
Towards Constant Bandwidth Overhead

Integrity Checking of Untrusted Data

Dwaine Clarke, G. Edward Suh, Blaise Gassend, Ajay Sudan, Marten van Dijk, Srinivas Devadas

Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Laboratory

Cambridge, MA 02139

{declarke, suh, gassend, ajaytoo, marten, devadas}@mit.edu

Abstract

We present an adaptive tree-log scheme to improve the

performance of checking the integrity of arbitrarily-large

untrusted data, when using only a small fixed-sized trusted

state. Currently, hash trees are used to check the data. In

many systems that use hash trees, programs perform many

data operations before performing a critical operation that

exports a result outside of the program’s execution environ-

ment. The adaptive tree-log scheme we present uses this

observation to harness the power of the constant runtime

bandwidth overhead of a log-based scheme. For all pro-

grams, the adaptive tree-log scheme’s bandwidth overhead

is guaranteed to never be worse than a parameterizable

worst case bound. Furthermore, for all programs, as the av-

erage number of times the program accesses data between

critical operations increases, the adaptive tree-log scheme’s

bandwidth overhead moves from a logarithmic to a constant

bandwidth overhead.

1. Introduction

This paper studies the problem of checking the integrity

of operations performed on an arbitrarily-large amount of

untrusted data, when using only a small fixed-sized trusted

state. Commonly, hash trees [1] are used to check the in-

tegrity of the operations. The hash tree checks data each

time it is accessed and has a logarithmic bandwidth over-

head as an extra logarithmic number of hashes must be read

each time the data is accessed.

One proposed use of a hash tree is in a single-chip se-

cure processor [8, 10, 12], where it is used to check the in-

tegrity of external memory. A secure processor can be used

to help license software programs, where it seeks to pro-

vide the programs with private, tamper-evident execution

environments. In such an application, an adversary’s job

is to get the processor to unintentionally sign incorrect re-

sults or unintentionally reveal private instructions or private

data in plaintext. Thus, assuming covert channels are pro-

tected by techniques such as memory obfuscation [5, 10],

with regards to security, the critical instructions are the in-

structions that export plaintext outside of the program’s ex-

ecution environment, such as the instructions that sign cer-

tificates certifying program results and the instructions that

export plaintext data to the user’s display. It is common for

programs to perform millions of instructions, and perform

millions of memory accesses, before performing a critical

instruction. As long as the sequence of memory operations

is checked when the critical instruction is performed, it is

not necessary to check each memory operation as it is per-

formed and using a hash tree to check the memory may be

causing unnecessary overhead.

In [2, 11], a new scheme, referred to as a log-hash

scheme, was introduced to securely check memory. Intu-

itively, the processor maintains a “write log” and a “read

log” of its write and read operations to the external mem-

ory. At runtime, the processor updates the logs with a min-

imal constant-sized bandwidth overhead so that it can ver-

ify the integrity of a sequence of operations at a later time.

To maintain the logs in a small fixed-sized trusted space in

the processor, the processor uses incremental multiset hash

functions [2] to update the logs. When the processor needs

to check a sequence of its operations, it performs a sepa-

rate integrity-check operation using the logs. The integrity-

check operation is performed when the program performs

a critical instruction: a critical instruction acts as a signal

indicating when it is necessary to perform the integrity-

check operation. (Theoretically, the hash tree checks each

memory operation as it is performed. However, in a secure

processor implementation, because the latency of verifying

values from memory can be large, the processor “specu-

latively” uses instructions and data that have not yet been

verified, performing the integrity verification in the back-

ground. Whenever a critical instruction occurs, the proces-

sor waits for all of the integrity verification to be completed

before performing the critical instruction. Thus, the notion

of a critical instruction that acts as signal indicating that a

sequence of operations must be verified is already present

in secure processor hash tree implementations.)

