
Trapdoor Computational Fuzzy Extractors
and Stateless Cryptographically-Secure

Physical Unclonable Functions
Charles Herder, Ling Ren, Marten van Dijk, Meng-Day (Mandel) Yu, and Srinivas Devadas, Fellow, IEEE

Abstract—We present a fuzzy extractor whose security can be reduced to the hardness of Learning Parity with Noise (LPN) and can

efficiently correct a constant fraction of errors in a biometric source with a “noise-avoiding trapdoor.” Using this computational fuzzy

extractor, we present a stateless construction of a cryptographically-secure Physical Unclonable Function. Our construct requires no

non-volatile (permanent) storage, secure or otherwise, and its computational security can be reduced to the hardness of an LPN variant

under the random oracle model. The construction is “stateless,” because there is no information stored between subsequent queries,

which mitigates attacks against the PUF via tampering. Moreover, our stateless construction corresponds to a PUF whose outputs are

free of noise because of internal error-correcting capability, which enables a host of applications beyond authentication. We describe

the construction, provide a proof of computational security, analysis of the security parameter for system parameter choices, and

present experimental evidence that the construction is practical and reliable under a wide environmental range.

Index Terms—Fuzzy extractor, physical unclonable function, learning parity with noise, ring oscillators, physically obfuscated keys

Ç

1 INTRODUCTION

1.1 Background and Motivation

SILICON Physical Unclonable Functions (PUFs) are a prom-
ising innovative primitive that are used for authentication

and secret key storagewithout the requirement of secure mem-
ory or expensive tamper-resistant hardware [26], [53]. This is
possible, because instead of storing secrets in digital memory,
PUFs derive secrets from the physical characteristics of the
integrated circuit (IC). Silicon PUFs rely on the fact that even
though the mask and manufacturing process is the same
among different ICs, each IC is actually slightly different due
to normal manufacturing variability. PUFs leverage this vari-
ability to derive “secret” information that is unique to the chip
(a silicon “biometric”). Due to the manufacturing variability,
one cannotmanufacture two chipswith identical secrets, even
with full knowledge of the chip’s design. PUF architectures
that exploit different types of manufacturing variability have
been proposed. In addition to gate delay, there are PUFs that
use the power-on state of SRAM, threshold voltages, and
many other physical characteristics to derive the secret.

The (informal) requirements for a PUF are:

1) Upon being given a challenge, the PUF produces a
response, and no other data about the internal func-
tionality of the PUF is revealed.

2) Large enough challenge-response space such that an
adversary cannot enumerate all challenge-response
pairs within reasonable time.

3) An adversary given a polynomial number of
challenge-response pairs cannot predict the response
to a new, randomly chosen challenge.

4) Not feasible to manufacture two PUFs with the same
responses to all challenges.

These requirements correspond to what has been some-
times called a strong PUF in the literature.

The silicon PUF approach is advantageous over standard
secure digital storage for several reasons:

� Since the “secret” is derived from physical character-
istics of the IC, the chip must be powered on for the
secret to reside in digitalmemory. Any physical attack
attempting to extract digital information from the chip
thereforemust do sowhile the chip is powered on.

� Authentication of devices and secure communica-
tion to devices do not require embedding and per-
manently storing secrets in the devices. Devices
therefore do not require non-volatile memory, which
is more expensive and not available in all manu-
facturing processes. For example, EEPROMs require
additional mask layers, and battery-backed RAMs
require an external always-on power source.

PUFs can therefore serve as one way to address the
growing counterfeit electronics problem [29].

For authentication, PUFs usually adopt a simple chal-
lenge-response protocol. An entity, call it the verifier,
collects challenge-response pairs in a secure location
when in possession of the PUF. At any later point of
time, to authenticate a remote device, the verifier sends
a challenge to the device and asks for the response.1 If

� C. Herder, L. Ren, and S. Devadas are with the Computer Science
and Artificial Intelligence Laboratory, Massachusetts Institute of Tech-
nology, Cambridge, MA 02139. E-mail: {cherder, renling}@mit.edu,
devadas@csail.mit.edu.

� M. van Dijk is with the Electrical and Computer Engineering, University
of Connecticut, Storrs, CT. E-mail: martenvdijk@gmail.com.

� M.-D. (Mandel) Yu is with the R&D, Verayo Inc., San Jose, CA.
E-mail: myu@verayo.com.

Manuscript received 9 Aug. 2015; revised 4 Nov. 2015; accepted 18 Jan. 2016.
Date of publication 1 Mar. 2016; date of current version 18 Jan. 2017.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TDSC.2016.2536609

1. To defeat man-in-the-middle attacks, challenges should not be
repeated.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 1, JANUARY/FEBRUARY 2017 65

1545-5971� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

the response “matches” the stored response, verification
is successful, else it is not.

The simplicity and power of the above protocol motivated
the construction of many candidate silicon PUFs. We note
that the physical system and the protocol are both stateless
(i.e., store no data between subsequent queries and do not
require non-volatile digital storage). The stateless property
implies that there is no separate “provisioning” stage: the
interface exposed by the PUF is static, and any valid query
can bemade at any time. Unfortunately, none of the candidate
constructions have a proof of computational security, and fur-
ther, most, if not all, of them have been shown to be suscepti-
ble tomachine learning attacks (cf. Section 3). In the context of
stateless PUFs, Gassend et al. [26] write: “An important direc-
tion of research is to find a circuit that is provably hard to
break ...”. In this paperwe accomplish this objective.

1.2 Physically Obfuscated Keys

Physically Obfuscated Keys (e.g., [44]) predate silicon PUFs
and have sometimes been called weak PUFs in the litera-
ture. The (informal) requirements for a POK are less strin-
gent than the requirements for a PUF: (1) a small number of
challenge-response pairs, and (2) these responses are unpre-
dictable and depend strongly on the innate manufacturing
variability of the device.

Both PUFs and POKs rely on analog physical properties
of the fabricated circuit to derive secret information. Natu-
rally, these analog properties have noise and variability
associated with them. As environmental parameters vary,
so does the “digital fingerprint” measured by the PUF/
POK. If the parameters vary too much, the PUF or POK
response will change. In the PUF authentication protocol,
“matching” means the response stored by the verifier and
the regenerated response are within a chosen threshold.

If a POK’s responses are exposed, it can be easily cloned
by enumerating all challenge-response pairs and storing
them in a table. However, a PUF can be built using public
tamper-proof storage, error correction logic, cryptographic
primitives, and a POK as we describe below. Choose a POK
output or bits derived from the POK output during a provi-
sioning step as the secret key, and error correct the POK out-
puts when they are regenerated so the key is always the
same. Assuming the public helper data associated with the
error correcting code does not give away (too much) infor-
mation about the POK outputs and therefore the secret key,
one can use the secret key as one input to a one-way hash
function to build a PUF. This PUF is noise-free through error
correction using helper data that can be stored on the verifier
side. However, even when the helper data is stored off-
device, there is still a requirement for storage on the PUF
device for information-theoretically secure constructions.

The reason is subtle: generation of helper data can only
be done once or a limited number of times, because the
helper data leaks information about the POK outputs as
mentioned above. To repeatedly generate helper data an
arbitrary number of times under potentially different envi-
ronmental conditions where POK outputs change signifi-
cantly requires strong independence assumptions on POK
outputs. If these assumptions cannot be made, this provi-
sioning functionality needs to be turned off; else the system
can be broken. This implies an irreversible fuse, i.e., storage

that is tamper proof. Else, an attacker with physical access just
has to modify one bit of storage to potentially break the sys-
tem by rerunning the provisioning step, as opposed to hav-
ing to read volatile values in a stateless PUF.

1.3 Overview of Our Approach

In this paper, we show how to build a stateless PUF with a
computational security reduction. Our construction has
internal error correction, and therefore the PUF outputs will
be completely stable, assuming the error correction range
matches the requirement posed by environmental variation.
Our PUF therefore is a controlled PUF [25], which is much
more powerful than a conventional PUF that can only be
used for authentication (cf. Section 7.3.3).

We accomplish our task in two steps. First, by making an
assumption about the characteristics of the POK, namely,
that it can provide “confidence” information, we demon-
strate a computational fuzzy extractor that can correct OðmÞ
errors in polynomial time. The confidence information is
never stored or exposed, and can thus be viewed as a noise-
avoiding trapdoor.

Abstractly, confidence information can be thought of as
information measured from the POK in addition to the out-
put bits that represents which bits of the output have
higher/lower probability of error. This information is avail-
able from a large number of POK sources, since many sour-
ces define their output bits in terms of whether an analog/
digital value is greater/less than some threshold. In this
case, the confidence information would be the distance of
the analog/digital value from that threshold. One example
corresponds to simply making repeated measurements of a
POK (e.g., SRAM state [33]) and taking a majority vote to
produce a bit. The degree of majority would be the confi-
dence information. The most natural example that we know
of is the ring oscillator POK (cf. Section 2.1) used in our case
study (cf. Section 9), which produces bits based on the sign
of the difference of oscillator frequencies.

We stress that while previous constructions leveraging
confidence information published their confidence informa-
tion [13], [15], [46], [47] (which requires persistent memory
storage and also affects the information-theoretic security
argument) the confidence information in our construction is
not persistent; rather, it is regenerated on each key recovery
and then discarded. Our PUF remains stateless.

Second, we show given a POK, how to set up a restricted
version of a Learning Parity with Noise (LPN) problem
such that a sateless secure PUF is enabled. There are two
modes of operation for this PUF. The first is to generate a
challenge-response pair, and the second is to return a
response given a challenge. Using our error correction
scheme, all challenge-response pairs are reliable in that a
challenge contains necessary helper data for regeneration to
always reproduce the same response. We prove that the
stateless PUF protocol is secure under the random oracle
model given the hardness of LPN and the strong assump-
tion that the confidence information is independent of the
actual bit values. We then relax this assumption by aug-
menting the construction to selectively inject random noise
during challenge-response generation and show that this
construction requires a variant of LPN hardness assumption
under the random oracle model.

66 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 1, JANUARY/FEBRUARY 2017

1.4 Our Contributions

We defer a detailed comparison to prior work to Section 3,
and elaborate on our contributions below.

1) We propose a fuzzy extractor that is able to correct
QðmÞ errors in an m-bit POK output and recover an
n-bit key in polynomial time. Two novel ideas enable
this result.
� First, we take advantage of the confidence in-

formation as a trapdoor to a hard problem. The
confidence information is never stored; it is
regenerated (and may change on each key extrac-
tion) and then erased (cf. Section 4).

� Second, compared with traditional LPN/LWE
cryptosystems, we use the number of equations
m in a novel way—to provide redundancy—and

show that setting m ¼ Qðn2Þ results in a negligi-
ble failure probability for key recovery even with
QðmÞ errors (cf. Section 5).

2) LPN is hard given independent, identically distrib-
uted (i.i.d.) noise (which corresponds to POK bits in
our construction). To provide more flexibility with
respect to POK distributions, we give a reduction for
a large class of noise distributions that are signifi-
cantly more relaxed (cf. Section 6).

3) We provide stateless PUF constructions and show
that breaking the PUF requires breaking LPN or a
variant of LPN under the random oracle model (cf.
Sections 7 and 8).

4) We provide experimental evidence that our fuzzy
extractor and our PUF construction are efficient and
work under significant environmental variation (cf.
Section 9).

1.5 Organization

We give background for ring oscillator POKs and LPN in
Section 2. We discuss related work in Section 3. Section 4
describes how noisy POK outputs can be corrected securely
using a computational fuzzy extractor. We analyze the reli-
ability of key regeneration in Section 5, where we show that
the confidence information serves as a trapdoor. Section 6
gives a security analysis of our fuzzy extractor, relaxes the
assumptions on the POK bits, and also provides quan-
titative analysis on parameters. Section 7 gives formal def-
initions and our construction of a stateless PUF, with
the corresponding security proofs given in Section 8. We
show in Section 9 that our constructions can be efficiently
built using ring oscillator POKs. We conclude the paper in
Section 10.

2 BACKGROUND

2.1 Ring Oscillator POK

Following the formalization provided in [4], we first define
a Physically Obfuscated Key (POK) as a physical function
wherein there is only one challenge. A POK returns a
single m-bit response, denoted as e ¼ fe1; e2; . . . ; emg in
this paper.

If the POK response is completely stable across measure-
ments, then constructing a stable secret key or strong PUF
would be trivial: just use the POK output as the secret key.

Unfortunately, the POK response in practice will be slightly
different each time due to internal noise, i.e.,

e ¼ econst þ enoise;

where econst is the same for each call to the POK, and enoise is
sampled at random from some distribution over f0; 1gm.
Error-correcting the POK response to tolerate the noise is a
major challenge.

