant hardware can only get input data
from the input scheduler and can only output data upon re-
ceiving a request from the output scheduler. The schedulers
completely determine the behavior of I/O pins of the trusted
hardware.

3.2.2 Tamper-Resistant Hardware
For security reasons, upon receiving the input data and

the output request from the schedulers, the response of the
tamper-resistant hardware should not leak any data- or
program-dependent information. The requirements on the
hardware are listed below.

Input requirement: The trusted hardware should al-
ways accept (e.g., write to a hardware buffer) the input data

in the same way as observed by an adversary, regardless of
the content of the data or the internal state of the hardware.

Output requirement: Upon receiving the request from
the output scheduler, the trusted hardware should return the
output data in a fixed pattern. For simplicity, we assume
that the hardware will start to return the data after time D
upon receiving the request, and the data transfer rate should
always be R bytes/s. D and R are determined by hardware
and cannot be changed. Furthermore, all the output data
should be probabilistically encrypted. If there are no results
ready to be sent out, the hardware sends encrypted dummy
results at the right time.

The hardware implementation that achieves the above re-
quirement will be discussed in Section 4.

3.3 Security of Interaction
The interaction model discussed above is secure against

attacks through observing chip pins. The key idea is that
the pin traffic of the tamper-resistant hardware is completely
controlled by the server. The behavior of the trusted hard-
ware in terms of pin traffic will be completely public and
predictable by an adversary, regardless of the internal state
of the hardware. Adversaries learn nothing new observing
the pin traffic.

It is true that the scheduler itself may leak some infor-
mation about the application. If the server specifies the
scheduling algorithm, no private information is leaked. But
if the user specifies the scheduling algorithm, leakage may
happen. The user may decide to use a certain scheduler
rather than another one for performance considerations and
this decision leaks some features about the data and pro-
gram. However, this leakage is user-controlled and only one-
time when the scheduler is specified and does not increase
over time. The tradeoff between performance and security
is made by the user.

In practice, the server can provide input/output sched-
ulers that are general enough for all users as the default set-
ting. The default setting achieves reasonable performance
in general and does not leak private information (since it
is provided by the server). Users are still allowed to define
their own schedulers to further exploit performance, with
the cost of more leakage.

4. STREAM ASCEND
The discussion in the previous section is general to all

tamper-resistant hardware based systems. But the trusted
hardware has been treated as a black box that magically
achieves all the requirements. In this section, we will focus
on a hardware implementation to support the interaction
model. Specifically, the mechanisms are built on top of As-
cend since it is the only secure hardware that completely
obfuscates the pin traffic using ORAM and periodicity. The
resulting system is called Stream-Ascend. The architecture
of Stream-Ascend will be discussed in detail.

4.1 Two-Interactive Protocol
According to Section 2, the user communicates with

Batch-Ascend using a two-interactive protocol where the
user specifies the program runtime T and result size S.

With the general interaction model, however, the user
should instead specify the input scheduling algorithm
and the output scheduling algorithm. The original two-
interactive protocol can also fit into our new interaction
model with extremely simple FSMs. In this case, the in-
put scheduling is to put data into Stream-Ascend at time 0.
And the output scheduling is to request output of size S at
time T .

4.2 Architecture Overview
In order to efficient support the interaction model and to

meet the requirements listed in Section 3.2.2, three main
hardware mechanisms are added to Batch-Ascend [11]: a
Front End FIFO (FEF), a Back End FIFO (BEF) and mul-
tithreading.

FEF	

BEF	

Input
Thread	

Output
Thread	

Application
Thread	

SIB	

SUB	

Main Memory
(ORAM)

Input Data Stream
(controlled by the input scheduler at the server) 	

Output Data Stream
(to the user)

Main	 	
Program�

Stream-Ascend	

ORAM	
Interface�

ORAM bandwidth : 26 MB/s
ORAM latency: 3752 cycles

ack

Output Request Stream
(controlled by the output scheduler at the server) 	

AES �

Figure 3: The Stream-Ascend architecture. Two
main hardware structures (FEF and BEF) and mul-
tithreading support are added on top of Batch-
Ascend. Blue arrows show the direction of data flow.

The overall architecture of Stream-Ascend is shown in Fig-
ure 3. Both the FEF and BEF are used to temporarily store

the data blocks. FEF is used to receive data from stream-
ing input, and the BEF is used to store messages that are
ready to be sent back to the user. Both FIFOs serve as syn-
chronization buffers between Stream-Ascend and the outside
world in order to tolerate small mismatches between process-
ing rate and streaming input/output rate.

In practice, however, the above mentioned mismatch can
be large. We implement a software buffer for each FIFO as a
backup in order to tolerate large mismatch. These software
buffers are called Software Input Buffer (SIB) and Software
oUtput Buffer (SUB).