While the log-hash scheme does not incur the logarith-

mic bandwidth overhead of the hash tree, its integrity-check

operation needs to read all of the memory that was used

since the beginning of the program’s execution. When

integrity-checks are infrequent, the number of memory op-

erations performed by the program between checks is large

and the amortized cost of the integrity-check operation is

very small. The bandwidth overhead of the log-hash scheme

is mainly its constant-sized runtime bandwidth overhead,

which is small. This leads the log-hash scheme to perform

very well and to significantly outperform the hash tree when

integrity-checks are infrequent. However, when integrity

checks are frequent, the program just uses a small subset

of addresses that are protected by the log-hash scheme be-

tween the checks. The amortized cost of the integrity-check

operation is large. As a result, the performance of the log-

hash scheme is not good and is much worse than that of the

hash tree. Thus, though the log-hash scheme performs very

well when checks are infrequent, it cannot be widely-used

because its performance is poor when checks are frequent.

In this paper, we introduce secure tree-log integrity

checking. This hybrid scheme of the hash tree and log-hash

schemes captures the best features of both schemes. The

untrusted data is originally protected by the tree, and sub-

sets of it can be optionally and dynamically moved from the

tree to the log-hash scheme. When the log-hash scheme is

used, only the addresses of the data that have been moved to

the log-hash scheme since the last log-hash integrity check

need to be read to perform the next log-hash integrity check,

instead of reading all of the addresses that the program used

since the beginning of its execution. This optimizes the log-

hash scheme, facilitating much more frequent log-hash in-

tegrity checks, making the log-hash approach more widely-

applicable.

The tree-log scheme we present has three features.

Firstly, the scheme adaptively chooses a tree-log strategy

for the program that indicates how the program should use

the tree-log scheme when the program is run. This al-

lows programs to be run unmodified and still benefit from

the tree-log scheme’s features. Secondly, even though the

scheme is adaptive, it is able to provide a guarantee on its

worst case performance such that, for all programs, the per-

formance of the scheme is guaranteed to never be worse

than a parameterizable worst case bound. The third fea-

ture is that, for all programs, as the average number of per

data program operations (total number of program data op-

erations/total number of data accessed) between critical op-

erations increases, the performance of the tree-log integrity

checking moves from a logarithmic to a constant bandwidth

overhead.

With regards to the second feature, the worst-case bound

is a parameter to the adaptive tree-log scheme. The bound

is expressed relative to the bandwidth overhead of the hash

tree, if the hash tree had been used to check the integrity

of the data during the program’s execution. For instance,

if the bound is set at 10%, then, for all programs, the tree-

log bandwidth overhead is guaranteed to be less than 1.1

times the hash tree bandwidth overhead. This feature is im-

portant because it allows the adaptive tree-log scheme to be

turned on by default in applications. To provide the bound,

we introduce the notion of a reserve to determine when data

should just be kept in the tree and to regulate the rate at

which data is added to the log-hash scheme. The adaptive

tree-log scheme is able to provide the bound even when no

assumptions are made about the program’s access patterns

and even when the processor uses a cache, about which min-

imal assumptions are made (the cache only needs to have a

deterministic cache replacement policy, such as the least re-

cently used (LRU) policy).

With regards to the third feature, the adaptive tree-log

scheme is able to approach a constant bandwidth data in-

tegrity checking overhead because it can use the optimized

log-hash scheme to check sequences of data operations be-

fore a critical operation is performed. The longer the se-

quence, the more the data that the tree-log scheme moves

from the tree to the log-hash scheme and the more the over-

head approaches the constant-runtime overhead of the log-

hash scheme. As programs typically perform many data

operations before performing a critical operation, there are

large classes of programs that will be able to take advan-

tage of this feature to improve their data integrity check-

ing performance. (We note that we are actually stating the

third feature a bit imprecisely in this section. After we have

described the adaptive tree-log scheme, we will state the

feature more precisely for the case without caching in Sec-

tion 6.3, and modify the theoretical claims on the feature for

the case with caching in Section 6.4.)

While the paper is primarily focused on providing the

theoretical foundation for the adaptive tree-log scheme, we

present some experimental results showing that the band-

width overhead can be significantly reduced when the adap-

tive tree-log scheme is used, compared to when a hash tree

is used. In light of the algorithm’s features and the results,

we provide a discussion in Appendix C on tradeoffs that a

system designer may consider making when implementing

the scheme in his system.

Hash trees have been implemented in both software and

hardware applications. For simplicity, throughout this pa-

per, we will use secure processors and memory integrity

checking as our example application. However, the adap-

FSM

cache

store

load

checker

fixed-sized

state

write

read

RAM

trusted untrusted

Figure 1. Model

tive tree-log algorithm can be implemented anywhere hash

trees are currently being used to check untrusted data. The

application can experience a significant benefit if programs

can perform sequences of data operations before perform-

ing a critical operation.