Our case study will be based on the Ring Oscillator (RO)
POK, which generates bits by comparing the frequencies of
two ring oscillators that are identical by design, yet whose
frequencies vary due to manufacturing variation. Each POK
output bit is simply determined by which oscillator is faster.
It was first observed in [57] that if the difference in counts
between the two ring oscillators is large, then one can have
higher confidence that environmental changes are unlikely
to cause the output bit to flip erroneously when measured
at a later time. This difference will be our confidence infor-
mation (cf. Fig. 1). While there have been improvements in
ring oscillator structures (e.g., [23]), our case study uses the
basic structure of Fig. 1.

2.2 Learning Parity with Noise

The Learning Parity with Noise problem is a famous open
problem that is widely conjectured to be hard [52], as the best
known algorithm is slightly subexponential (2Vðn=lognÞ) [5],
[8], [10], [30], [41]. As a result, this problem has since been
used as the foundation of several cryptographic primitives
[2], [3], [9], [34].

The problem is posed as follows. Let s 2 f0; 1gn be chosen
uniformly at random. Let A 2 f0; 1gm�n be uniformly ran-
dom,m � n. Let e 2 f0; 1gm be chosen from a distribution x.
Finally, define b 2 f0; 1gm (where � is a dot product) as:

b1 ¼ A1 � sþ e1 mod 2
b2 ¼ A2 � sþ e2 mod 2

..

. ¼ ..
.

bm ¼ Am � sþ em mod2:

Fig. 1. A basic Ring Oscillator POK with m differential pairs. Note that in
addition to the output bits ei, confidence values ci may be made avail-
able to the surrounding logic. These confidence values are in the form of
the actual differential count between the two ring oscillators, while the
POK output bits ei correspond to whether the differential count is
greater/less than 0.

HERDER ET AL.: TRAPDOOR COMPUTATIONAL FUZZY EXTRACTORS AND STATELESS CRYPTOGRAPHICALLY-SECURE PHYSICAL... 67

The problem is to learn s given only the values of b and
A. When each ei is distributed according to probability dis-
tribution x.

Conjecture 2.1 (LPN Hardness [34]). There is no algorithm
that solves an LPN problem instance ðA;b;xÞ, where s

and A are uniformly random, in time polyðn; 1=ð12� tÞÞ
with non-negligible probability in n, where x is an Ber-
noulli distribution with bias t.

The LPN problem can be thought of as a special case of
the Learning With Errors (LWE) problems discussed by
Regev [52], by allowing the equations to instead be modulo
a prime number q (as opposed to 2). However, Regev’s
reduction to the shortest independent vector problem
(SIVP) does not apply to the LPN case. Therefore, the diffi-
culty of solving LPN is a separate conjecture from the diffi-
culty of solving LWE. This paper will focus on a fuzzy
extractor and a stateless PUF based on LPN, but our con-
structions can be extended to the LWE case.

3 RELATED WORK

3.1 PUF/POK Proposals

Although many of the architectures that integrate POKs and
PUFs into existing IC technology are new, it should be noted
that the concepts of unclonability and uniqueness have been
used extensively in the past for other applications [37]. For
example, “Unique Objects” are well defined as objects with
a unique set of properties (a “fingerprint”) based on the
unique disorder of the object [53]. One example of early
reported usage of unique objects for security was proposed
for the identification of nuclear weapons during the cold
war [28]. One would spray a thin coating of randomly dis-
tributed light-reflecting particles onto the surface of the
nuclear weapon. Since these particles are randomly distrib-
uted, the resulting interference pattern after being illumi-
nated from various angles is unique and difficult to
reproduce. Unique objects were termed Physical One-Way
Functions and popularized in 2001 [50]. However, to our
knowledge, none of these proposals has an associated
computational security argument that shows hardness of
model-building or machine learning attacks.

Unlike the proposals described above, silicon PUFs,
introduced in [26], do not require an external measurement
apparatus. In the past several years, there have been several
proposals for candidate silicon PUF architectures. These
include the family of proposals corresponding to the Arbiter
PUF [27], feedforward Arbiter [43] and XOR Arbiter PUF
[57]. Machine learning attacks such as those of [54] and [6]
have successfully attacked these constructions to create soft-
ware clones. While other constructions using nonlinear cir-
cuit elements (e.g., [42], [40], [49]) have not yet been broken
to our knowledge, these constructions do not as yet have
clear computational security reductions.

3.2 Error Correction for Silicon POKs

Silicon POK key generation was first introduced using
Hamming codes in [24] and more details were presented
in [56]. The security argument is information-theoretic.
Specifically, if one requires a k-bit secret from n bits
generated by the POK, then at most n� k bits could be

exposed. The number of correctable errors is quite lim-
ited in this approach.

3.3 Fuzzy Extractors for Silicon POKs

Fuzzy extractors [21] convert noisy biometric data (either
human or silicon) into reproducible uniform random strings,
which can then serve as secret keys in cryptographic applica-
tions. Fuzzy extractors typically have two phases: a secure
sketch (error correction) phase and a privacy amplification
(hashing) phase. The secure sketch phase focuses on the
recovery of noisy dataw. It first outputs a sketch h (also called
“helper data”) forw. Then, given h and a futuremeasurement
w0 close to w, it recovers w. The sketch is secure if it does not
reveal much about w: w retains much of its entropy even if h
is known. This means that h can be stored in public without
compromising the privacy of w. However, in typical POK
applications,w does not have full entropy, sowe need the pri-
vacy amplification phase to compress w prior to obtaining a
cryptographic key. In the fuzzy extractor framework, it is
possible to extract near-full-entropy keys from a POK source
whilemaintaining information-theoretic security.

The information-theoretic security, however, comes at a
high cost in terms of the raw entropy required and the maxi-
mum tolerable error rate. The secure sketch phase is well
known to lose significant entropy from the helper data h,
especially as measurement noise increases. Even in cases
where entropy remains after error correction (e.g., [48]),
there is not enough entropy remaining to accumulate the
128-bits of entropy in an information-theoretic manner dur-
ing the privacy amplification phase. According to [38], the
entropy loss associated with the use of the information-
theoretic entropy accumulator alone is � 128 bits due to the
leftover hash lemma.

Works on fuzzy extractors for silicon POKs can be clas-
sified based on the additional assumptions they require:

Perfectly i.i.d. Entropy Source. There are several works that
created helper data that is information-theoretically secure.
[59] uses POK error correction helper data called Index-
Based Syndrome (IBS), as an alternative to Dodis’ code-
offset helper data. IBS is information-theoretically secure,
under the assumption that POK output bits are independent
and identically distributed (i.i.d.). Given this i.i.d. assump-
tion, IBS can expose more helper data bits than a standard
code-offset fuzzy extractor construction. Efficiency impro-
vements to IBS that maintained information-theoretic secu-
rity are described in [31] and [32].

A soft-decision POK error correction decoder based on
code-offset was described in [46], [47] where the confidence
information part of the helper data was proven to be
information-theoretically secure under an i.i.d., assumption
(the security of the remaining redundancy part associated
with the code-offset was not as rigorously addressed in
either paper).

We note that while these works created practical imple-
mentations based on a provably secure information-theoretic
foundation, they did not explicitly address the full key gen-
eration process (secure sketch + privacy amplification); they
addressed only the error correction (secure sketch) phase.
Further, they need the strong assumption on POK output
bits being i.i.d., which allows them to publicly reveal the
confidence information. Indeed, silicon biometrics are not

68 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 1, JANUARY/FEBRUARY 2017

necessarily i.i.d., and attacks have therefore been performed,
e.g., [7]. Our approach achieves the same advantage of using
confidence information, but it does not reveal this informa-
tion. Therefore, our proposal remains secure for non-i.i.d.
entropy sources (cf. Definition 6.1).

Computational security based on machine learning heuristics.
There were several works [51] [60] [61] that created helper
data that is heuristically secure based on results of state-of-
the-art machine learning attacks on PUFs [55]. These designs
used a candidate strong PUF based on XORs [57] but leak
only a limited number of PUF response bits as helper data to
generate a key. After several years of attacks by several
groups around the world [18], [35], [54], [55], [58], the basic
XOR PUF was “broken” in 2015 [6]. There has not been a
strong PUF architecturewith a reduction froma formal strong
PUF security definition (e.g., “strong unpredictability” in [4])
to a computational hardness assumption accepted by the
cryptography community. These works are also limited in
scope in that theydonot explicitly address the full key genera-
tion processing, but address only the error correction phase.

Secure sketch + privacy amplification. To the best of our
knowledge, there is one paper that attempted to implement
and address the security associated with both stages of a
POK fuzzy extractor [48]. The paper accounted for the infor-
mation-theoretic loss of the error correction helper data,
using code-offset syndrome [21], but did not have sufficient
entropy left over from the secure sketch phase to implement
an information-theoretically secure privacy amplification
stage and instead opted for a more efficient implementation
using a lightweight hash called SPONGENT [11] as an entropy
accumulator.

Under the assumption that confidence values are indepen-
dent of the measurement values, information-theoretically
secure extractors can also produce a stateless construction as
we do in Section 7. However, in our construction, we show
how this assumption can be relaxed through a computational
hardness assumption of a variant LPNproblem.

3.4 Computational Fuzzy Extractors

Fuller et al. [22] give a computational fuzzy extractor based on
LWE. In Fuller et al.’s scheme, the output entropy improves;
the error correction capacity, however, does not. Indeed,
Fuller et al. show in their model that secure sketches are sub-
ject to the same error correction bounds as information-
theoretic extractors. Their construction therefore requires
exponential time to correctQðmÞ errors, wherem is the num-
ber of bits output by the POK.

Fuller et al., expect that the exponential complexity in
correcting a linear number of errors is unlikely to be over-
come, since there is no place to securely put a trapdoor in
a fuzzy extractor. We recognize that certain kinds of silicon
biometric sources have dynamically regenerated confi-
dence information that does not require persistent storage
memory and can in fact serve as a trapdoor (cf. Sections 4
and 5). We show that security can be maintained even if
the bits generated by the biometric source are correlated
(cf. Definition 6.1).

3.5 Helper Data Manipulation

The issue of helper data manipulation has been addressed
with robust fuzzy extractors [14], [20]. Their use of a helper

data hash do not address recent helper data manipulation
attacks in [19], [36], including ones that take advantage of
the linear, bitwise-XOR nature of code-offset helper data as
applied to linear error correction codewords.

In the stateless PUF of Section 7, the helper data comprises
(part of) the challenge. Since in an LPN-based fuzzy extractor
the key is uncorrelated computationally to the helper infor-
mation, our scheme can authenticate the helper information
in a computationally secure manner via a keyed-hash mes-
sage authentication code such as HMAC [39]. This results in
schemes that are secure in a computational sense against
active adversaries that modify the helper data in our fuzzy
extractor or stateless PUF construction.

4 FUZZY EXTRACTOR USING LPN

This section considers how to reliably reconstruct a key s
from a noisy POK (or a noisy biometric source). We start
with the fuzzy extractor scheme described in [22], which
leverages LWE to extract a pseudorandom string from
fuzzy data. We will begin by translating that work from
LWE to LPN discussed in Section 2.2.

Construction 4.1. Let k be a security parameter, and let n ¼
polyðkÞ, and m � n. Define ðA;bÞ Genð1kÞ, and s
RepðA;bÞ as follows:

1: procedure ðA;bÞ Gen (1k)
2: Input e 2 f0; 1gm from the POK (modeled by some

distribution x over f0; 1gm).
3: Sample A 2 f0; 1gm�n uniformly at random.
4: Sample s 2 f0; 1gn uniformly at random.
5: Compute b ¼ A � sþ e.
6: return ðA;bÞ.
7: end procedure
1: procedure s Rep(A;b)
2: Input e0 2 f0; 1gm from the POK.
3: Let s ¼ DecodetðA;b; e0Þ.
4: return s.
5: end procedure

This construction is exactly analogous to Construction 4.1
of Fuller et al. [22], translated to LPN from LWE (all equa-
tions are mod 2 instead of mod q). Therefore, we state the
following theorem without proof, as it is analogous to Theo-
rem 4.7 of [22] except under the LPN hardness conjecture.

Theorem 4.2. Let k be a security parameter. If Conjecture 2.1
is true, then there is a setting of n ¼ polyðkÞ for which there
exists � ¼ negðkÞ such that the following is true: For any
randomized circuit size s ¼ polyðkÞ and t ¼ OðlognÞ bit
errors, Construction 4.1 is a ðf0; 1gm;x; n� oðnÞ; tÞ fuzzy

extractor that is ð�; sÞ-hard, with failure rate d ¼ e�VðkÞ (cf.
Definition 2.5 of [22]).

In the above construction, Decode keeps picking random
sets of n equations bi ¼ Aisþ ei and solves for s (see
Recovery in Algorithm 1 for details). If t ¼ OðlognÞ, Decode
succeeds with overwhelming probability after a polynomial
number of trials. We will now describe a new extractor algo-
rithm based on LPN that can correct QðmÞ errors in polyno-
mial time. Before presenting the extractor formally, we
present an intuitive description.