In order to efficiently move data between the FEF/BEF
and the corresponding software buffer, multithreading sup-
port is added to Stream-Ascend. Two threads—input thread
and output thread are specifically assigned to data moving.
We will introduce several context switching strategies in Sec-
tion 4.4.3 to minimize the size of the FEF and BEF.

4.3 The Front/Back End FIFO
Both the FEF and BEF serve as synchronization buffers

between Stream-Ascend and the input and output streams.
They are key to meet the requirements in Section 3.2.2

The FEF will always accept the data coming from the
server in the same way as seen by an adversary, though inter-
nally Stream-Ascend may decide to keep or discard the data.
Inside Stream-Ascend, the input thread will constantly move
data from the FEF (if not empty) to the SIB (if not full).
But an adversary should never be able to find out how full
the FEF is, or if it has overflowed.

In practice, the FEF may overflow if data is streamed
in faster than the speed of processing. Both the FEF
and SIB may accumulate over time and overflow eventually.
When the FEF overflows, the entire (incomplete) record that
causes the overflow should be discarded. In this case, the
FEF no longer stores the remaining portion of the damaged
data record as it gets streamed in. It also sets a flag on
the memory map to notify the input thread of the overflow,
which will clean up the SIB in software.

BEF is similar to FEF in that an adversary cannot ob-
serve its interval states. But unlike the FEF, BEF will never
overflow. If the BEF is full, the output thread stops mov-
ing data from the SUB into it. Upon receiving the output
request from the output scheduler at the server, the BEF
will output encrypted results to the user at a fixed pattern
(c.f., Section 3.2.2). If the BEF is empty, encrypted dummy
results will be returned.

Notice that all the operations mentioned above are inter-
nal to the Stream-Ascend. An adversary from the outside
can only see that input data are consumed and output re-
quests are satisfied. So no information is leaked.

4.4 Multi-threading
Stream-Ascend uses hardware multi-threading similar to

conventional processors. Each thread has its own register
file and program counter (PC), and shares the core pipeline,
all the on-chip caches and the main memory. At any time,
only one thread occupies the pipeline, and it can be swapped
out for another at cycle granularity (similar to fine/coarse-
grained multi-threading; the operating system is not in-
volved).

4.4.1 The Input/Output Thread
The input thread (when active) adds data from the FEF

to the SIB. When an record is completely streamed in, the
record is marked as ready for the application thread.

In the case of the FEF overflowing, the input thread
throws away any portion of the broken record it has buffered
in the SIB so far. Data in the FEF belonging to the broken
records should also be thrown away.

The output thread is similar to the input thread but the
data flows in reverse order: results are first written to the
SUB and then moved to the BEF by the output thread.

4.4.2 The Application Thread
The application thread reads an record from the SIB and

runs the user’s query on it. The ORAM may be accessed
while the query is being processed.

The application will store the results of processing to SUB
which is internal to Stream-Ascend. If the SUB is full, which
means the output speed is slower than the processing speed,
the application thread will simply drop the results of the
current data record.

4.4.3 Context Switch
Which thread owns the execution pipeline during any par-

ticular cycle is determined through both hardware and soft-
ware mechanisms. These mechanisms are crucial to make
the size of the FEF and BEF small enough in practice.

Hardware-triggered context switch is performed in
two circumstances. First, any thread is swapped out in the
case of a last-level cache miss which triggers an ORAM ac-
cess that takes at least thousands of cycles. Executing other
threads instead of waiting can hide this latency to some ex-
tent.

Second, the input/output thread is swapped onto the
pipeline when the FEF/BEF occupancy reaches a certain
threshold and the SIB/SUB is not full/empty. This strat-
egy is important to minimize hardware FIFO overflow with
a small FIFO size. Without this strategy, for instance, if the
application thread never incurs a last-level cache miss and
always owns the pipeline, the FEF will eventually overflow
and the BEF will drain out.

The emptiness/fullness of the SIB/SUB is signified using
a memory map-accessible register implemented in hardware.
The register is set by the thread at the upstream of the data
flow and cleared by the thread at the downstream.

Software-triggered context switch puts a thread ex-
plicitly to sleep if it cannot make forward progress. The
input thread goes to sleep if the SIB is full or if the FEF is
empty. Similarly, the output thread goes to sleep if the SUB
is empty or if the BEF is full. The application thread goes
to sleep if the SIB is empty, which means there is no record
to process. Notice that the application thread will not go
to sleep if the SUB is full. Instead, the result of that record
will simply be ignored and thrown away.

4.5 Other Optimizations

4.5.1 Data Locality Optimizations
As discussed in Section 2.2, ORAM may become a perfor-

mance bottleneck in Stream-Ascend. Thus it is desirable to
minimize off-chip traffic. We try to achieve this goal by ex-
plicitly managing memory allocation for maximum locality
instead of using system calls (e.g., malloc() and free()).