The paper is organized as follows. Section 2 de-

scribes related work. Section 3 presents our model. Sec-

tion 4 presents background information on memory in-

tegrity checking: it describes the hash-tree and log-hash

checkers. Section 5 details our tree-log checker. Section 6

describes our adaptive tree-log checker. Section 7 provides

an experimental evaluation of the adaptive tree-log checker.

Section 8 concludes the paper. The appendices provide var-

ious supplemental material.

2. Related Work

The use of a hash tree (also known as a Merkle tree [9])

to check the integrity of untrusted memory was introduced

by Blum et al. [1]. The paper also introduced a log-based

scheme to check the correctness of memory. The log-based

scheme in [1] could detect random errors, but it was not se-

cure against active adversaries. The log-hash scheme that

the tree-log scheme uses is secure against an active adver-

sary. It is also more efficient than the log-based scheme

in [1] because time stamps can be smaller without increas-

ing the frequency of checks. Log-based schemes, by them-

selves, are not general enough because they do not per-

form well when integrity checks are frequent. The tree-log

scheme can use the tree when checks are frequent and move

data from the tree to the log-hash scheme as sequences of

operations are performed to take advantage of the constant

runtime bandwidth overhead of the log-hash scheme.

Hall and Jutla [6] propose parallelizable authentication

trees. In a standard hash tree, the hash nodes along the path

from the leaf to the root can be verified in parallel. Paral-

lelizable authentication trees also allow the nodes to be up-

dated in parallel on store operations. The log-hash scheme

could be integrated into these trees in a manner similar to

how we integrate it into a standard hash tree. However, the

principal point is that trees still incur a logarithmic band-

width overhead, whereas our tree-log scheme can reduce

the overhead to a constant bandwidth overhead.

3. Model

Figure 1 illustrates the model we use. There is a checker

that keeps and maintains some small, fixed-sized, trusted

state. The untrusted RAM (main memory) is arbitrarily

large. The finite state machine (FSM) generates loads and

stores and the checker updates its trusted state on each FSM

load or store to the untrusted RAM. The checker uses its

trusted state to verify the integrity of the untrusted RAM.

The FSM may also maintain a fixed-sized trusted cache.

The cache is initially empty, and the FSM stores data that

it frequently accesses in the cache. Data that is loaded into

the cache is checked by the checker and can be trusted by

the FSM.

The FSM is the unmodified processor running a user

program. The processor can have an on-chip cache. The

checker is special hardware that is added to the processor.

The trusted computing base (TCB) consists of the FSM with

its cache and the checker with its trusted state.

The problem that this paper addresses is that of check-

ing if the untrusted RAM behaves like valid RAM. RAM

behaves like valid RAM if the data value that the checker

reads from a particular address is the same data value that

the checker most recently wrote to that address.

In our model, the untrusted RAM is assumed to be ac-

tively controlled by an adversary. The adversary can per-

form any software or hardware-based attack on the RAM.

The untrusted RAM may not behave like valid RAM if the

RAM has malfunctioned because of errors, or if the data

stored has somehow been altered by the adversary. We are

interested in detecting whether the RAM has been behaving

correctly (like valid RAM) during the execution of the FSM.

The adversary could corrupt the entire contents of the RAM

and there is no general way of recovering from tampering

other than restarting the program execution from scratch;

thus, we do not consider recovery methods in this paper.

For this problem, a simple approach such as calculating

a message authentication code (MAC) of the data value and

V1 V2 V3 V4

h1 = h(V1.V2) h2 = h(V3.V4)

root = h(h1.h2)

Figure 2. A binary hash tree.

address, writing the (data value, MAC) pair to the address

and using the MAC to check the data value on each read,

does not work. The approach does not prevent replay at-

tacks: an adversary can replace the (data value, MAC) pair

currently at an address with a different pair that was previ-

ously written to the address.

We define a critical operation as one that will break the

security of the system if the FSM performs it before the in-

tegrity of all the previous operations on the untrusted RAM

is verified. The checker must verify whether the RAM has

been behaving correctly (like valid RAM) when the FSM

performs a critical operation. Thus, the FSM implicitly de-

termines when it is necessary to perform checks based on

when it performs a critical operation. It is not necessary to

check each FSM memory operation as long as the checker

checks the sequence of FSM memory operations when the

FSM performs a critical operation.