HERDER ET AL.: TRAPDOOR COMPUTATIONAL FUZZY EXTRACTORS AND STATELESS CRYPTOGRAPHICALLY-SECURE PHYSICAL... 69

Algorithm 1. The LPN Trapdoor Fuzzy Extractor
Algorithm.

1: procedure Fab(1k; d; h) // Represents the

fabrication step. It takes the security param-

eter k, the desired probability of recovery

failure d, a h term that characterizes correla-

tion in the POK bits (defined in Definition 6.1)

2: Select the size of the secret vector n for the desired secu-
rity level k based on h (details in Section 8).

3: Computem such that with probability greater than
1� �1, at least m

0 ¼ QðnÞ of the m POK bits are “stable”
over relevant noise/environmental parameters. Define
“stable” to be Prðe0i 6¼ eiÞ � �2. The choice of m0; �1; �2
along with other details will be presented in Section 5.

4: Manufacture POKs that each producem bits internally.
5: end procedure
6:
7: procedureðA;bÞ Gen (n) //Gen takes thesizeofthe

secret vectorn (calculated inFab)
8: Measure them POK bits as e ¼ fe1; e2; . . . emg.
9: Generate a uniformly random secret vector s 2 f0; 1gn.
10: Compute b ¼ A � sþ e.
11: Discard s and e.
12: Return b.
13: end procedure
14:
15: procedure T Project (c0) // Determines the “stable”

POK bitsto beused inRecovery.
16: Use measured confidence information c0i to find

m0 ¼ QðnÞ stable POK bits.
17: Let T be the set of these stable bits. Return T .
18: end procedure
19:
20: procedures Recovery (e0; T) // Represents the

augmented key recovery algorithm. In addition

to the noisy POK measurement e0, this function

also takes T, the set of stable bits in e0.
21: Randomly select n out of them0 stable bits.
22: Use Gaussian elimination to solve for s on the n selected

bits.
23: Check if bi ¼ Ai � sþ e0i on the remainingm� n

equations. An error rate of � 50% implies that the
derived s is incorrect. A significantly lower error rate
(e.g., 25%) indicates s is correct.

24: If s is incorrect, go back to step 21); else output s.
25: end procedure

4.1 Intuitive Description

Recall the description of the LPN problem in Section 2.2,
which is also depicted in Fig. 2. The above construction uses
the POK output as the ei values. Therefore, an adversary
learns the equations with probability of error being
Prðei ¼ 1Þ ¼ t, where t relates to the entropy of the POK.
Having access to the POK allows one to regenerate e0i,
where Prðe0i ¼ 1Þ ¼ t and Prðe0i 6¼ eiÞ ¼ t0 	 t. The regen-
eration is imperfect due to intrinsic noise of the POK as well
as environmental changes. The LPN problem remains hard
even for small t0 implying that key recovery will run in
exponential time for QðmÞ number of errors.

A critical enabling property of LPN/LWE is that if one
can identify any set of n bits that are correct (e0i ¼ ei),

then one can use Gaussian elimination to solve for s.
Therefore, our key intuition is that access to confidence
information during the regeneration of the POK bits helps
the extractor decide which bits are more likely to be sta-
ble (the set of stable bits may be different from mea-
surement to measurement). Then, Gaussian elimination is
performed on the set of equations corresponding to these
stable bits.

Of course, one must architect the system such that there
are enough stable POK bits during each measurement. To
this end, the LPN/LWE problem allows arbitrary redundancy
in the number of equations supplied. Therefore, we can sup-
ply enough equations such that with high probability (see
Section 5) the recovery succeeds.

Initially, this may sound similar to using the “mask” data
in some POK implementations. However, this approach is
fundamentally different and has superior security properties,
as we recognize the biometric source itself to be a hidden
trapdoor to a hard problem. The confidence information
is discarded after use and never exposed. The security proof
for this new construction will therefore be identical to that
of Construction 4.1, since the adversary receives identical
information.

4.2 Detailed Construction

In the following description, we will refer to the POK bits as
e ¼ fe1; e2; . . . emg, (ei 2 f0; 1g) and their noisy counterparts
(measured during response verification) as e0 ¼ fe01; e02; . . .
e0mg, (once again, e0i 2 f0; 1g). Moreover, the confidence
information associated with these noisy measurements will
be denoted as c0 ¼ fc01; c02 . . . c0mg, where c0i 2 Z (as shown
in Fig. 2).

We describe the algorithms associated with the key
extraction below. Typically, a fuzzy extractor, information-
theoretic or computational, has the functions Gen and Rep,
where Gen produces the public helper information, and
Rep takes the noisy biometric bits and public helper infor-
mation and returns the error-corrected key. This paper
expands this construction to include four functions in the
extraction process as shown in Algorithm 1.

Before looking into the effects of errors on Algorithm 1,
there are several notes to be made.

First, the Fab algorithm can be viewed as system design
steps that choose parameters for the desired security and
reliability. Project and Recovery together correspond to
Rep in a fuzzy extractor, and Recovery is exactly the same
as Decodet in Construction 4.1.

Fig. 2. Overview of LPN key extraction algorithm. The e0i values are
regenerated and the c0i values with high absolute value identify the e0i
with low probability of error (since c0i values don’t change dramatically
between measurements, and e0i ¼ Signðc0iÞ). Gaussian elimination is
then used on these selected equations to extract the secret key.

70 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 1, JANUARY/FEBRUARY 2017

Second, if the LPN problem is hard, then an adversary
in possession of ðA;bÞ cannot compute s as shown in Theo-
rem 4.2. Furthermore, due to the simultaneous hardcore bits
of s in the LPN problem, s has n� oðnÞ pseudorandom
bits [1].

Third, the matrix A can be made a public global system
parameter as opposed to per-device output to reduce helper
data size; this leaves b as the only per-device helper data.
This will be the same global A in the stateless PUF construc-
tion of Section 7, though there exists a much more funda-
mental security reason to make A global there.

Lastly, the confidence information c0i acts as a trapdoor
for identifying “stable” bits in key recovery. Therefore, the
key recovery algorithm is faced with a much easier problem
and can finish in polynomial time. This will be the focus of
the next section.

5 NOISE-AVOIDING TRAPDOORS

In Section 4, Project leverages confidence information that
a bit is regenerated correctly. This section will explore the
asymptotic noise tolerance and efficiency of our system,
and the required properties of the POKs (biometric source)
to provide confidence information.

ci are random variables representing the confidence
information of the ith POK bit at the time of initial
challenge-response generation. Next, c0i are random varia-
bles representing the confidence information of the ith POK
bit at some point in time later. We note again that confi-
dence data are extracted upon measurement of a POK bit,
and are never persistently stored.

Define the corresponding POK bit to be a random vari-
able ei ¼ SignðciÞ, and e0i ¼ Signðc0iÞ. Crucially, if the confi-
dence is high for a particular bit, Prðe0i ¼ eiÞ � 1.

To provide concrete analysis, we consider the proba-
bility distribution of the ci and c0i random variables, and
assume they follow the same zero-mean Gaussian with
variance sINTER, shown in Fig. 3. Note that this directly
implies that Prðei ¼ 1Þ ¼ t ¼ 1=2 for the LPN problem. In
actual physical systems, there will be a bias towards 1 or
0, but we will see that assuming a 0.5 bias represents a
“worst-case” from the standpoint of error correction. (Note

that we will use a different worst-case bias for other pur-
poses, e.g., to determine n given the security parameter
in Section 8.)

Now, given that ci and c0i represent the random variables
for measuring the same bit, the conditional distribution
Prðcijc0i ¼ cÞ is much narrower (where c is the actual mea-
sured value of c0i at regeneration). This distribution is mod-
eled to be a Gaussian distribution with mean c and variance
sINTRA, also shown in Fig. 3.

Also note that ci and c0i represent the same POK bit mea-
sured at different times, so they have the same distribution
(with no prior knowledge). Therefore, 8c, Prðcijc0i ¼ cÞ ¼
Prðc0ijci ¼ cÞ: In other words, one can use the confidence
information collected during the fabrication step to reason
about the probability of error at regeneration, or vice-versa.

We may now define the probability of error given confi-
dence information. Since ei ¼ SignðciÞ, we recognize that
the error probability given a measurement of the confidence
information is the integral of the shaded region in Fig. 3, in
particular, the CDF up to 0:

Prðe0i 6¼ eijc0i ¼ cÞ ¼ 1

2
1þ Erf � jcjffiffiffi

2
p

sINTRA

� �� �
: (1)

5.1 Fabrication/Provisioning

Fab must compute m such that with probability greater
than 1� �1, at least m

0 of the m bits will be stable. Recall a
random bit ei is defined to be stable if Prðe0i 6¼ eiÞ < �2 over
relevant environmental parameters.

To do this, we recognize that requiring Prðe0i 6¼ eijc0i ¼
cÞ < �2 sets a threshold cT on jcj in Equation (1). If for a par-
ticular bit jcj > cT , then the bit is stable. Plug these require-

ments into Equation (1) and solve for cT (define Erf�1 as the
inverse of Erf):

cT ¼
ffiffiffi
2
p

sINTRAErf
�1ð1� 2�2Þ: (2)

Therefore, the probability that a given bit is stable (has
jcj > cT) can be computed by integrating the PDF of Prðc0iÞ,
or equivalently PrðciÞ:

PST ¼ Prðjcij > cT Þ > 1� Erf
�
cT =ð

ffiffiffi
2
p

sINTERÞ
�
:

The inequality is because the probability of a bit being
stable is smallest when the bit bias is 0.5 (the Gaussian is
centered at 0). One can see that as the center of the Gauss-
ian shifts, more probability density falls in the region
of jcij > cT . Therefore, we know that the probability of a
stable bit can only be higher than our calculation here
expects.

Plugging in cT from Equation (2) gives:

PST > 1� Erf
sINTRA

sINTER
Erf�1ð1� 2�2Þ

� �
: (3)

The final step is to compute m such that at least m0 POK
bits will be stable with probability 1� �1. This is a bino-
mial distribution and is subject to a Chernoff bound.
Define X as the random variable for the number of sta-
ble bits observed.

Fig. 3. Distribution of confidence information for different POK bits when
measured repeatedly over time/environmental parameters. The magenta
curve corresponds to the distribution of confidence information across
different devices. The blue curve corresponds to the distribution of mea-
sured confidence information from the same device in different condi-
tions. We show the probability of error given a confidencemeasurement c
as the integral of the shaded region.

HERDER ET AL.: TRAPDOOR COMPUTATIONAL FUZZY EXTRACTORS AND STATELESS CRYPTOGRAPHICALLY-SECURE PHYSICAL... 71

PrðX � m0Þ � exp � 1

2
1� m0

mPST

� �2

mPST

 !
� �1:

Rearranging,

m � 1

PST
m0 � log ð�1Þ þ

ffi
log ð�1Þ log ð�1Þ � 2m0ð Þ

p� �
: (4)

Since PST is a function of �2, given m0, �1, and �2, one can
compute m such that at least m0 of the POK bits are stable
with probability 1� �1, as is required.

5.2 Projection/Extraction and Showing
the “Trapdoor”

The extension of the above analysis to the Project algo-
rithm is comparatively simple. Project simply selects a set
T of m0 ¼ QðnÞ bits that have measured confidence c0i ¼ c
where jcj > cT . Because of the Fab algorithm, we can be
confident that we will find m0 such bits with overwhelming
probability.

We need “truly stable” bits to perform Gaussian elimina-
tion, but the bits in T defined above only guarantee Prðe0i 6¼
eijc0i ¼ cÞ < �2 (i.e., likely correct but not certainly). Define t0

as the number of bits that are not truly stable in T . If we set
�2 ¼ Qð1=nÞ, then Eðt0Þ ¼ Qð1Þ, and a Chernoff bound gives

Pr t0 > alognð Þ < e�Qðlog
2nÞ: So t0 ¼ oðlognÞ with over-

whelming probability.
InRecovery, we randomly select n out of them0 bits to per-

form Gaussian elimination. If the n selected bits are all “truly
stable,” Gaussian elimination on themwill yield the correct s
andRecovery succeeds. The above probability is given by

m0�t0
n

� �
m0
n

� � > 1� t0

m0 � n

� �n

� exp � nt0

m0 � n

� �
¼ 1

polyðnÞ :

Therefore, after polyðnÞ number of iterations, Recovery finds
the correct s with overwhelming probability. The overall
failure probability—accounting for all types of failures (have
less than m0 stable bits, t0 ¼ vðlognÞ, or fail to select n truly
stable bits in all iterations)—is at most �1 þ ð1� �1ÞneglðnÞ.
We can set �1 ¼ Qð2�nÞ to get overall negligible failure
probability.