In order to improve locality and reduce off-chip traffic,
we organize both the SIB and SUB as stacks (as opposed
to FIFOs). That is, when a new record is buffered and
added to the software buffer, it has a high probability of
being processed by the query program before being evicted
from the on-chip caches. As a comparison, if these buffers

are implemented in FIFOs, the first record inserted into the
FIFO is more likely to have been evicted to the ORAM.
In the worst case, all records would have to be pushed to
and then pulled from ORAM. A stack-based implementation
considerably reduces the number of ORAM accesses.

Since both the SIB and SUB are manipulated by two
threads, stack push/pop operations can cause race condi-
tions. In our design, we use a lock-free stack design. Specif-
ically, we always push elements to the top of the stack, and
pop the second from top element from the stack.

4.5.2 Working Set Usually Fits in Cache
In practice, the working set size in order to process a single

data record is usually very small. For example, the maxi-
mum packet size in IPv4 is 64 KB and each twitter feed is
at most 140 characters. For these applications, the work-
ing set usually fits into the on-chip caches, as illustrated in
Figure 4.

In
pu

t	 D
at
a	
Si
ze
	

Execu0on	 Time	

Input	 Data	 vs.	 Workingset	

working	 set	
cache	 capacity	
input	 data	

Figure 4: Input data size vs. working set size over
time for the DocDist benchmark (Section 6.2.1).

The total streamed-in data size increases linearly with
time. But since we only process one record at a time, the
working set of Stream-Ascend is limited. If the working set
fits in on-chip cache, ORAM will be rarely accessed. In this
case, the ORAM latency bottleneck is largely avoided.

5. CASE STUDIES
In this section, we will analyze two typical application

scenarios of Stream-Ascend: data filtering and large dataset
processing. The scheduling algorithms discussed in this sec-
tion are simple for illustrative purposes, and are not neces-
sarily the most efficient.

5.1 Data Filtering
Data Filtering is a type of application that reads input

data from an unceasing input stream (network packets, user
input, online news feeds, etc.) and constantly sends out-
puts to the user. Applications that fit in this model include
packet processing in network routers, email filtering, online
news feeds processing, user inputs, etc.

The input scheduler of this application can be very simple:
data records are fed into Stream-Ascend as soon as they
arrive. This is obviously a secure scheduling since the output
of the scheduler only depends on when data arrives, which
is certainly public information.

For the output scheduler, the server may simply decide
to send an output request to Stream-Ascend asking for a
result of size S′ after time T ′ when the data record is fed
into Stream-Ascend. The assumptions here are that first,
the result size is strictly smaller than S′ for each record pro-
cessing, and second, each record processing time is strictly

smaller than T ′. These assumptions are true for many data
filtering applications.

5.1.1 Parameter Determination
In the above example, no parameter needs to be deter-

mined for input scheduler. For output scheduler, however,
we need to determine two parameters: S′ and T ′.

The output size S′ is relatively easy for the user to learn,
since the user knows the output format of the program.

The processing time T ′ is a little bit harder to determine.
Though the user may know the code of the program, it is
still difficult to know the execution time of the program on
a particular hardware platform — Stream-Ascend.

We can set up a pre-computation phase using Batch-
Ascend (which can be viewed as Stream-Ascend with spe-
cial input/output schedulers) to handle this problem. In the
pre-computation phase, the user sends the program with ex-
ample inputs (e.g., worst-case input) to the Batch-Ascend,
which runs the program with all the example inputs and re-
turns the execution time back to the user after fixed time T .
The user can determine T ′ based on the results.

5.2 Large Dataset Processing
Large dataset processing is a type of application that ex-

tracts useful information from a large database. Examples of
this application range from very simple SQL queries to com-
plicated queries like Content-Based Image Retrieval (CBIR).
Stream-Ascend will request all the data records from the
database in a streaming manner, process each of them and
return the final results back to the client.

Notice that Stream-Ascend can only efficiently support
SQL queries that fit in the streaming model, e.g., sequential
scan of a table. Queries like index access might be very
inefficient since the system needs to wait for the data records
to be streamed in.

The input scheduler reads data from disks and feeds them
to Stream-Ascend. For simplicity, we assume the input
scheduler to be a simple periodic scheduler, which sends
a word (this can be of arbitrary size and vary in size) to
Stream-Ascend every STREAMint cycles. Note that the
value of STREAMint is critical to the Quality-of-Service
(QoS): if it is set too small, records are streamed in too fast
and will be dropped due to FEF overflow (c.f., Section 4.3);
if it is set too large, the processor will be idle waiting for
input most of the time. The determination of STREAMint

is discussed in Section 5.2.1.
We can choose the output scheduler to be simply request-

ing the final results of size S after the last data record in
the database is sent to Stream-Ascend, plus a time delay L
(to finish the last several records in the SIB and FEF). S is
easy to learn by the user and L can be chosen conservatively
since its overhead is only paid once for the whole execution.