4. Background

4.1. Hash Tree

The scheme with which we compare our work is in-

tegrity checking using hash trees. Figure 2 illustrates a

hash tree. The data values are located at the leaves of the

tree. Each internal node contains a collision resistant hash

of the concatenation of the data that is in each one of its

children. The root of the tree is stored in the trusted state in

the checker where it cannot be tampered with.

To check the integrity of a node, the checker: 1) reads the

node and its siblings, 2) concatenates their data together, 3)

hashes the concatenated data and 4) checks that the resultant

hash matches the hash in the parent. The steps are repeated

on the parent node, and on its parent node, all the way to the

root of the tree. To update a node, the checker: 1) checks

the integrity of the node’s siblings (and the old value of the

node) via steps 1-4 described previously, 2) changes the data

in the node, hashes the concatenation of this new data with

the siblings’ data and updates the parent to be the resultant

hash. Again, the steps are repeated until the root is updated.

On each FSM load from address a, the checker checks

the path from a’s data value leaf to the trusted root. On

each FSM store of value v to address a, the checker updates

the path from a’s data value leaf to the trusted root. We re-

fer to these load and store operations as hash-tree-load(a)

and hash-tree-store(a, v). The number of accesses to the

RAM on each FSM load/store is logarithmic in the number

of data values that are being protected.

Given the address of a node, the checker can calculate

the address of its parent [4, Section 5.6]. Thus, given the

address of a leaf node, the checker can calculate the ad-

dresses of all of the nodes along the path from the leaf node

to the root.

A cache can be used to improve the performance of the

scheme (the model in Section 3 is augmented such that the

checker is able to read and write to the cache as well as to

the untrusted RAM). Instead of just storing recently-used

data values, the cache can be used to store both recently-

used data values and recently-used hashes. A node and its

siblings are organized as a block in the cache and in the

untrusted RAM. Thus, whenever the checker fetches and

caches a node from the untrusted RAM, it also simultane-

ously fetches and caches the node’s siblings, because they

are necessary to check the integrity of the node. Similarly,

when the cache evicts a node, it also simultaneously evicts

the node’s siblings.

The FSM trusts data value blocks stored in the cache and

can perform accesses directly on them without any hashing.

When the cache brings in a data value block from RAM,

the checker checks the path from the block to the root or to

the first hash along that path that it finds in the cache. The

data value block, along with the hash blocks used in the

verification, are stored in the cache. When the cache evicts

a data value or hash block, if the block is clean, it is just

removed from the cache. If the block is dirty, the checker

checks the integrity of the parent block and brings it into

the cache, if it is not already in the cache. The checker then

updates the parent block in the cache to contain the hash of

the evicted block. An invariant of this caching algorithm

is that hashes of uncached blocks must be valid whereas

hashes of cached blocks can have arbitrary values.

4.2. LogHash

The essence of the log-hash scheme [2, 11] is that the

checker maintains a “write log” and a “read log” of its write

and read operations to the untrusted RAM. Figure 3 shows

the basic put and take operations that are used internally in

the checker. Figure 4 shows the interface the FSM calls to

use the log-hash checker to check the integrity of the RAM.

In Figure 3, the checker maintains two multiset hashes

[2] and a counter. In the untrusted RAM, each data value

is accompanied by a time stamp. Each time the checker

performs a put operation, it appends the current value of

The checker’s fixed-sized state consists of two multiset hashes, WRITEHASH and READHASH, and one counter, TIMER.

Initially, the hashes and counter are 0.

put(a, v): writes a value v to address a in the untrusted RAM:

1. Let t be the current value of TIMER. Write (v, t) to a in the untrusted RAM.

2. Update WRITEHASH: WRITEHASH +H= hash(a, v, t).

take(a): reads the value at address a in the untrusted RAM:

1. Read (v, t) from a in the untrusted RAM.

2. Update READHASH: READHASH +H= hash(a, v, t).

3. TIMER = max(TIMER, t + 1).

Figure 3. put and get operations

log-hash-add(a, v): put(a, v).

log-hash-store(a, v): take(a); put(a, v).

log-hash-load(a): v = take(a); return v to the caller; put(a, v).

log-hash-check(): checks if the RAM has behaved like valid RAM (at the end of operation):

take(a) for each address a. If WRITEHASH is equal to READHASH, return true; else, return false.