We remark again that without the confidence trapdoor,
the LPN hardness states exactly that it is infeasible to com-
pute s in polynomial time with non-negligible success prob-
ability. Therefore, while an adversary requires exponential
time to calculate s, the owner of the fuzzy extractor requires
only polynomial time. This is the definition of a trapdoor.

5.3 Settingm

We have set �1 ¼ Qð2�nÞ, �2 ¼ Qð1=nÞ and m0 ¼ QðnÞ.
To compute m from Equations (3) and (4), we need to char-
acterize sINTRA=sINTER, which decides PST.

Define sr ¼ sINTRA=sINTER. We first consider a worst-case:
sr ¼ 1. In this case, Equation (3) reduces to PST ¼ 2�2. Plug
them into Equation (4), and one obtains:

m ¼ 1

2�2
m0 þ nþ

ffi
nðnþ 2m0Þ

p� �
¼ Q n2

� �
:

In reality, the ratio sr < 1, so the hidden constant in Qðn2Þ
is small, as will be seen in Section 9.

5.4 Improving on the Trapdoor

The above asymptotic result will be improved if we assume
sr ¼ oð1Þ. For example, let us pick sr such that PST is
asymptotically constant.2

To accomplish this, recognize that Erf�1ð1� 2�2Þ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�log ð�2Þ
p

as �2 ! 0 [16]. Therefore, if sr � c=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�log ð�2Þ

p
for some constant c, then PST � 1� ErfðcÞ for all n, and
thereforem ¼ QðnÞ.

Note that the bound of sr � c=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�log ð�2Þ

p
is very close to

constant. For example, set c ¼ 1 and �2 ¼ 1=n. For n ¼
128; 256, we find sr < 0:45; 0:42, respectively.

Finally, consider the effect of sr � c=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�log ð�2Þ

p
on the

number of correctable errors of the fuzzy extractor. Integra-
tion of the conditional probability distribution in Equation (1)
(cf. Fig. 3) results in the associated marginal distribution (the
error probability):

Prðe0i 6¼ eiÞ ¼ 1

2
� 1

p
tan �1ð1=srÞ:

A constant sr as in the previous subsection clearly
implies QðmÞ errors. For sr ¼ oð1Þ, Prðe0i 6¼ eiÞ ¼ QðsrÞ as
sr ! 0. This implies that with m ¼ QðnÞ one can no longer
correct QðmÞ errors asymptotically; instead, the maximum
number of correctable errors is OðmsrÞ. For practical key
sizes the impact on error correction is minimal.

6 LPN FUZZY EXTRACTOR SECURITY ANALYSIS

AND ASSUMPTIONS

The proof of security for an LPN fuzzy extractor using confi-
dence information is identical to Theorem 4.2. This is
because the additional confidence information (which may
or may not be correlated with the actual value of the POK
bit) described in Section 5 that is used to help extract the
key is never revealed.

6.1 Assumptions on POK Outputs

The POK outputs are used as the noise term in the LPN
problem, and our fuzzy extractor construction is secure if
the POK outputs are i.i.d. We now provide a significantly
relaxed definition of POK source entropy under which the
fuzzy extractor construction remains secure. In particular,
the following definition describes the class of sources that
are secure with LPN and hence our fuzzy extractor.

Definition 6.1. Define a set of L different m-bit entropy sources
whose probability distribution may be constructed in the fol-
lowing way:

1) Begin with a set X of m� L bits that are i.i.d. with
PrðXi ¼ 1Þ ¼ h, 1 > h > 0.

2) Select a set of affine linear transformations F ¼ fF0;
F1; . . . ; Fkg (where F ðXÞ ¼M �X þN for some
mL�mL full rank matrix M, and mL-dimensional

2. Note that one can make �2 ¼ Qðlog ðnÞ=nÞ and still brute-force cor-
rect in polynomial time. This does not impact the asymptotic analysis
later in this section, so we ignore it.

72 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 1, JANUARY/FEBRUARY 2017

vector N). Select a k-bit string f according to an arbi-

trary distribution over f0; 1gk that can be sampled in
polynomial time.

3) Return F
fk
k ðFfk�1

k�1 ð� � �Ff1
1 ðFf0

0 ðXÞÞ � � �ÞÞ, where F 1
i ¼Fi

andF 0
i is the identity transformation.

This distribution is clearly much more general than an
i.i.d. distribution, as it allows for certain bits from the
same/different entropy sources to be correlated. For exam-
ple, consider the ith bit of LPN problem A, and the jth bit
of LPN problem B—this distribution can support a non-
zero correlation coefficient between these bits, namely,
CorrðeA;i; eB;jÞ. However, it is tighter than min-entropy, as
min-entropy allows for individual bits to be “stuck” at one
or zero. In this distribution, bits cannot be perfectly corre-
lated (e.g., CorrðeA;i; eB;jÞ ¼ 1). We will see that h in effect
sets the “maximum correlation”, and h (as well as 1� h)
must not be 0 or negligible in the security parameter.

Note also that knowledge of which bits are correlated is
public (it is assumed that the adversary knows the transfor-
mations that are applied). Furthermore, note that the set of
bits X is the set of bits across different sources. For this dis-
cussion, each source hasm bits. If there are L different sour-
ces, then X is the set of all L�m bits. As a result,
correlations between bits on different sources is allowable
in the definition. Under this assumption, Lemma 6.2 proves
the security of the system.

Lemma 6.2. If the entropy sources for a collection of LPN fuzzy
extractors have a joint distribution that can be described by
Definition 6.1 for some h, then an algorithm that can extract s
from any of the fuzzy extractors in polynomial time with non-
negligible advantage can be used to solve the traditional LPN
problem with bias h in polynomial time with non-negligible
advantage.

Lemma 6.2 can be proved by recognizing that a set of
LPN problems with i.i.d. bits for their ei values can be con-
verted into a collection of LPN problems with bits described
by Definition 6.1 by probabilistically applying the identified
sequence of linear transformations F to their public keys
ðA;bÞ. The proof is given:
Proof. Consider a collection of L different m-bit entropy

sources. LetX be the set of allm� L bits, and let the joint
distribution of X be described by Definition 6.1. Specifi-
cally, Definition 6.1 takes several parameters. Let the ini-
tial bias be h. Let F ¼ fF0; F1; . . . ; Fk; . . .g be the set of
affine transformations. Let P ¼ fP0; P1; . . . ; Pk; . . .g be the
set of random bits that determines which subset of Fi are
applied. Let P have some joint distribution. The defini-
tion states that we can sample from this distribution in
polynomial time.

Now, consider the set of L corresponding LPN prob-
lems (each using a distinct set of m bits from X as its ei
values). Let adversary A take as argument the public

parameters of this set of LPN problems: ðAj
i ;b

j
iÞ, for i

from 1 to m (there are m equations in a single LPN prob-
lem), and j from 1 to L (the set of L LPN problems).
Assume that there exist parameters h, F , and a distribu-
tion over P such that A calculates at least one of the
secret keys of the set of LPN problems with non-
negligible probability.

Using A, we construct algorithm B that takes as argu-
ment the public parameters of L different LPN problems
whose ei bits are i.i.d. with bias h. B will return the secret
vector of at least one of the LPN problems with non-
negligible probability.Note thatB is equivalent to breaking
the LPNproblem, as each LPNproblem is independent.

First, consider a single LPN problem where A ¼ fA1;
A2; . . . ;Amg, b ¼ fb1;b2; . . . ;bmg, e ¼ fe1; e2; . . . ; emg,
and bi ¼ Ai � sþ ei. The bits ei have some distribution.
The key recognition is that the act of applying an affine
transformation to the set of bits e is equivalent to apply-
ing the same transformation to A and b. If one wants to
transform the distribution by applying F ðeÞ ¼M � eþN
(M is an m�m dimensional matrix and N is an
m-dimensional vector), then one can derive a different
LPN problem:

F ðbÞi ¼F ðA � sþ eÞi
ðM � bþNÞi ¼ðM �AÞi � sþ F ðeÞi

Problem1 :

b1
1 ¼ A1

1 � s1 þ e11
b1
2 ¼ A1

2 � s1 þ e12

..

.

b1
m ¼ A1

m � s1 þ e1m

8>>>>><>>>>>:

Problem2 :

b2
1 ¼ A2

1 � s2 þ e21
b2
2 ¼ A2

2 � s2 þ e22

..

.

b2
m ¼ A2

m � s2 þ e2m

8>>>>><>>>>>:
..
.

L Problems:

(5)

By setting b0 ¼M � bþN and A0 ¼M �A, we have a
new LPN problem: b0i ¼ A0i � sþ e0i, where e0i ¼ F ðeÞi.
By modifying only the public parameters, we have trans-
formed the distribution of ei by an affine transformation.

We generalize this to multiple LPN problems by recog-
nizing that the above technique can be applied to the set of
equations that comprise multiple LPN problems by sim-
ply concatenating the vectors, resulting in Equation (5).

Now, we recognize (where j is concatenation) that to

transform a set of problems with e1je2j . . . eL into a set of

problems with F ðe1je2j � � � eLÞ, one can simply concatenate
the aforementioned equations (note thatM is now anmL�
mL sizedmatrix, andN is a vector of dimensionmL):

b01jb02j � � �b0L ¼M � ðb1jb2j � � �bLÞ þN

A01jA02j � � �A0L ¼M � ðA1jA2j � � �ALÞ:
We now return to the discussion of algorithm B. The
algorithm B is the probabilistic application of the above
fact multiple times. The steps of B are as follows:

1) Sample pi from the distribution of each Pi.
2) Set bTOT ¼ b1jb2j � � �bL.
3) Set ATOT ¼ A1jA2j � � �AL.

HERDER ET AL.: TRAPDOOR COMPUTATIONAL FUZZY EXTRACTORS AND STATELESS CRYPTOGRAPHICALLY-SECURE PHYSICAL... 73

4) For j from 0 to k, define FjðxÞ ¼Mj � xþNj. If
pj ¼ 1, set bTOT ¼Mj � bTOT þN , and set ATOT ¼
M �ATOT. Otherwise, do nothing.

5) Call A using the newly created public parameters
for the set of LPN problems. Return the secret vec-
tor that A computes.

The final value of the public parameters corresponds
to a set of LPN problems where the statistics of eji are
equal to those that can be solved by A, and we obtained
this problem by modifying bits of the public parameters
only. Moreover, since the matrix M in each transforma-
tion is full rank, the original secret vectors remain the
only solutions to the new LPN problems. Therefore, if A
exists, and recovers at least one s with non-negligible
advantage, then B can output that s to break the i.i.d.
LPN problem with bias h. This is a contradiction if LPN
is hard, so A cannot exist. tu
Note that the key step in the above algorithm is that B

applies the affine transformation to the public parts of the
set of LPN problems. This operation produces a new set of
LPN problems that are statistically identical to LPN problems
with correlated noise bits, while the secret vectors remain
the only solutions.

Also note that a corollary of Lemma 6.2 is that n� oðnÞ
bits of s are pseudorandom, even in the presence of corre-
lated bits of e. This is due to the fact that LPN’s secret has
n� oðnÞ simultaneous hardcore bits [1] and is proven for
uncorrelated LWE in [22]. The proof is similar for the corre-
lated LPN construction, as it is independent of the transfor-
mations performed in Lemma 6.2.

6.2 Security Parameter Derivation

The security goal is that an adversary given helper data
must perform Vð2kÞ operations (k is the security parameter)
to discover the secret key. We show below that for our sys-
tem a key size of n ¼ 128 results in a security parameter of
k ¼ 128 against the best known attacks. The equality of key
size and security parameter is unusual for security cons-
tructions with formal hardness reduction, and is especially
unusual for LPN cryptosystems.

There are two key factors enabling this property. First,
recognize that typical LPN-based cryptosystems must have
a low error rate (e.g., t ¼ Prðei ¼ 1Þ ¼ 0:0024 [17]) to ensure
correct decryption/verification. We, on the other hand, do
not use any LPN encryption/decryption algorithm, and
therefore do not have the same restriction on t. In fact, we
would like t to be 0.5, representing full entropy in the POK
data. However, real POK data is not ideal and may not have
full entropy. To be conservative, we pessimistically assume
t ¼ h ¼ 0:4 and that the POK bits are correlated in a way
that LPN is still hard (formalized in Definition 6.1 and
Lemma 6.2).

The second factor is that number of equations in our
construction is limited to m 2 Oðn2Þ. Current best LPN
algorithms are based on the BKW algorithm [10], which

requires m ¼ 2Oðn=lognÞ. In order to successfully attack the
LPN fuzzy extractor, one would have to use the technique

from Lyubashevsky [45], which works with m ¼ Oðn1þ�Þ
equations, but immediately increases the runtime to

2Oðn=log lognÞ.