5.2.1 STREAMint Determination
Similar to Section 5.1.1, pre-computation with Batch-

Ascend is used to estimate the value of STREAMint.
In the pre-computation phase, the server will first gen-

erate a set of sampled records from the entire input data.
These records are fed into the Batch-Ascend to compute the
average time Tword to process each word in the input. Tword

is then returned to the user who determines STREAMint

based on Tword.

Table 1: Microarchitecture for baseline and Stream-
Ascend variants. On a cache miss, the processor
incurs the cache hit plus miss latency.

Core model: in order, single issue
Cycles per Arith/Mult/Div instr 1/4/12
Cycles per FP Arith/Mult/Div instr 2/4/10

Memory
L1 I/D Cache 32 KB, 4-way
L1 I/D Cache hit+miss latencies 1+0/2+1
L2 Unified/Inclusive L2 Cache 1 MB, 16-way
L2 hit+miss latencies 10+Mlatency

Cache block size 128 bytes
ORAM Capacity 4G
DRAM latency 108 cycles
Path ORAM latency 3752 cycles

Application: input data size
Document matching 26.5 MB
DNA sequence matching 6 MB
Image Retrieval 15.5 MB

6. EVALUATION
In this section, we focus on the large dataset processing do-

main, and evaluate three applications (document matching,
DNA sequence matching and content-based image retrieval)
on Stream-Ascend and a baseline insecure coprocessor. For
simplicity, we focus on the scheduling algorithms discussed
in Section 5.2. But most of the results here also apply to
other scheduling algorithms.

6.1 Methodology
All experiments are carried out with a cycle-level simu-

lator based on the public domain SESC [25] simulator that
uses the MIPS ISA. Instruction/memory address traces are
first generated through SESC’s rabbit (fast forward) mode
and then fed into a timing model that represents a processor
chip. Simulations are run until the entire dataset is streamed
through the simulator (which takes between 4 billion to 100
billion instructions depending on the benchmark and the
dataset).

6.1.1 Comparison Points
We compare the following three systems (all of which have

the same on-chip microarchitecture, given in Table 1).
Stream-Ascend:
The Stream-Ascend proposal described in Section 4 with

the scheduling algorithms discussed in Section 5.2. Per-
fect schedulers are assumed for end-to-end evaluation.
STREAMint and SIB capacity are varied throughout the
evaluation.

Oracle-Ascend: An idealized Stream-Ascend design
that implements the SIB in magic hardware. Accessing a
word in the magic SIB costs a single cycle always. Com-
pared to Stream-Ascend, this system removes the overhead
of input thread.

Oracle-Baseline: An idealized insecure processor with
DRAM as main memory. Similar to Oracle-Ascend, it also
has a magic SIB. Oracle-Baseline stands for the performance
upper bound which is not achievable in practice.

6.2 Application Case Studies
We evaluate our system over three applications that

process unstructured data from a database given user
search/filter criteria (ordered from least complex to most
complex).

6.2.1 Document Matching
The first application (DocDist) compares documents for

similarity. It takes a private set of document features fu
and a private distance metric from the user, and returns
the documents whose features have the shortest distance
to fu. We show results for a corpus of several thousand
wikinews pages [1] (which vary in length between 350 Bytes
and 205 KB).

6.2.2 DNA Sequence Matching
The second application is DNA sequence matching

(DNA), which takes the user’s private query and returns the
public DNA sequences that share the longest common sub-
string with the user query (the algorithm also works for gen-
eral strings). We use DNA sequences from human and chimp
chromosomes (6 million nucleotides in total, randomly bro-
ken into segments of length from 1K to 10K).

6.2.3 Content-Based Image Retrieval
Our third application is the content-based image retrieval

(CBIR) application, which takes a (private) image specified
by the user and returns a set of images that are most similar
to the user image. The CBIR algorithm extracts SIFT fea-
tures [21] for images, quantizes those features into a bag of
words representation, and then compares each bag of words
to a reference image (processed in the same way) for simi-
larity [28, 9]. One example application is watermarking: for
our evaluation we compare a secret 100 × 100 pixel water-
mark with 300 other images (varying in size between 6 KB
and 30 KB) from the Caltech101 dataset [10]. We were con-
strained to this number and size of images to keep simulation
time reasonable.

6.3 Performance Study
In this section, we evaluate Stream-Ascend under different

parameter settings. For each experiment, the input data
is at least several megabytes (see Table 1). Though this
is much smaller than the input data in a real streaming
application (which can be hundreds of terabytes), we believe
it is enough to provide interesting results because Ascend’s
on-chip cache size is only 1 megabyte: much smaller than
input data size.

6.3.1 Software Buffer Size
Figure 5 shows the drop rate of Stream-Ascend with dif-

ferent SIB (cf. Section 4.2) sizes and STREAMint. Given
a certain SIB size (which corresponds to a single curve
in the figure), Stream-Ascend starts to drop records when
STREAMint is smaller than a threshold value, which we de-
fine as THRESHint. For all benchmarks, the THRESHint

decreases for larger SIB. This is because larger buffers
can tolerate more variance in the processing speed, so
STREAMint can be set closer to the optimal value. There
are diminishing returns after the software buffer is large
enough.