Figure 4. Loghash checker for untrusted RAM

the counter (a time stamp) to the data value, and writes

the (data value, time stamp) pair to memory. When the

checker performs a take operation, it reads the pair stored

at an address and, if necessary, updates the counter so that

it is strictly greater than the time stamp that was read. The

multiset hashes are updated (+H) with (a, v, t) triples cor-

responding to the pairs written or read from the RAM.

Figure 4 shows how the checker implements the store-

load interface. To initialize an address, the checker calls

log-hash-add(a, 0) exactly once on each address that the

FSM uses to put an initial value at the address. When

the FSM performs a log-hash-store operation, the checker

takes the original value at the address, then puts the new

value to the address. When the FSM performs a log-hash-

load operation, the checker takes the original value at the

address and returns this value to the FSM; it then puts the

same value back to the address (only the time stamp needs

to be written to RAM). To check the RAM at the end of a

sequence of FSM operations1, the checker calls log-hash-

1As a note, the log-hash-check operation can be performed at any

time, even after each FSM store/load operation. The log-hash scheme does

not require that sequences of operations be performed before log-hash-

check operations can be performed. In the model in Section 3, log-hash-

checks are performed when critical operations are performed. The log-

hash scheme performs very well when critical operations are infrequent,

but may not perform well when critical operations are frequent.

check() which takes the value at each address, then com-

pares WRITEHASH and READHASH. If WRITEHASH is

equal to READHASH, the checker concludes that the RAM

has been behaving correctly, i.e., like valid RAM. Interme-

diate checks can be performed with a slightly modified log-

hash-check operation [2] (also, cf. Section 5).

Because the checker checks that WRITEHASH is equal

to READHASH, substitution (the RAM returns a value that

is never written to it) and replay (the RAM returns a stale

value instead of the one that is most recently written) at-

tacks on the RAM are prevented. The purpose of the time

stamps is to prevent reordering attacks in which RAM re-

turns a value that has not yet been written so that it can sub-

sequently return stale data. A formal proof that the scheme

is secure is in [2].

A cache can be used to improve the performance of the

scheme. The cache contains just data value blocks. The

RAM contains (value block, time stamp) pairs. When the

cache brings in a block from RAM, the checker performs

a take operation on the address. When the cache evicts

a block, the checker performs a put operation on the (ad-

dress, value block) pair (if the block is clean, only the time

stamp is written to RAM). The log-hash-check operation

operates as before, except it just has to perform take opera-

tions on uncached RAM addresses.

hash tree

log-hash

︸ ︷︷ ︸ ︸ ︷︷ ︸

time stamptime stamp

Figure 5. Treelog checker

5. Tree-Log Checker

Figure 5 illustrates the tree-log checker and Figure 6

shows the interface that the FSM calls to use the tree-log

checker to check the integrity of the untrusted RAM.

tree-log-store calls hash-tree-store(a, v) if address a

is in the tree or calls log-hash-store(a, v) if a is in the log-

hash scheme. tree-log-load operates similarly.

tree-log-moveToLogHash first calls hash-tree-

load(a) to check the integrity of the value v at address a in

the RAM. The hash-tree-updateParent operation checks

the integrity of the parent node of the specified address and

updates the parent node to contain a hash of the specified

value (the operation propagates the check and the update

to the root of the tree). The NULL value is a value that

address a cannot have, such as a value greater than the

maximum possible value for address a. (Though it updates

the parent node of the address, hash-tree-updateParent

does not actually write a new value for the address).

hash-tree-updateParent(a, NULL) is called to remove a

from the tree. log-hash-add(a, v) is then called to add a

with value v to the log-hash scheme2.

tree-log-check checks the integrity of the RAM that is

currently protected by the log-hash scheme by calling log-

hash-check. tree-log-check takes an argument Y , rep-

resenting a set of addresses. Each address in Y is moved

back to the hash tree as the log-hash-check operation is

performed. Addresses that are not in Y but are in the log-

hash scheme remain in the log-hash scheme. The proof that

the tree-log scheme is secure is in Appendix A.