The idea of Lyubashevsky’s algorithm is to generate
more equations from the given m ¼ Oðn1þ�Þ equations,
increasing the noise rate to

tL ¼ 1

2
� 1

2

1� 2t

4

� � 2n
�logn

; (6)

and then using other LPN algorithms, such as BKW [10],
LF1, LF2 [41] as a black box with the increased error rate.

For m ¼ Qðn2Þ (� ¼ 1), n ¼ 128 and t ¼ 0:4, tL ¼ 1
2� 1:31�

10�48.
The recent analysis from [12] shows that the LF1, LF2

algorithms empirically have the best performance in the
limit of high noise (tL ! 0:5). Table 1 compares BKW, LF1,
LF2. Note that each of the above algorithms performs worse
than brute-force or does not succeed at all. Therefore, we
take n ¼ 128 for a security parameter of k ¼ 128.

7 STATELESS PUF CONSTRUCTION

7.1 Stateless PUF Definition

A Stateless PUF is a pair of functions PUF ¼ fGenPOK;
VerPOKg with access to a POK, where GenPOK is responsible
for generating and outputting challenge-response pairs,
while VerPOK takes a challenge as input, and outputs a
response. The intent is for GenPOK to be called multiple
times by a verifier over a secure channel to obtain a collec-
tion of challenge/response pairs. At a later time, the verifier
will send one of these challenges to the PUF over an inse-
cure channel, to which the PUF must generate the correct
response. A challenge-response pair therefore can only be
used once by VerPOK.

Definition 7.1. A ðm;xÞ stateless PUF is a pair of randomized

probabilistic polynomial time procedures fc; rg GenPOKð1kÞ,
and r VerPOKðcÞwhere
� The challenge-response generation algorithm

GenPOKð1kÞ takes as argument the security parameter
k. It returns a challenge-response pair fc, rg, with
c; r 2 f0; 1g
 and jcj; jrj 2 polyðkÞ. The subscript POK
corresponds to the POK contained within the PUF.
That is, each PUF manufactured will have a unique
POK according to distribution x over f0; 1gm due to
manufacturing variation.

� The verification algorithm r VerPOKðcÞ takes as
input a challenge c, and returns the corresponding
response r. Again, POK refers to the unique POK con-
tained within the PUF.

TABLE 1
Comparison of Performance of LPN Algorithms against

an LPN Fuzzy Extractor with tL ¼ 1
2� 1:31� 10�48, n ¼ 128

Time
Complexity

Security
Parameter

BKW nað2bþ1ð1� 2tLÞ�2
a
ln b

u

� �þ ða� 1Þ2bÞ 2247

LF1 b2b þ nað8 ln ð2b
u
Þð1� 2tLÞ�2

a þ ða� 1Þ2bÞ 2135

LF2 3 � 2bnaþ b2b N/A

Set u ¼ 1=3 to achieve 50 percent success probability [12]. The security param-
eter is taken for optimal choices of a, b (not shown). The security parameter of
LF2 is N/A, because there is no setting of parameters that results in the algo-
rithm converging.

74 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 1, JANUARY/FEBRUARY 2017

Nowwe define the security of the Stateless PUF (s� uprd
refers to “strong unpredictability” as defined in [4]).

Definition 7.2 (Stateless PUF Strong Security). A stateless
PUF is �-secure with error d if Pr fc; rg GenPOKð1kÞ : r ¼

	
VerPOKðcÞ� > 1� d and for all PPT A, Advs�uprdPUF ðAÞ < �,
which is defined in terms of the following experiment.

1: procedure Exps�uprdPUF (A)
2: Make polynomial queries to GenPOKð�Þ;VerPOKð�Þ
3: if A returns fr; cg such that:

� GenPOK did not return fr; cg.
� VerPOKðcÞ ¼ r.

4: then return 1
5: else return 0.
6: end procedure

The s� uprd advantage of A is defined as

Advs�uprdPUF ðAÞ ¼ Pr
	
Exps�uprdPUF ðAÞ ¼ 1

: (7)

While other formalizations of PUF system security have
been proposed [4], ours is slightly different in that in the
above case, there is no distinction between helper data and
challenge data. Moreover, the PUF is responsible for gener-
ating both the challenge and the response for the verifier to
use later.

One key recognition in the above definition is that there
is no provisioning stage. The algorithms GenPOK and VerPOK

may be called in arbitrary order as many times as required.
Put differently, there is no stage at which a secret is pro-
grammed into the device or an irreversible operation is per-
formed on the device. This is critical, as the overall system
can therefore be stateless, and not have to have any addi-
tional protections against adversaries attempting to break
the provisioning logic of the device.

The formalism of manufacturing unclonability remains
the same as that put forth in [4].

7.2 Our Construction

We provide concrete constructions for GenPOK and VerPOK

below, which are also illustrated in Fig. 4.

Construction 7.3 (LPN Stateless PUF). Let k be a security
parameter, with m;n 2 polyðkÞ, and m > n. Let A 2
f0; 1gm�n be a uniformly random but constant and publicly
known matrix row-indexed by i from 1 to m. Let both algo-
rithms have access to the random oracleHð�Þ.

1: procedure ffb;Dbg;Dsg GenPOK(1

k)
2: Generate s 2 f0; 1gn uniformly at random.
3: Regenerate e 2 f0; 1gm from POK.
4: Compute b ¼ A � sþ e.
5: return ffb; Hðs;bÞg; HðsÞg.
6: end procedure
1: procedure Ds VerPOK (fb;Dbg)
2: Regenerate e0; c0 from POK.
3: Run Recovery (Section 4) to extract s from b.
4: Verify thatDb ¼ Hðs;bÞ, else return ?.
5: returnHðsÞ.
6: end procedure

Note that the above construction requires both internal
randomness as well as a random oracle.

7.3 Remarks

7.3.1 Blocking Malicious Challenges

We have included a binding Hðs;bÞ in the challenge-
response generation, and let VerPOK check if Db ¼ Hðs;bÞ
before returning a response. This is important, as Definition
7.2 allows for active adversaries. Without this check, an
attacker can trivially win the security experiment by return-
ing an output b by GenPOK with one bit modified; the modi-
fied bit is likely not used in the recovery of s at all, and
VerPOK will accept, trivially violating strong unpredictabil-
ity. With this check, if s is recovered correctly, any modifica-
tion to bwill be detected with overwhelming probability.

7.3.2 Hash Function Requirements

Hð�Þ is a random oracle that is well-approximated by the
SHA-256 or SHA-3 hash functions, which we denote H 0ð�Þ.
We require H 0 to be one-way, since we are exposing H 0ðsÞ.
To ensure that an adversary cannot impersonate a PUF, we
require non-malleability ofH 0. That is, the adversary should
not be able to generate H 0ðs1 þ DsÞ given H 0ðs1Þ and Ds.
These properties are required because of the use of Hðs;bÞ
in the construction.

7.3.3 Controlled PUF

We have described a “vanilla” scheme for authentication
where responses are returned in the clear when challenges
are applied. However, all the controlled PUF (CPUF)

Fig. 4. Stateless PUF construction. Note that GenPOK and VerPOK can be
called any number of times in any order. The PUF does not retain any
state across invocations.

HERDER ET AL.: TRAPDOOR COMPUTATIONAL FUZZY EXTRACTORS AND STATELESS CRYPTOGRAPHICALLY-SECURE PHYSICAL... 75

protocols of [25] with small modifications are enabled by
our construction. Briefly, the verifier obtains a single chal-
lenge-response pair securely, i.e., no eavesdroppers, as
before. When the PUF receives a challenge, it does not
return the response, but merely generates it internally and
bit-exactly. Now, the verifier who knows the response, can
use it as a shared secret for repeated nonce-based authenti-
cation or secure communication. Other verifiers can use
completely different shared secrets.

8 STATELESS PUF SECURITY ANALYSIS

AND ASSUMPTIONS

In the Stateless PUF construction, GenPOK is run multiple
times with roughly the same noise term e ¼ econst þ enoise.
This deviates from the LPN problem, where the noise term
for each equation is required to be independent. Therefore,
we will need additional assumptions. We begin by showing
a reduction from our construction to LPN, assume that the
confidence information (i.e., bias of enoise) is independent of
the actual measurement of the constant component econst. This
assumption is equivalent to requiring the POK have inde-
pendent noise. As discussed in Section 3, this assumption is
strong, and not necessarily representative of actual POK
behavior. Therefore, we then relax this assumption in Sec-
tion 8.2 on the POK distribution and show that our con-
struction can be reduced to a new conjecture we call Partial-
Error-Reuse LPN (PER_LPN, cf. Conjecture 8.4), which says
informally that LPN is hard even when part of the error bits
are reused.

8.1 Reduction to LPN Assuming Independence
Between Confidence and econst

We start by noting that in order for the construction to
reduce to LPN, GenPOK must use the same matrix A on
every query to it. Otherwise, an adversary receives two sets
of equations with the same e (we do not want to rely on the
small noise enoise in POK output for security),

b ¼ A � sþ e mod 2;

b0 ¼ A0 � s0 þ e mod 2:

The adversary can add up the equations mod 2, thereby can-
celing out the e terms, and trivially recovers both s and s0.
However, we will show in Lemma 8.2 that if the A matrix is
the same for the different secrets, discovering any individ-
ual secret requires breaking standard LPN. Intuitively, this
means access to GenPOK does not help the adversary.

Next we show that access to VerPOK does not help an
adversary.

Lemma 8.1. Given an adversary A that has non-negligible

Advs�uprdPUF ðAÞ, there exists an algorithm B that makes no

queries to VerPOK and still has non-negligible Advs�uprdPUF ðBÞ.
Proof. Let algorithm B run A, simulating calls to GenPOK,

VerPOK with the following GenB;POK and VerB;POK:
Responses ofGenPOK are faithfully relayed toA after being
recorded. Queries to VerPOK are simulated by always
returning ? (unless the query is made with an output of
GenB;POK, inwhich case the recorded value is returned).

1: procedure ffb;Dbg;Dsg GenB;POK (1k)

2: Run ffb;Dbg;Dsg GenPOKð1kÞ.
3: Store ffb;Dbg;Dsg to table T .
4: return ffb;Dbg;Dsg.
5: end procedure
6: procedure Ds VerB;POK (fb;Dbg)
7: if fb;Dbg 2 T then returnDs.
8: else return ?.
9: end if
10: end procedure

By definition, A generates with non-negligible prob-
ability a query for which VerPOK would not return ?.
Therefore, A can distinguish VerB;POK from VerPOK.
However, regardless of this fact, A must always emit
at least one query to VerB;POK for which VerPOK would
not return ?.3

Given that A makes at most a polynomial number of
queries to VerB;POK, B may choose any of the queries
made byA toVerPOK at random and have a non-negligible
advantage of returning the “correct” query that would be
accepted by VerPOK. Therefore, B has non-negligible

Advs�uprdPUF ðBÞ. tu
Now we present the security reduction to LPN.

Lemma 8.2. Let k be a security parameter, n ¼ polyðkÞ, and
m � n. If Conjecture 2.1 is true, there is no PPT A that has

advantage Advs�uprdPUF ðAÞ non-negligible in k.

Proof. Assume that a PPT algorithm A has non-negligible
advantage in the experiment in Definition 7.2. Accord-
ing to Lemma 8.1, there exists a PPT algorithm B that
has non-negligible advantage in the experiment without
making queries to VerPOK. Using B, we will construct
an algorithm C that violates the hardness Conjecture 2.1.

Algorithm C takes as input a random LPN problem
ðb;AÞ, where A 2 f0; 1gm�n, b 2 f0; 1gm, and b ¼ A�
sþ e, where s 2 f0; 1gn is uniformly random, and e is
chosen according to distribution x. While in standard
LPN, x represents an i.i.d. distribution of m bits, the
reduction here also applies to the correlated LPN in
Lemma 6.2.

When B makes calls Hð�Þ, C faithfully returns the out-
put of Hð�Þ, but records all queries to and responses from
Hð�Þ. When B makes calls to GenPOK, C responds using
the following simulated version GenC;POK:

1: procedure ffb0;D0bg;D0sg GenC;POK (1k)

2: Generate uniformly random Ds.
3: b0 ¼ bþA � Dsþ enoise ¼ Aðsþ DsÞ þ eþ enoise
4: Uniformly generate U1; U2 2 f0; 1gl.
5: Insert ffb0; U1g; U2g into a local table T .
6: return ffb0; U1g; U2g.
7: end procedure

The output b0 by GenC;POK corresponds to the LPN
problem with the random secret ðsþ DsÞ, and is indistin-
guishable from the output of GenPOK. Note that the

3. After this query, A may have “distinguished” that it is querying
VerB;POK instead of VerPOK, so the behavior of A is undefined.