When STREAMint is smaller than the THRESHint,
drop rate increases almost linearly with respect to
STREAMint. Drop rate will be 100% when STREAMint

goes down to 0. This corresponds to the case where data
rushes into Stream-Ascend so fast that there is no time to
process a single record.

For different applications, the THRESHint is also differ-
ent. For example, CBIR requires much more computation

Benchmark Oracle-Ascend Stream-Ascend (optimal
scheduling)

Doc Dist <0.1% 24.5%
DNA <0.1% 0.7%
Img 2.6% 3.9%

Table 2: Performance degradation of Stream-
Ascend and Oracle-Ascend with respect to Oracle-
Baseline.

than DocDist for the same input data size, so STREAMint

is also higher to match the CPU processing speed.

6.3.2 Infinite Software Buffer
To have a better understanding of the software buffer in

Stream-Ascend, Figure 6 shows the performance of each
application when the software buffer has an infinite size.1

The y-axis shows the performance in terms of average num-
ber of cycles to process a single word, and the x-axis is
STREAMint. In this case, we will not drop records due
to rate matching problems: there will always be space in
the SIB for data to stream in.

If STREAMint > THRESHint, performance degrades
linearly with respect to STREAMint. In this region, the ap-
plication thread is consistently waiting for the Input thread.
So the input thread becomes the bottleneck of the sys-
tem. Since each record is immediately processed after it
is streamed in, the SIB is almost always empty. Thus,
even if software buffer capacity is finite, Stream-Ascend still
drops no records. This is the region in which Stream-Ascend
should operate.

If STREAMint < THRESHint, performance stays al-
most constant for a large region. In this region, the appli-
cation thread is the bottleneck of the system and the CPU
is busy all the time.

STREAMint = THRESHint is the sweet spot that we
want to achieve. This corresponds to the perfect rate match-
ing case where no records are dropped and the CPU is always
busy processing. This may not be possible to achieve with
a simple periodic input scheduler as we have been assuming
(due to nonlinearity in record processing time). But more
complicated scheduling algorithms may have performance
closer to this optimal case.

6.3.3 Overhead Analysis
Table 2 shows the end-to-end performance of Stream-

Ascend and Oracle-Ascend, in terms of slowdown with re-
spect to Oracle-Baseline. Instead of a periodic input sched-
uler, we assume an optimal scheduler which achieves no
record loss and 100% CPU utilization at the same time. How
this scheduling can be achieved depends on the application
and data running in the system.

The performance degradation of Oracle-Ascend compared
to Oracle-Baseline shows the overhead of using ORAM.
Since the working set mostly fits in cache, ORAM is rarely
accessed with Oracle-Ascend (Oracle-Ascend rate matches
perfectly), and overhead due to ORAM is small for all bench-
marks.

The overhead of Stream-Ascend comes from both using
ORAM and having extra threads (input thread and output
thread) running alongside the application thread. DocDist
has the highest overhead due to the input thread because the

1That is, the software buffer size is larger than the input
data size.

0%	

1%	

2%	

3%	

4%	

5%	

6%	

1300	 1350	 1400	 1450	 1500	 1550	 1600	 1650	

Dr
op

	 R
at
e	
	

STREAMint	

Finite	 buffer	 -‐	 DocDist	

0.25	 MB	
0.5	 MB	
1	 MB	
2	 MB	

(a) DocDist

0%	

2%	

4%	

6%	

8%	

10%	

12%	

14%	

16%	

27000	 29000	 31000	 33000	 35000	 37000	

Dr
op

	 R
at
e	

STREAMint	

Finite	 buffer	 -‐	 DNA	

30	 KB	
60	 KB	
120	 KB	

(b) DNA

0%	

4%	

8%	

12%	

16%	

20%	

24%	

28%	

32%	

55000	 65000	 75000	 90000	 110000	

Dr
op

	 R
at
e	

STREAMint	

Finite	 buffer	 -‐	 CBIR	

0.5	 MB	

1	 MB	

2	 MB	

(c) CBIR

Figure 5: Drop rate vs. STREAMint, sweeping software input buffer (SIB) size.

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

500	 1000	 1500	 2000	 2500	 3000	

Cy
cl
es
	 p
er
	 w
or
d	

STREAMint	

Infinite	 Buffer	 -‐	 DocDist	

stream-‐Ascend	
Oracle-‐baseline	
Oracle-‐Ascend	

(a) DocDist

30000	
35000	
40000	
45000	
50000	
55000	
60000	
65000	

0	 20000	 40000	 60000	

Cy
cl
es
	 p
er
	 w
or
d	

STREAMint	

Infinite	 Buffer	 -‐	 DNA	

stream-‐Ascned	
Oracle-‐baseline	
Oracle-‐Ascend	

(b) DNA

60000	

70000	

80000	

90000	

100000	

110000	

120000	

30000	 50000	 70000	 90000	 110000	

Cy
cl
es
	 p
er
	 w
or
d	

STREAMint	

Infinite	 Buffer	 -‐	 CBIR	

stream-‐Ascend	
Oracle-‐baseline	
Oracle-‐Ascend	

(c) CBIR

Figure 6: Performance (number of cycles to execute a single word) vs. STREAMint with infinite SIB size
(drop rate = 0).

record processing program is so simple that the percentage
of input thread’s computation becomes larger.