In the event the log-hash TIMER becomes close to its

maximum value before the FSM calls tree-log-check, the

2Because of the organization of the tree, whenever an address is moved

to the log-hash scheme, the block consisting of the address’s data value

node and its siblings is log-hash-added to the log-hash scheme (the

block’s address is the address of the first node in the block). If the tree was

organized such that the data values are hashed first, then the tree is created

over the hashes of the data values, individual data value nodes could be

moved to log-hash scheme.

checker can perform tree-log-check(∅) to reset it. tree-

log-check(∅) essentially performs an intermediate log-hash

check on the addresses in the log-hash scheme.

The tree-log scheme allows for optimization of the log-

hash scheme. All of the addresses are initially in the tree.

We call the period between intermediate tree-log-check

operations a check period. During a check period, the

checker can move an arbitrary set of addresses to the log-

hash scheme, where the FSM can perform store and load

operations on them in the log hash scheme. When a tree-

log-check operation is performed, all of the addresses in

the log-hash scheme can be moved back to the tree, where

their values will be remembered by the tree. During a sub-

sequent check period, a different arbitrary set of addresses

can be moved to the log-hash scheme to be used by the FSM

in the log hash scheme. The benefit is that, whenever a tree-

log-check operation is performed, only the addresses of the

data that have been moved to the log-hash scheme since the

last tree-log-check operation need to be read to perform

the check, as opposed to reading the entire set of addresses

that the FSM had used since the beginning of its execution.

If the tree-log-check operation needs to read addresses that

are protected by the log-hash scheme, but were not used

during the check period, then the log-hash scheme is not

optimal. Thus, the ability of the tree-log scheme to move

the set of addresses that are accessed during a check period

into the log-scheme and move them back into the tree on a

tree-log-check operation so that a different set of addresses

can be moved to the log-hash scheme during a subsequent

check period, helps to optimize the bandwidth overhead of

the log-hash scheme.

5.1. Caching

Caching is easily integrated into the tree-log scheme us-

ing the approaches described in Sections 4.1 and 4.2. If the

block’s address is protected by the tree, when a data value

block is brought into the cache or evicted from the cache,

tree-log-store(a, v): stores v at address a:

1. If a is protected by the tree, hash-tree-store(a, v). Else, log-hash-store(a, v).

tree-log-load(a): loads the data value at address a:

1. If a is protected by the tree, hash-tree-load(a). Else, log-hash-load(a).

tree-log-moveToLogHash(a): move address a from the tree to the log-hash scheme:

1. v = hash-tree-load(a).

2. hash-tree-updateParent(a, NULL).

3. log-hash-add(a, v).

tree-log-check(Y): checks if the RAM (currently being protected by the log-hash scheme) has behaved like valid RAM;

each of the addresses in set Y is moved from the log-hash scheme to the hash tree:

1. log-hash-check().

Also, create a new TIMER
′ and WRITEHASH

′. As the untrusted RAM is read to perform the log-hash-check, for

each address a that is read, where v is the data value of a:

(a) if a ∈ Y , call hash-tree-updateParent(a, v); else call log-hash-add(a, v), using TIMER
′ and WRITE-

HASH
′, to reset the time stamps in RAM and update WRITEHASH

′.

Set TIMER and WRITEHASH to TIMER
′ and WRITEHASH

′; reset READHASH to 0.

Figure 6. Treelog checker for untrusted RAM

the caching approach in Section 4.1 is used. If the block’s

address is protected by the log-hash scheme, the caching ap-

proach in Section 4.2 is used. tree-log-moveToLogHash

brings the block and/or the block’s parent into the cache

if they are not already in the cache, using the approach in

Section 4.1. The parent is then updated in the cache. The

tree-log-check uses an approach similar to that in Sec-

tion 4.2 when performing the log-hash-check operation.

If the block’s address is in Y , the block’s parent is brought

into the cache as described in Section 4.1 and updated in the

cache.

5.2. Bookkeeping

In Appendix A, we prove that, with regards to security,

the data structures that the checker uses to determine if an

address is protected by the hash tree or if it is protected by

the log-hash scheme, and to determine which addresses to

read to perform a tree-log-check operation, do not have to

be protected. The necessary information is already implic-

itly encoded in the hash tree and log hash schemes. The

data structures are strictly used for bookkeeping and a sys-

tem designer is free to choose any data structures that allow

the checker to most efficiently perform these functions.