76 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 1, JANUARY/FEBRUARY 2017

added enoise models the noisy POK output.4 Assume
enoise does not depend on the constant component of
the noise term (e here), so C can sample the confidence
information from Nð0; sINTERÞ, and then sample enoise
from Nðc; sINTRAÞ on its own according to the distribu-
tions in Fig. 3. Note that this implies that the POK
noise is i.i.d.

Furthermore, sinceHð�Þ is a random oracle, the output
U1; U2 by GenC;POK are computationally indistinguish-
able from Db;Ds by GenPOK. Therefore, C precisely
mimics the behavior of GenPOK for B, and with non-
negligible probability, B outputs ffb0;D0bg;D0sg that is

not in table T and makes VerPOK accept

b0 ¼ A � s0 þ e0

D0b ¼ Hðs0;b0Þ
D0s ¼ Hðs0Þ:

Since Hð�Þ is a random oracle, B must have queried
Hð�Þ with s0 before; otherwise, the probability of D0s ¼
Hðs0Þ must be negligible. C has recorded all the queries
to and responses from Hð�Þ, and thus can retrieve s0 and
compute e0.

In order for VerPOK to accept B’s output, e0 must be dis-
tributed according to the confidence information C sam-
pled. C can then recover e in the sameway Recovery does,
and then solve for s. If VerPOK accepts B’s output with non-
negligible probability, then C recovers e and s with non-
negligible probability. This contradicts Conjecture 2.1. tu

8.2 Reduction to PER_LPN

The above security proof requires the confidence informa-
tion and enoise be independent of econst. Consider a joint
distribution for m bits, where a subset of m0 bits are
always 0, and the remaining m�m0 bits are i.i.d. These m0

bits correspond to the set of stable bits T from Section 5,
and there is perfect correlation between the confidence of
a bit and its value. In this case, the above reduction cannot
hold, since enoise is not independent of e. In this section,
we relax the above requirement to allow dependence
between enoise and econst.

Let us use the intuition from Section 5 that GenPOK and
VerPOK are able to detect a bit’s confidence information. Spe-
cifically, let us abstract the notion of “stability” and require
that a POK be of the form in Definition 8.3.

Definition 8.3. A “ð�2Þ-threshold POK” is a function
fS0; T0; S1; T1g POK such that jej ¼ m, T0 � S0 � ½m�,
T1 � S1 � ½m� with the following properties:
� There exist disjoint sets S0, S1 with S0 [S1 ¼ ½m� that

may be different upon each measurement of POK.
� There exist subsets T0 � S0, T1 � S1 such that

Prði 2 S01ji 2 T0Þ < �2 and Prði 2 S00ji 2 T1Þ < �2.
Define S01 and S00 respectively as the sets S1 and S0

during a different measurement of POK.

Finally, require that jT0j ¼ uðmÞ and jT1j ¼ uðmÞ, and
�2 2 negðkÞ.5

In previous sections of this paper, we set bits in S0 to ‘0’
and bits in S1 to ‘1’. T0 and T1 were then “stable ‘0’”; and
“stable ‘1’” respectively. Instead, consider that for each mea-
surement of POK, bits in S0 are assigned to ‘0’, and bits in S1

are assigned to uniformly random values (cf. GEN Noisy in
Algorithm 2). The set T1 now corresponds to bits that are
uniformly random with high probability on each measure-
ment. This is illustrated in Fig. 4a using rnoise.

Algorithm 2.Noisy Generate and Verify

1: procedure ffA;b;Dbg;Dsg Gen NoisyPOK(1
k)

2: for i from 1 to L do
3: Query fS0; T0; S1; T1g POK.
4: Generate si2f0; 1gn;Ai2f0; 1gm�n uniformly at random.
5: Set eij to ‘0’ for all j 2 S0.
6: Set eij to uniform random f0; 1g for all j 2 S1.
7: Compute bi ¼ Ai � si þ ei.
8: Store ffAi;bi; Hðsi;Ai;biÞg; HðsiÞg into Tab.
9: end for
10: return Tab.
11: end procedure
1: procedure Ds Ver NoisyPOK (Tab)
2: Set L ¼ LengthðTabÞ.
3: Initialize ErrSum ¼ f0gm.
4: Query fS0; T0; S1; T1g POK.
5: for each fA;b;Dbg in Tab do
6: Run Recovery (Section 4) to extract s from b using T0.
7: if Db 6¼ Hðs;A;bÞ then
8: return ?.
9: end if
10: AddHðsÞ to HsTab.
11: emeas ¼ A � s� bmod 2.
12: ErrSum ¼ ErrSumþ emeas.
13: end for
14: Set PrErri ¼ 1=2� j1=2� ErrSumi=Lj.
15: Set T̂0 to be the set of indices corresponding to them0

minimum PrErri.
16: Run Recovery on T̂0 to recover ŝ.
17: if ŝ 6¼ s then
18: return ?.
19: else
20: return HsTab.
21: end if
22: end procedure

Consider Gen NoisyPOK and Ver NoisyPOK, modified
according to the discussion above. For technical reasons
pertaining the proof of Lemma 8.5, we require that
Gen Noisy and Ver Noisy generate/verify a polynomial
number of ffA;b; Hðs;A;bÞg; HðsÞg. The reason for this
will become apparent in the proof. Further, we modify
Ver NoisyPOK to check that the stable bits of the POK (the
set T0) are not too different from the bits that are stable in

the provided samples (computed as T̂0, cf. lines 14-16 of

4. A POK with i.i.d. noise (assumed in this reduction) is modeled
by a constant set of bits (e in the algorithm) plus some i.i.d. “noise”
(enoise in the algorithm) with some Bernoulli parameter t. Therefore,
the summation of eþ enoise accurately models if the Bernoulli parame-
ter of enoise is t.

5. �2 has the same interpretation as in Section 5. However, in Section
5, �2 ¼ 1=n. This is not sufficient for this proof, and we must set
�2 ¼ negðkÞ.

HERDER ET AL.: TRAPDOOR COMPUTATIONAL FUZZY EXTRACTORS AND STATELESS CRYPTOGRAPHICALLY-SECURE PHYSICAL... 77

Algorithm 2). Namely, Recovery must succeed when using

either T0 or T̂0.
With this modification, many of the bits are thrown

away, so we can ignore their distribution. We require only
that a large enough subset of the bits are replaced with ran-
dom bits. We conjecture the following modified LPN prob-
lem to be hard, and name it “Partial Error Reuse LPN”
problem, or PER LPN.

Conjecture 8.4 (PER LPNn;m;u;L). Consider L LPN problems

fbj ¼ Aj � sj þ ejgLj¼1, where L is polynomial in n. Let

sj 2 f0; 1gn, ej 2 f0; 1gm, Aj 2 f0; 1gm�n, and let fejgj fol-
low the joint distribution xU below:

1) Randomly select U � ½m� of size u;
2) Select eji with i 62 U according to some joint distri-

bution x for each j.
3) Select eji with i 2 U uniformly from f0; 1g for

each j.
There does not exist a PPT algorithm for any x that

finds all sj in Polyðn; uÞ.
It is important to note that a polynomial number of

outputs from Gen Noisy concatenated is a PER LPN prob-
lem with overwhelming probability. The bits in T1 for a
certain measurement will remain in S1 across measure-
ments and are thus made i.i.d. uniform random except
with �2 2 negðkÞ probability. This will be the set U in the
PER LPN conjecture. The remaining bits can be arbitrarily
distributed according to the conjecture.

We now are ready to show that PUF Noisy ¼ fGen
Noisy;Ver Noisyg comprises a Stateless PUF according to
Definition 7.1.

Lemma 8.5. Let k be a security parameter, n ¼ polyðkÞ, and
m � n. If Conjecture 8.4 is true, there is no PPT A that has

advantage Advs�uprdPUF NoisyðAÞ non-negligible in k.

Proof. Given A, we construct B that takes a PER LPN prob-
lem as an argument (PerLPNTab) and returns the secret
vectors of allmembers in this set.

Whenever A queries Gen Noisy, B answers with a
batch of size L in PerLPNTab (so we write PerLPNTab
as A’s input in Line 2). Since A makes a polynomial num-
ber of queries to Gen Noisy, PerLPNTab has polynomial
instances.

Recognize that Lemma 8.1 still applies, so we do not
need to give A access to Ver Noisy. B also records A’s
calls to Hð�Þ (and can therefore extract each s from each
fHðs;A;bÞ; HðsÞg returned by A).

As mentioned earlier, there exists a PerLPNTab that
precisely mimics outputs of Gen Noisy. Therefore, A
finally produces Tab that will make Ver Noisy accept
with non-negligible probability. Similar to the proof of
Lemma 8.2, B can then use the recorded queries to Hð�Þ
to recover the error vectors in A’s output.

Next, B recovers the secret subset T̂0 � ½m�, i.e., the
stable bits in PerLPNTab, by looking at the distribution
of these errors vectors in A’s output and estimating
Prðe0i ¼ 1Þ (Line 9,10 in Algorithm 3). This explains
why the protocol was modified earlier to incorporate a
polynomial number of challenge/response pairs: they

are needed in this reduction to accurately characterize
the distribution of each bit. Since A makes Ver Noisy
accept with non-negligible probability, Recovery when

called with T̂0 will succeed with non-negligible probabil-
ity, in which case B solves each instance in PerLPNTab.
This contradicts Conjecture 8.4. tu

Algorithm 3. PER LPN Reduction Algorithm B

1: procedure B (PerLPNTab)
2: Tab AðPerLPNTabÞ
3: Initialize ErrSum ¼ 0m.
4: for each fA0;b0g 2 Tab do
5: Find s0 from recorded queries by A toHð�Þ.
6: Compute e0 ¼ b0 �A0 � s0mod 2
7: ErrSum ¼ ErrSumþ e0.
8: end for
9: Set PrErri ¼ 1=2� j1=2� ErrSumi=Lj.
10: Set T̂0 to be the set of indices corresponding to them0

minimum PrErri.
11: Run Recovery on each instance in PerLPNTab using T̂0

as the set of stable bits, and return the solutions.
12: end procedure

Lemma remarks. The above lemma proves security of the
scheme. This proof does not directly rely on the distribution
of the bits in e. However, the correctness of the protocol does

rely on the distribution. I.e., if T̂0 does not approximate T0

(and therefore, Recovery fails when called with T̂0), then
Ver Noisy does not accept with high probability.

In the case of an i.i.d. Gaussian distribution of e (as in
Section 8.1), one may prove correctness by showing explic-

itly that T̂0 will with high probability cause Recovery to suc-
ceed. We omit this proof here, as it is straightforward.

Further, in the case of the Gaussian distribution (cf. Sec-
tion 5), we may set �2 ¼ negðkÞ. For example, set �2 ¼
2�Qðlog

2ðmÞÞ ¼ negðkÞ. From Section 5.4, this implies sr ¼ Qð1=
log ðnÞÞ, and therefore the number of correctable errors is

Oðm=log ðmÞÞ ¼ eOðmÞ. Further, from Section 5.4, the number
of stable bits (i.e., jT1j) ism0 ¼ uðmÞ. Thismeets Definition 8.3.

Now, it may at first seem as though this approach
requires the same assumption of i.i.d. POK bits as in Section
8! This is technically true if one desires a mathematical proof
of correctness. However, the key difference is that both of
the above requirements are empirically verifiable for unknown
distributions.

To see the importance of this distinction, we first point
out that all POKs that the authors are aware of have
unknown distributions, as they are derived from physical
systems with complex internal behavior, which is subse-
quently affected by environmental parameters and noise.
There has been significant effort (especially in the silicon
POK case [27], [57], [42], [40], [49]) to make the POK dis-
tribution as close to i.i.d. as possible. However, it is not pos-
sible to prove through empirical measurements that a POK
distribution is i.i.d.

Any mathematical proof of correctness must assume
a property of the POK distribution, and therefore will ulti-
mately have to be empirically verified. For example, infor-
mation theoretic approaches typically have a min-entropy
requirement on the distribution of the POK bits. This

78 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 1, JANUARY/FEBRUARY 2017

requirement is empirically verified through measurement
of large samples of POKs [48].

In the case of the above stateless PUF construction, we
require first that jT1j ¼ uðmÞ, �2 ¼ negðkÞ. This can be veri-
fied by studying the stability of bits. For example, in Section
9, we provide evidence that the Gaussian distribution of
bits is correct, and therefore that this is indeed the case. Fur-
ther, in Section 9, we observe that 76 percent of the ring
oscillator bits do not flip across all measurement parameters.
Therefore, we do not believe that the above requirement is
unreasonable.

Second, we require that T̂0 � T0, so that Ver Noisy
accepts with high probability. Again, data in Section 9 show
that the independent Gaussian model reasonably approxi-
mates the behavior of the ring oscillator POK, so Ver Noisy
will accept with high probability. However, we note that
even if the POK distribution differs slightly from Gaussian,
such a difference only affects extraction efficiency, not the
security of the construction. Ultimately, in the practical set-
ting, the true extraction efficiency will be measured and
optimized empirically for a given POK architecture.