6.3.4 Sensitivity Study
An important insight of Stream-Ascend is that if data

records all fit in the on-chip cache, then ORAM does not
need to be frequently accessed. For all the experiments
above, data records and working set are smaller than the
cache size. In this section, we study the sensitivity of per-
formance to record size and ORAM latency.

Record Size
Figure 7 shows the performance change by sweeping in-

put record size in the DocDist and DNA benchmarks, where
the working set size is approximately the record size. When
record size is smaller than on-chip cache capacity (1 MB),
the performance of both applications remains flat regard-
less of record size change. However, when records are larger
than the on-chip cache size, ORAM needs to be frequently
accessed for each record matching, which degrades perfor-
mance. It turns out that the DNA benchmark is more
compute bound (accesses ORAM less frequently) than the
DocDist benchmark. So DocDist is more sensitive to record
size change.

For the CBIR benchmark, there is no clear correlation
between input record (image) size and working set size. In
this case, the working set is determined by both the image
size and the number of features in the images. Therefore
CBIR is not shown in Figure 7.

ORAM Latency
Figure 8 shows the performance of the DocDist bench-

mark for two different ORAMs. The ORAM design of [27]
(denoted as slow ORAM in the figure) is compared to Path

0	

0.5	

1	

1.5	

2	

2.5	

250	 KB	 500	 KB	 1	 MB	 2	 MB	 4	 MB	

Sl
ow

do
w
n	
fa
ct
or
	 X
	

Record	 Size	

Performance	 vs.	 Record	 Size	

docdist	

dna	

Figure 7: Performance of Stream-Ascend for differ-
ent data record size, normalized to Oracle-Baseline.
1 MB cache size assumed.

ORAM. The access latency of the slow ORAM is 57708 cy-
cles as compared to 3752 for Path ORAM.

When working set fits in the on-chip cache, Stream-
Ascend completely removes the ORAM bottleneck. So per-
formance does not degrade even if the ORAM is much
slower. This fact makes Stream-Ascend very practical since
it does not require much from the ORAM subsystem.

When the working set does not fit in cache, performance
starts to degrade. However, Stream-Ascend is powerful
enough that it can handle this case gracefully especially
when Path ORAM is used.

7. RELATED WORK

7.1 Private Information Retrieval (PIR)
Private Information Retrieval (PIR), first proposed in [8],

considers a two party protocol where the server holds an n-

0	
2	
4	
6	
8	
10	
12	
14	
16	
18	
20	

250	 KB	 500	 KB	 1	 MB	 2	 MB	 4	 MB	

Sl
ow

do
w
n	
fa
ct
or
	 X
	

Record	 Size	

Performance	 vs.	 ORAM	 Latency	

slow	 ORAM	

path	 ORAM	

Figure 8: Performance of two different ORAM
configurations running Docdist. Slow ORAM is de-
scribed in [27].

bit string B = b1b2...bn and the user specifies a secret input
i. The user should only learn bi while the server learns
nothing about i.

Much previous work ([16, 7]) has investigated various as-
pects of PIR. Regardless, the PIR model is still very limited;
it only supports requiring data items though indexes. Com-
plicated query processing cannot be supported.

[16, 12] generalized PIR to support keyword search where
the user provides a keyword and the server returns the data
items that match this keyword. Still, this computation
model is very limited.

7.2 Private Stream Searching
[23] is the first paper to propose private stream searching.

[6] made optimizations to [23] and [5] evaluates the algo-
rithm on real applications. Private stream searching reads
in a stream of input data records, runs a query program on
each of them and decides whether to keep the record (write
to a buffer) or discard it. It employs a streaming model
similar to Stream-Ascend. It also provides a more general
computation model than PIR. However, existing schemes
require the program to be expanded into a circuit so loops
would be prohibitively expensive. This limits the generality
of this model. Furthermore, existing work in private stream
searching processes each record independently so aggrega-
tion of several data records are not possible (this can be
achieved with Stream-Ascend).

7.3 Tamper-Resistant Hardware
Many tamper-resistant hardware schemes have been pro-

posed and built in literature ([15, 19, 33, 11, 36, 29]). In this
setting, the private user query is run inside a secure hard-
ware compartment (typically a tamper-resistant processor
chip or board) on the server side that protects the user’s
private data while it is being computed upon.