In our experiments in Section 7, a range of addresses is

moved to the log-hash scheme when the log-hash scheme

is used. The checker maintains the highest and lowest ad-

dress of the range in its fixed-sized trusted state. When the

checker performs a tree-log-check operation, it moves all

of the addresses in the log-hash scheme to the tree, so that

a separate range of addresses can be moved to the log hash

scheme during a subsequent check period.

Maintaining a range of addresses in the log-hash scheme

is very effective when the FSM exhibits spatial locality in its

accesses, which is common for software programs. How-

ever, instead of using a range, a more general data struc-

ture would be to use a bitmap stored unprotected in RAM.

Optionally, some of the bitmap could be cached. With the

bitmap implementation, the checker may also maintain a

flag in its trusted state. If the flag is true, the checker

knows that all of the data is in the tree and it does not

use the bitmap; its stores/loads perform exactly as hash tree

store/loads. If the flag is false, the checker then uses the

bitmap.

6. Adaptive Tree-Log Checker

Section 6.1 gives an overview of the interface the FSM

calls to use the adaptive tree-log checker to check the in-

tegrity of the RAM. Sections 6.2 and 6.3 examine the

checker in the case where the FSM does not use a cache.

They describe the approach we use to guarantee a worst-

Table 1. ∆R if a range is used for bookkeeping (cf. Section 5.2). In the table, bt is the number of bits
in a time stamp, bb is the number of bits in a data value/hash block and h is the height of the hash
tree (the length of the path from the root to the leaf in the tree).

tree-log-store hash-tree-store ∆R = ω ∗ (2hbb − bb)
tree-log-load hash-tree-load ∆R = ω ∗ (h − 1)bb

tree-log-store log-hash-store ∆R = 2hbb − (2(bb + bt)) + ω ∗ (2hbb − bb)
tree-log-store log-hash-load ∆R = hbb − (bb + 2bt) + ω ∗ (h − 1)bb

tree-log-moveToLogHash ∆R = −(hbb + (h − 1)bb + bt)
tree-log-check ∆R = −nlh((bb + bt) + 2(h − 1)bb)

case bound on the bandwidth overhead of the checker and

the tree-log strategy we adopt. Section 6.4 extends the

methodology to caching. Throughout this discussion, we

will assume that the checker uses a range for its bookkeep-

ing (cf. Section 5.2). In [3], we extend the discussion to

when the checker uses a more general data structure, such

as a bitmap, for its bookkeeping.

6.1. Interface Overview

The adaptive tree-log interface consists of just three

operations: adaptive-tree-log-store(a, v), adaptive-tree-

log-load(a) and adaptive-tree-log-check(); these opera-

tions call their respective tree-log operations (cf. Section 5).

During the FSM’s execution, the FSM calls adaptive-

tree-log-store and adaptive-tree-log-load to access the

untrusted RAM. The adaptive-tree-log-check is called

whenever the FSM executes a critical operation (cf. Sec-

tion 1 and Section 3).

The checker has as a parameter, a worst-case bound. The

bound is expressed relative to the bandwidth overhead of

the hash tree, if the hash tree had been used to check the

integrity of the RAM during the FSM’s execution. For

instance, if the bound is set at 10%, then, for all FSMs,

the tree-log bandwidth overhead is guaranteed to be less

than 1.1 times the hash tree bandwidth overhead. (The

bandwidth overhead is defined as the additional bandwidth

consumed during the program’s execution by the integrity

checking scheme compared to the bandwidth the program

would have consumed without any integrity checking.)

During the FSM’s execution, the checker monitors its

bandwidth overhead, and it moves addresses to the log-

hash scheme based on its bandwidth overhead. Whenever

an adaptive-tree-log-check operation occurs, the checker

moves all of the addresses in the log-hash scheme back to

the tree to optimize the log-hash scheme; the operation does

not need any arguments from the FSM because the checker

moves all of the addresses in the log-hash scheme to the

tree. The adaptive-tree-log-check operation can be per-

formed at anytime; whenever it is performed, the bandwidth

overhead of the checker is guaranteed never to be worse

than the parameterizable worst-case bound.