8.3 Stateless PUF Theorem

We are now ready to state the security theorem for the state-
less PUF constructions. For i.i.d. POK outputs (Theorem
8.6), the theorem holds under Conjecture 2.1. For more com-
plex distributions (Theorem 8.7), we use Conjecture 8.4.

Theorem 8.6. Let k be a security parameter, and n ¼ polyðkÞ.
There exists a choice of n, m � n, x such that Construction
7.3 is a ðm;xÞ stateless PUF that is �-secure with error d, with
� ¼ negðkÞ, d ¼ negðkÞ under Conjecture 2.1.

Proof. First, recognize that Construction 7.3 is efficient.
Clearly, GenPOK runs in polynomial time. Section 5.2
shows VerPOK runs in polynomial time. Second, under
Conjecture 2.1, there does not exist any PPT A that gains

advantage Advs�uprdPUF ðAÞ > �, where � ¼ negðkÞ. tu
Theorem 8.7. If POK makes Ver Noisy accept with probability d

where d ¼ negðkÞ and has distribution x obeying Definition
8.3, then there exists a choice of n, m � n, such that
fGen NoisyPOK; Ver NoisyPOKg is a ðm;xÞ stateless PUF
that is �-secure with error d, with � ¼ negðkÞ, d ¼ negðkÞ
under Conjecture 8.4.

Proof. First recognize that the construction is efficient. Sec-
ond, Lemma 8.5 shows that if Conjecture 8.4 is true, then
there does not exist a PPT A that gains advantage

Advs�uprdPUF ðAÞ > �, where � ¼ negðkÞ. tu

9 CASE STUDY USING A RING OSCILLATOR POK

We will use Ring Oscillator POKs as a case study because
of the easy availability of confidence information (cf.
Fig. 1). In the case of the RO POK, the differential counts
between the ring oscillators is the confidence informa-
tion c0i, and the output bit e0i ¼ Signðc0iÞ described in
Section 2.1.

We have provided a theory explaining the resilience of
the LPN construction to noise and environmental parame-
ters using this confidence information in Section 5. Now, we

use this theory and collected data from a set of 320 pairs of
ring oscillators measured across temperature and voltage
ranges to demonstrate the efficiency of the LPN fuzzy
extractor construction in a concrete fashion. Experiments
were conducted on a Xilinx Virtex 7 Series Field Program-
mable Gate Array (FPGA). We measured the differential
counts of a set of 320 ring oscillator pairs in a wide (beyond
industrial) range of temperature and voltage. Three
interesting points are �40 C@0:95V, 25 C@1:00V, and
105 C@1:05V. Other ranges that we will use are the differ-
ential count values at commercial (0 to 70C) and extended
industrial (�40 to 85C). The sINTRA=sINTER ratios improve
as the temperature range is reduced.

We note that 24 percent of the ring oscillator pairs pro-
duce different responses in the environmental range; this is
the typical OðmÞ error case for such circuits under environ-
mental stresses in the ranges shown.

We first measured the bias of the RO counts across tem-
perature as shown in Table 2. Therefore, our pessimistic
estimate of bias ignoring correlation effects as 45 percent (or
55 percent equivalently) is correct.

These differential count values are distributed accord-
ing to the distribution discussed in Section 5 with vari-
ance s2

INTER. We verified for each of these temperatures
that the distribution of differential counts was Gaussian,
as we assumed in Section 5. Each of the fits from which

parameters are derived has a reduced x2 � 1, indicating
that the Gaussian model is a good fit to the data within
experimental error. Moreover, neither the mean nor
variance of the distribution changed significantly over
temperature or voltage. Therefore, we describe the distri-
bution in terms of a single mean, variance (mINTER,
sINTER) shown in Fig. 5.

To measure mINTRA and sINTRA, one must measure the
distribution of how these differential counts change
regardless of the differential count measured at provi-
sioning. This distribution is Prðc0i � ciÞ. We can calculate
this distribution by using data from different ring oscilla-
tors. We then recognize that the standard deviation of
this distribution is sINTRA.

To accomplish this, we used room temperature as a base-
line (this would be the condition in which the challenge-
response pairs would be initially generated), and measured
how the differential counts change as temperature/voltage
vary for each of the 320 ring oscillator pairs. These data pro-
vide a statistical distribution of how much the differential
count value will change with a change in environmental
parameters (the distribution described by sINTRA, mINTRA in
Section 5).

The distribution at 105 C is shown in Fig. 5. The meas-
urements at various temperatures are shown in Table 2. It is

TABLE 2
(Left) Measured Bias of 320 RO Pairs at Varying Temperatures.

(Right) Measured sINTRA for Varying Temperatures

HERDER ET AL.: TRAPDOOR COMPUTATIONAL FUZZY EXTRACTORS AND STATELESS CRYPTOGRAPHICALLY-SECURE PHYSICAL... 79

important to note that although in Section 5 we did not pres-
ent any theoretical justification for the reason why the distri-
bution of counts of a single ring oscillator pair over relevant
environmental conditions would be Gaussian, this does
turn out to be the case within experimental error as demon-
strated in Fig. 5. Using these measurements, we calculate

the ratio
sINTRA
sINTER

for commercial (0 to 70C) as 0.20, extended
industrial (�40 to 85C) as 0.29, and the maximum tempera-
ture range our experiment could support (�40 to 105C) as
0.40. This is summarized in Table 3.

We now present an analysis of the resource requirements
(number of RO pairs) of our LPN fuzzy extractor scheme
with a security parameter of 128, and probability of error

10�6 over the above temperature ranges.
First, we remark that our theoretical construction in Sec-

tion 4 is far too conservative for practical purposes. In prac-
tice, we simply choose the most stable m0 ¼ n bits, and most
likely there are at most t0 � 1 error bits in them. For exam-

ple, if �2 ¼ 3� 10�6, a simple binomial distribution analysis

shows that Prðt0 > 1Þ < 10�6. Therefore, an exhaustive
search over the error bit with a Gaussian elimination opera-
tions for each will suffice.

Plugging �1 ¼ 10�6, �2 ¼ 3� 10�6, m0 ¼ n ¼ 128 (giving a

security parameter of 128) and
sINTRA
sINTER

values into Equa-

tions (3), (4), we compute m (the total number of RO pairs)
for various temperature ranges, also shown in Table 3.

Note that the bits of the extracted bitstring are not all
simultaneously pseudorandom with security parameter 128. In
order to obtain a pseudorandom bitstring for use as a key,
one must use a hash function that approximates a random
oracle. To avoid the use of such a function, one may also
double the LPN secret size to n ¼ 256 and then select an
arbitrary subset of 128 bits. These 128 bits would be pseudo-
random by the result from [1].

Note that our analysis is still pessimistic (e.g., assuming
that all stable bits have error probability �2 even thoughmost
bits havemuch lower error probability) and our construction
is unoptimized. Even with an unoptimized implementation,
these results compare very well with the works described in
Section 3. For example, PUFKY [48] requires 2052 helper
data bits for a 10��80C temperature range, compared to our
450 helper data bits for a comparable 0��70C temperature
range, and 770 helper data bits for amuchwider temperature
range �40��85C. Moreover, unlike most prior work on
information theoretic extractors, our LPN fuzzy extractor
can be scaled to higher noise settings simply by increasingm
without affecting the security argument.

10 CONCLUSION

We have presented a computationally secure construction
of a stateless Physical Unclonable Function in this paper
based on precise hardness assumptions. This has been an
open problem for over thirteen years since silicon PUFs
were introduced in 2002 [26].

Our construction is secure in the random oracle model
under the difficulty of standard Learning Parity with Noise
and a variant LPN problem. Our construction is noise-free;
the responses during challenge-response generation and
successful verification match exactly. This means that an
entity with a single challenge-response pair can authenticate
the PUF any number of times by treating the response as a
shared secret. All the protocols described in [25] are enabled
by our construction.

In order to construct a noise-free PUF, we presented the
first construction of a computational fuzzy extractor with a
trapdoor in this paper, using the standard LPN problem as
the hard problem. The trapdoor allows our construction to
correct QðmÞ errors in polynomial time. We relaxed the i.i.d.
assumptions on the POK outputs showing that if correlation
can be estimated, the only change to the fuzzy extractor con-
struction is in the selection of parameters.

We show how error profiles obtained from a Field Pro-
grammable Gate Array implementation of PUFs subject to
wide environmental variation can be efficiently corrected

Fig. 5. (Top) Measurement of sINTER through the estimation of the distri-
bution of differential counts across 320 RO pairs across room tempera-
ture and the fast and slow voltage/temperature corners. (Bottom)
Measurement of sINTRA by subtracting differential counts at 25 C@1V
from 105C@1:05V.

TABLE 3
Summary of

sINTRA
sINTER

and Resources Required for an LPN

Fuzzy Extractor Over the Specified Temperature Range

Temp. Erroneous
Bits

sINTRA
sINTER

Ring Osc.
Pairs (¼ m)

0� 70C 9% 0.20 450
�40� 85C 21% 0.29 770
�40� 105C 24% 0.40 1870

The percentage of erroneous bits over environmental conditions and associated
ratio is displayed. Extraction succeeds with error probability < 10�6 and a
security parameter of 128.

80 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 1, JANUARY/FEBRUARY 2017

using helper data sizes that are substantially smaller than
prior art.

Lastly, we remark that certain human biometrics
may also produce confidence information. Ongoing work
includes testing our constructions on biometrics.

ACKNOWLEDGEMENTS

This research was partially supported by the National
Science Foundation. Marten van Dijk was supported in part
by AFOSR MURI under award number FA9550-14-1-0351.

REFERENCES

[1] A. Akavia, S. Goldwasser, and V. Vaikuntanathan, “Simultaneous
hardcore bits and cryptography against memory attacks,” in Proc.
6th Int. Conf. Theory Cryptography, 2009, pp. 474–495.

[2] B. Applebaum, B. Barak, and A. Wigderson, “Public-key cryptog-
raphy from different assumptions,” in Proc. 42nd Symp. Theory
Comput., 2010, pp. 171–180.

[3] B. Applebaum, D. Cash, C. Peikert, and A. Sahai, “Fast crypto-
graphic primitives and circular-secure encryption based on hard
learning problems,” in Proc. 29th Annu. Int. Cryptol. Conf., 2009,
pp. 595–618.

[4] F. Armknecht, R. Maes, A. Sadeghi, O.-X. Standaert, and C.
Wachsmann, “A formalization of the security features of physical
functions,” in Proc. IEEE Symp. Security Privacy, 2011, pp. 397–412.

[5] S. Arora and R. Ge, “New algorithms for learning in presence of
errors,” in Automata, Languages and Programming, New York, NY,
USA: Springer, 2011, pp. 403–415.

[6] G. T. Becker, “The gap between promise and reality: On the inse-
curity of XOR arbiter PUFs,” in Proc. 17th Int. Workshop Crypto-
graphic Hardware Embedded Syst., 2015, pp. 535-555

[7] G. T. Becker, A. Wild, and T. G€uneysu, “Security analysis of
index-based syndrome coding for PUF-based key generation,” in
Proc. IEEE Int. Symp. Hardware Oriented Security Trust, May 2015,
pp. 20–25.

[8] D. J. Bernstein and T. Lange, “Never trust a bunny,” in Radio Fre-
quency Identification Security and Privacy Issues, New York, NY,
USA: Springer, 2013, pp. 137–148.

[9] A. Blum, M. Furst, Kearns, M., and R. Lipton, “Cryptographic
primitives based on hard learning problems,” in Proc. 13th Annu.
Int. Cryptol. Conf. Adv. Cryptol., 1994, pp. 278–291.

[10] A. Blum, A. Kalai, and H. Wasserman, “Noise-tolerant learning,
the parity problem, and the statistical query model,” J. ACM ,
vol. 50, no. 4, pp. 506–519, 2003.

[11] A. Bogdanov, M. Kne�zevi�c, G. Leander, D. Toz, K. Var{c{, and
I. Verbauwhede, “SPONGENT: A lightweight hash function,” in
Proc. 13th Int. Workshop Cryptographic Hardware Embedded Syst.,,
2011, pp. 312–325.

[12] S. Bogos, F. Tramer, and S. Vaudenay, “On solving LPN using
BKW and variants,” International Association for Cryptologic
Research, Tech. Rep., Report 2015/049, 2015.

[13] K. W. Bowyer, K. Hollingsworth, and P. J. Flynn, “Image under-
standing for iris biometrics: A survey,” Comput. Vis. Image Under-
standing, vol. 110, no. 2, pp. 281–307, 2008.

[14] X. Boyen, Y. Dodis, J. Katz, R. Ostrovsky, and A. Smith, “Secure
remote authentication using biometric data,” in Proc. 24th Annu.
Int. Conf. Adv. Cryptology, 2005, pp. 147–163.