Outside of Ascend ([11]), previous work assumes that the
query program is such that an adversary learns nothing
about the user’s query from the traffic on the processor’s
pins. This requires that the off-chip memory access sequence
of a query be independent of the query program’s input data,
and further, that the timing of memory requests is indepen-
dent of the input data. The user has to check that the query
program is written in such a way so as to not leak any in-
formation; most programs do not satisfy this property. A
malicious query program can easily leak information about
the query through memory traffic in [19, 33], for example.

The mechanisms proposed in this paper do not leak any
information through pin traffic. Though the mechanism can
be applied to any tamper-resistant hardware system, Ascend

was chosen for demonstration since Ascend requires the least
modification.

7.4 Secure Databases
Previous works on securing databases ([2, 4]) have pro-

posed using trusted hardware to compute critical stages in
query processing. [2] uses a trusted FPGA to do standard
database operations (e.g., filter, join, aggregate etc.) over
encrypted data. This line of work has two main limitations:
First, the type of queries supported is very limited. A user
cannot run complex data processing with the query. Second,
though the data a certain query operates on is encrypted,
the type of the query is leaked to the untrusted server.

Stream-Ascend, on the other hand, cannot efficiently sup-
port all kinds of database queries since not all of them
fit in the streaming model (e.g., index access). But com-
plicated data processing can be done in Stream-Ascend.
Stream-Ascend is also able to hide the query type sent to
the database which makes it more secure than previously-
proposed secure databases.

Finally, we believe Stream-Ascend can be properly inte-
grated with other secure databases to efficiently and securely
support all types of queries. This is left for future work.

8. CONCLUSION
We comprehensively studied the secure ways to inter-

act with a tamper-resistant hardware based system without
leaking information through chip pins. The proposed mech-
anisms are implemented on top of Ascend [11]. The resulting
architecture, Stream-Ascend, significantly generalized the
types of applications that can run on Ascend with small
performance overhead. In three typical benchmarks in the
large dataset processing domain, we showed that with smart
scheduling algorithms, the total performance overhead from
our system is less than 24.5% relative to an idealized inse-
cure baseline.

Acknowledgements
We thank Raluca Popa for her careful reading of an earlier
version of this manuscript.

9. REFERENCES
[1] Wikimedia data dumps.

http://meta.wikimedia.org/wiki/Database dump.

[2] A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Kossmann,
R. Ramamurthy, and R. Venkatesan. Orthogonal security with
cipherbase. Proc. of the 6th CIDR, Asilomar, CA, 2013.

[3] W. Arbaugh, D. Farber, and J. Smith. A Secure and Reliable
Bootstrap Architecture. In Proceedings of the 1997 IEEE
Symposium on Security and Privacy, pages 65–71, May 1997.

[4] S. Bajaj and R. Sion. Trusteddb: a trusted hardware based
database with privacy and data confidentiality. In Proceedings
of the 2011 international conference on Management of data,
pages 205–216. ACM, 2011.

[5] J. Bethencourt, D. Song, and B. Waters. New constructions
and practical applications for private stream searching
(extended abstract). In Proceedings of the 2006 IEEE
Symposium on Security and Privacy, pages 132–139,
Washington, DC, USA, 2006. IEEE Computer Society.

[6] J. Bethencourt, D. Song, and B. Waters. New techniques for
private stream searching. Technical report, Carnegie Mellon
University, March 2006.

[7] Y. C. Chang. Single database private information retrieval with
logarithmic communication. In ACISP, 2004.

[8] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private
information retrieval. In FOCS, pages 45–51, 1995.

[9] O. Chum, J. Philbin, and A. Zisserman. Near duplicate image
detection: min-hash and tf-idf weighting. In M. Everingham,
C. Needham, and R. Fraille, editors, BMVC 2008: Proceedings

of the 19th British Machine Vision Conference, volume 1,
pages 493–502, London, UK, 2008. BMVA.

[10] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual
models from few training examples: an incremental bayesian
approach tested on 101 object categories. In IEEE. CVPR
2004.

[11] C. Fletcher, M. van Dijk, and S. Devadas. Secure Processor
Architecture for Encrypted Computation on Untrusted
Programs. In Proceedings of the 7th ACM CCS Workshop on
Scalable Trusted Computing, pages 3–8, Oct. 2012.

[12] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword
search and oblivious pseudorandom functions. In Theory of
Cryptography, pages 303–324. Springer, 2005.

[13] O. Goldreich. Towards a theory of software protection and
simulation on oblivious rams. In STOC, 1987.

[14] O. Goldreich and R. Ostrovsky. Software protection and
simulation on oblivious rams. In J. ACM, 1996.

[15] D. Grawrock. The Intel Safer Computing Initiative: Building
Blocks for Trusted Computing. Intel Press, 2006.

[16] E. Kushilevitz and R. Ostrovsky. Replication is not needed:
Single database, computationally-private information retrieval.
In FOCS, pages 364–373, 1997.

[17] D. Lie, J. Mitchell, C. Thekkath, and M. Horwitz. Specifying
and verifying hardware for tamper-resistant software. In
Proceedings of the IEEE Symposium on Security and Privacy,
2003.

[18] D. Lie, C. Thekkath, and M. Horowitz. Implementing an
untrusted operating system on trusted hardware. In
Proceedings of the Nineteenth ACM Symposium on Operating
Systems Principles, pages 178–192, 2003.

[19] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz. Architectural Support for Copy
and Tamper Resistant Software. In Proceedings of the 9th Int’l
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-IX), pages
168–177, November 2000.

[20] J. R. Lorch, J. W. Mickens, B. Parno, M. Raykova, and
J. Schiffman. Toward practical private access to data centers
via parallel oram. IACR Cryptology ePrint Archive, 2012:133,
2012. informal publication.

[21] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. Int. J. Comput. Vision, 60(2):91–110, Nov. 2004.

[22] R. Ostrovsky. Efficient computation on oblivious rams. In
STOC, 1990.

[23] R. Ostrovsky and W. E. Skeith. Private searching on streaming
data. In Advances in Cryptology 96 CRYPTO 2005, volume
3621 of LNCS, pages 223–240, 2005.

[24] L. Ren, X. Yu, C. Fletcher, M. van Dijk, and S. Devadas.
Design space exploration and optimization of path oblivious
ram in secure processors. In Proceedings of the Int’l
Symposium on Computer Architecture, June 2013. Available
at Cryptology ePrint Archive, Report 2012/76.

[25] J. Renau. Sesc: Superescalar simulator. Technical report,
university of illinois urbana-champaign ECE department, 2002.

[26] L. F. G. Sarmenta, M. van Dijk, C. W. O’Donnell, J. Rhodes,
and S. Devadas. Virtual Monotonic Counters and
Count-Limited Objects using a TPM without a Trusted OS. In
Proceedings of the 1st STC’06, Nov. 2006.

[27] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious ram
with o((log n)3) worst-case cost. In Asiacrypt, pages 197–214,
2011.

[28] J. Sivic and A. Zisserman. Video google: A text retrieval
approach to object matching in videos. In Proceedings of the
Ninth IEEE International Conference on Computer Vision -
Volume 2, ICCV ’03, pages 1470–, Washington, DC, USA,
2003. IEEE Computer Society.

[29] S. W. Smith, D. Safford, and D. S. Ord. Practical private
information retrieval with secure coprocessors, 2000.

[30] E. Stefanov and E. Shi. Oblivistore: High performance
oblivious cloud storage. In Proc. of IEEE Symposium on
Security and Privacy, 2013.

[31] E. Stefanov, E. Shi, and D. Song. Towards practical oblivious
RAM. In NDSS, 2012.

[32] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu,
and S. Devadas. Path oram: An extremely simple oblivious ram
protocol. In Proceedings of the ACM Computer and
Communication Security Conference, 2013.

[33] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and
S. Devadas. aegis: Architecture for Tamper-Evident and
Tamper-Resistant Processing. In Proceedings of the 17th ICS

(MIT-CSAIL-CSG-Memo-474 is an updated version),
New-York, June 2003. ACM.

[34] G. E. Suh, C. W. O’Donnell, I. Sachdev, and S. Devadas.
Design and Implementation of the aegis Single-Chip Secure
Processor Using Physical Random Functions. In Proceedings of
the 32nd ISCA’05, New-York, June 2005. ACM.

[35] Trusted Computing Group. TCG Specification Architecture

Overview Revision 1.2.
http://www.trustedcomputinggroup.com/home, 2004.

[36] S. Wang, X. Ding, R. H. Deng, and F. Bao. Private information
retrieval using trusted hardware. In ESORICS, pages 49–64,
2006.

	Introduction
	Background
	Ascend Architecture
	Oblivious-RAM
	User-Ascend Interaction
	Ascend Limitations
	Two-Interactive Protocol
	ORAM scalability

	Interaction with Tamper-Resistant Hardware
	Streaming Model
	General Interaction Model
	Untrusted Server
	Tamper-Resistant Hardware

	Security of Interaction

	Stream Ascend
	Two-Interactive Protocol
	Architecture Overview
	The Front/Back End FIFO
	Multi-threading
	The Input/Output Thread
	The Application Thread
	Context Switch

	Other Optimizations
	Data Locality Optimizations
	Working Set Usually Fits in Cache

	Case studies
	Data Filtering
	Parameter Determination

	Large Dataset Processing
	STREAMint Determination

	Evaluation
	Methodology
	Comparison Points

	Application Case Studies
	Document Matching
	DNA Sequence Matching
	Content-Based Image Retrieval

	Performance Study
	Software Buffer Size
	Infinite Software Buffer
	Overhead Analysis
	Sensitivity Study

	Related Work
	Private Information Retrieval (PIR)
	Private Stream Searching
	Tamper-Resistant Hardware
	Secure Databases

	Conclusion
	References