[15] J. Bringer, H. Chabanne, G. Cohen, B. Kindarji, and G. Z�emor,
“Optimal iris fuzzy sketches,” in Proc. 1st IEEE Int. Conf. Biomet-
rics: Theory, Appl. Syst., 2007, pp. 1–6.

[16] M. Chiani and D. Dardari, “Improved exponential bounds and
approximation for the q-function with application to average
error probability computation,” in Proc. Global Telecommun. Conf.,
2002, vol. 2, pp. 1399–1402.

[17] I. Damga

rd and S. Park, “Is public-key encryption based on LPN

practical?,” in Proc. IACR Cryptology ePrint Archive, 2012, p. 699.
[18] J. Delvaux and I. Verbauwhede, “Side channel modeling attacks

on 65nm arbiter PUFs exploiting CMOS device noise,” in Proc. 6th
IEEE Int. Symp. Hardware-Oriented Security Trust, 2013, pp. 137–
142.

[19] J. Delvaux and I. Verbauwhede, “Attacking PUF-based pattern
matching key generators via helper data manipulation,” in Proc.
Int. Conf. Topics Cryptol., 2014, pp. 106–131.

[20] Y. Dodis, B. Kanukurthi, J. Katz, L. Reyzin, and A. Smith, “Robust
fuzzy extractors and authenticated key agreement from close
secrets,” IEEE Trans. Inform. Theory, vol. 58, no. 9, pp. 6207–6222,
Sep. 2012.

[21] Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors: How to gen-
erate strong keys from biometrics and other noisy data,” In Proc.
Int. Conf. Adv. Cryptology, 2004, pp. 523–540.

[22] B. Fuller, X. Meng, and L. Reyzin, “Computational fuzzy extrac-
tors,” In Proc. 19th Int. Conf. Theory Appl. Cryptology Inform. Secu-
rity, 2013, pp. 174–193.

[23] M. Gao, K. Lai, and G. Qu, “A highly flexible ring oscillator PUF,”
in Proc. 51st Annu. Int. Conf. Des. Autom.. 2014, pp. 89:1–89:6.

[24] B. Gassend, “Physical random functions,” M.S. thesis, Dept.
Electr. Eng. Comput. Sci., Massachusetts Inst. Technol.,
Cambridge, MA, USA, Jan. 2003.

[25] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Controlled
physical random functions,” presented at the 18th Annu. Com-
puter Security Applications Conf., Silver Spring, MD, USA,
Dec. 2002.

[26] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon phys-
ical random functions,” in Proc. 9th ACM Int. Conf. Comput. Com-
mun. Security, 2002, pp. 148–160.

[27] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Delay-based
circuit authentication and applications,” in Proc. ACM Symp. Appl.
Comput.,Mar. 2003, pp. 294–301..

[28] S. Graybeal, and P. McFate, “Getting out of the STARTing block,”
Scientific American, vol. 261, no. 6, pp. 64–65, 1989.

[29] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor, and
Y. Makris, “Counterfeit integrated circuits: A rising threat in the
global semiconductor supply chain,” Proc. IEEE, vol. 102, no. 8,
pp. 1207–1228, Aug. 2014.

[30] Q. Guo, T. Johansson, and C. L€ondahl, “Solving LPN using cover-
ing codes,” in Proc. 20th Int. Conf. Theory Appl. Cryptology Inform.
Security., 2014, pp. 1–20.

[31] M. Hiller, D. Merli, F. Stumpf, and G. Sigl, “Complementary IBS:
Application specific error correction for PUFs,” in Proc. IEEE Int.
Symp. Hardware-Oriented Security Trust, 2012, pp. 1–6.

[32] M. Hiller, M. Weiner, L. Rodrigues Lima, M. Birkner, and G. Sigl,
“Breaking through fixed PUF block limitations with differential
sequence coding and convolutional codes,” in Proc. 3rd Int. Work-
shop Trustworthy Embedded Devices, 2013, pp. 43–54.

[33] D. Holcomb, W. Burleson, and K. Fu, “Power-up SRAM state as
an identifying fingerprint and source of true random numbers,”
IEEE Trans. Comput., vol. 58, no. 9, pp. 1198–1210, Sep. 2009.

[34] N. J. Hopper and M. Blum, “Secure human identification proto-
cols,” in Proc. 7th Int. Conf. Adv. Cryptol., 2001, pp. 52–66.

[35] G. Hospodar, R. Maes, and I. Verbauwhede, “Machine learning
attacks on 65 nm arbiter PUFs: Accurate modeling poses strict
bounds on usability,” in Proc. 4th IEEE Int. Workshop Inform. Foren-
sics Security, 2012, pp. 37–42.

[36] D. Karakoyunlu, and B. Sunar, “Differential template attacks on
PUF enabled cryptographic devices,” in Proc. IEEE Int. Workshop
Inform. Forensics Security, Dec. 2010, pp. 1–6.

[37] D. Kirovski, “Anti-counterfeiting: Mixing the physical and the
digital world,” in Towards Hardware-Intrinsic Security, A.-R.
Sadeghi and D. Naccache, Eds. New York, NY, USA: Springer,
2010, pp. 223–233.

[38] P. Koeberl, J. Li, A. Rajan, and W. Wu, “Entropy loss in PUF-
based key generation schemes: The repetition code pitfall,” in
Proc. IEEE Int. Symp. Hardware-Oriented Security Trust,
May 2014, pp. 44–49.

[39] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-
Hashing for message authentication,” United States, 1997.

[40] R. Kumar, and W. Burleson, “On design of a highly secure PUF
based on non-linear current mirrors,” in Proc. IEEE Int. Symp.
Hardware-Oriented Security Trust, 2014, pp. 38–43.

[41] �E. Levieil, and P.-A. Fouque, “An improved LPN algorithm,” in
Proc. 5th Int. Conf. Security Cryptography Networks, 2006, pp. 348–
359.

[42] D. Lim, “Extracting secret keys from integrated circuits,” M. S.
thesis, Dept. Electrical Eng. Comput. Sci., Massachusetts Inst.
Technol., Cambridge, MA, USA, May 2004.

[43] D. Lim, J. W. Lee, B. Gassend, G. E. Suh, M. van Dijk, and S. Deva-
das, “Extracting secret keys from integrated circuits,” IEEE Trans.
VLSI Syst., vol. 13, no. 10, pp. 1200–1205, Oct. 2005.

[44] K. Lofstrom, W. R. Daasch, and D. Taylor, “IC identification cir-
cuit using device mismatch,” in Proc. Int. Solid-State Circuits Conf.,
Feb. 2000, pp. 372–373.

HERDER ET AL.: TRAPDOOR COMPUTATIONAL FUZZY EXTRACTORS AND STATELESS CRYPTOGRAPHICALLY-SECURE PHYSICAL... 81

[45] V. Lyubashevsky, “The parity problem in the presence of noise,
decoding random linear codes, and the subset sum problem,” in
Proc. 8th Int. Workshop Approximation, Randomization Combinatorial
Optimization Algorithms Techn., 2005, pp. 378–389.

[46] R. Maes, P. Tuyls, and I. Verbauwhede, “Low-overhead imple-
mentation of a soft decision helper data algorithm for SRAM
PUFs,” in Proc. 11th Int. Workshop Cryptographic Hardware Embed-
ded Syst., 2009, pp. 332–347.

[47] R. Maes, P. Tuyls, and I. Verbauwhede, “Soft decision helper data
algorithm for SRAM PUFs,” in Proc. IEEE Int. Conf. Symp. Inform.
Theory, 2009, pp. 2101–2105.

[48] R. Maes, A. Van Herrewege, and I. Verbauwhede, “PUFKY:
A fully functional PUF-based cryptographic key generator,” in
Proc. 14th Int. Conf. Cryptographic Hardware Embedded Syst., 2012,
pp. 302–319.

[49] M. Orshansky, “Physically unclonable functions based on non-
linearity of sub-threshold operation,” US Patent 8,938,069, 2015.

[50] R. Pappu, “Physical one-way functions,” Ph.D. thesis, Massachu-
setts Inst. Technol., Cambridge, MA, USA, 2001.

[51] Z. Paral, and S. Devadas, “Reliable and efficient PUF-based key
generation using pattern matching,” in Proc. IEEE Int. Symp. Hard-
ware-Oriented Security Trust, 2011, pp. 128–133.

[52] O. Regev, “On lattices, learning with errors, random linear codes,
and cryptography,” J. ACM, vol. 56, no. 6, p. 34, 2009.

[53] U. R€uhrmair, S. Devadas, and F. Koushanfar, “Security based on
physical unclonability and disorder,” in Introduction to Hardware
Security and Trust, M. Tehranipoor and C. Wang, Eds. Berlin,
Germany: Springer, 2012, ch. 4, pp. 65–102.

[54] U. R€uhrmair, F. Sehnke, J. S€olter, G. Dror, S. Devadas, and
J. Schmidhuber, “Modeling attacks on physical unclonable
functions,” in Proc. 17th ACM Conf. Comput. Commun. Security,
2010, pp. 237–249.

[55] U. R€uhrmair, J. S€olter, F. Sehnke, X. Xu, A. Mahmoud, V.
Stoyanova, G. Dror, J. Schmidhuber, W. Burleson, and S. Devadas,
“PUFmodeling attacks on simulated and silicon data,” IEEE Trans.
Inform. Forensics Security, vol. 8, no. 11, pp. 1876–1891, Nov. 2013.

[56] G. E. Suh, “AEGIS: A single-chip secure processor,” Ph.D. thesis,
Dept. Electrical Eng. Comput. Sci., Massachusetts Inst. Technol.,
Cambridge, MA, USA, Aug. 2005.

[57] G. E. Suh, and S. Devadas, “Physical unclonable functions for
device authentication and secret key generation,” in Proc. 4th
ACM/IEEE Design Autom. Conf., 2007, pp. 9–14.

[58] J. Tobisch, and G. T. Becker, “On the scaling of machine learning
attacks on PUFs with application to noise bifurcation,” in Proc.
RFIDSec, 2015, pp. 17–31.

[59] M.-D. M. Yu, and S. Devadas, “Secure and robust error correction
for physical unclonable functions,” IEEE Design Test Comput.,
vol. 27, no. 1, pp. 48–65, Jan./Feb. 2010.

[60] M.-D. M. Yu, D. M”Ra€ıhi, R. Sowell, and S. Devadas,
“Lightweight and secure PUF key storage using limits of machine
learning,” in Proc. 13th Int. Workshop Cryptographic Hardware
Embedded Syst., 2011, pp. 358–373.

[61] M. M. Yu, M. Hiller, and S. Devadas, “Maximum-likelihood
decoding of device-specific multi-bit symbols for reliable key gen-
eration,” in Proc. IEEE Int. Symp. Hardware Oriented Security Trust,,
2015, pp. 38–43.

Charles H. Herder III recieved the master’s
degree in electrical engineering and computer
science, the BS degree in EECS, and the BS
degree in physics all from the Massachusetts
Institute of Technology. His research interests
include the physics of computation, cryptography,
computer architecture, and computer security.
His prior experience at Texas Instruments
includes developing embedded systems authenti-
cation technology and serving as a technical lead
for the development of proprietary power man-

agement and authentication systems.

Ling Ren recieved the bachelor’s degree in elec-
trical engineering from Tsinghua University,
China, and the master’s degree in electrical engi-
neering and computer science from the Massa-
chusetts Institute of Technology. His research
interests include the computer security, applied
cryptography and computer architecture. While at
MIT, he has worked on secure processors and
oblivious random access memory.

Marten van Dijk received the MS degree in
computer science, the MS and PhD degrees in
mathematics from the Eindhoven University of
Technology. He is an associate professor at the
University of Connecticut. He joined UConn in
2013. Prior to joining UConn, he worked at
MIT CSAIL, RSA, and Philips Research. His
research interests include computer security and
cryptography.

Mandel Yu currently working toward the PhD
degree based on a research career with COSIC/
KU Leuven. He received the BSEE/MSEE
degrees from Stanford. He is the chief scientist at
Verayo, Research Affiliate for CSAIL/MIT. He
was the Manager of R&D Engineering at TSI, and
developed a secure digital baseband radio.
where he was a Mayfield Fellow. His research
interests include coding and security, he served
on ACM and IACR program committees.

Srinivas Devadas received the MS and PhD
degrees from theUniversity ofCalifornia, Berkeley,
in 1986 and 1988, respectively. He is the webster
professor of electrical engineering and computer
science at the Massachusetts Institute of Technol-
ogy (MIT), where he has been since 1988. He
served as associate head of EECS from 2005 to
2011. His research interests include computer-
aided design, computer architecture and computer
security. He is a Fellow of the IEEE and ACM.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

82 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 1, JANUARY/FEBRUARY 2017

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