6.2. Without Caching: Worstcase Bound

First, we consider the case where the FSM does not use

a cache. We make no assumptions about the FSM’s access

patterns. The naı̈ve approach would be for the checker to

just move addresses to the log-hash scheme each time it ac-

cesses an address that is in the tree. The naı̈ve approach is

a valid approach of using the tree-log scheme. However,

the bandwidth overhead of the approach could potentially

be more than twice that of the hash tree during short check

periods (primarily because of the extra cost of the tree-

log-check operation). Thus, to provide the parameterizable

worst case bound, the checker needs to regulate the rate at

which addresses are added to the log-hash scheme.

Let ω be the parameterizable worst case bound (e.g.,

if the bound is 10%, ω = 0.1). While the FSM is run-

ning, the adaptive tree-log checker maintains two statis-

tics: (1) its current total reserve, R, and (2) the number

of data value blocks currently in the log-hash scheme, nlh.

R = (1 + ω)Bht − Btl where Btl is the current total tree-

log bandwidth overhead and Bht is the current total hash

tree bandwidth overhead, if the hash tree had been used to

check the RAM. Intuitively, R is how many bits ahead the

tree-log checker is of the parameterizable worst-case bound.

Bht is easily determined given the height of the tree, the size

of a hash and its siblings, and the total number of FSM op-

erations performed thus far. R and nlh are also maintained

in the checker’s fixed-sized trusted state. nlh is incremented

whenever an address is moved from the tree to the log-hash

scheme, and reset to zero on a tree-log-check operation af-

ter the operation has moved the addresses back to the tree.

R is updated on each checker operation.

We itemize how R changes on each tree-log operation:

• tree-log-store/tree-log-load: R increases with each

operation.

adaptive-tree-log-store(a, v):

1. If a is in the tree, and Rcp > Ctl-mv-to-lh + Ctl-chk(nlh + 1), then tree-log-moveToLogHash(a).

2. tree-log-store(a, v).

adaptive-tree-log-load(a):

1. If a is in the tree, and Rcp > Ctl-mv-to-lh + Ctl-chk(nlh + 1), then tree-log-moveToLogHash(a).

2. tree-log-load(a).

adaptive-tree-log-check():

1. Let Z be the set of addresses in the log-hash scheme. tree-log-check(Z).

Figure 7. Adaptive treelog checker for untrusted RAM, without caching

• tree-log-moveToLogHash: R decreases with each

operation. Let Ctl-mv-to-lh be the b/w consumed

by the tree-log-moveToLogHash operation. Then,

∆R = −Ctl-mv-to-lh.

• tree-log-check: R decreases with each operation. Let

Ctl-chk(nlh) be the bandwidth consumed by the tree-

log-check operation; Ctl-chk(nlh) increases with nlh.

∆R = −Ctl-chk(nlh).

Table 1 details the amounts by which R changes when a

range is used for bookkeeping (cf. Section 5.2). The reserve

increases on each tree-log-store/tree-log-load operation.

The essential idea of how we bound the worst case tree-log

bandwidth overhead is to have the checker build up enough

reserve to cover the cost of the tree-log-moveToLogHash

operation plus the increased cost of the tree-log-check op-

eration before the checker moves an address from the tree

to the log-hash scheme. Whenever the checker wants to

move an address to the log-hash scheme, it performs a test

to determine if it has enough reserve to do so. For the test,

the checker checks that the address is in the tree and that

R > Ctl-mv-to-lh + Ctl-chk(nlh + 1). If these checks

pass, the test returns true; otherwise, the test returns false.

If the test returns true, the checker has enough reserve to

be able to move the address to the log-hash scheme. Other-

wise, the checker cannot move the address to the log-hash

scheme. Whenever an address is moved to the log-hash

scheme, nlh is incremented.

The mechanism described in this section is a safety

mechanism for the adaptive tree-log scheme: whenever an

adaptive-tree-log-check operation occurs, the bandwidth

overhead of the checker is guaranteed never to be larger

than (1 + ω)Bht. As can be seen from the expression for

R, the larger ω is, the sooner the checker will be able to

move addresses to the log-hash scheme. Also, the larger

ω is, the larger could be the potential loss in the case that

the tree-log scheme has to perform an adaptive-tree-log-

check soon after it has started moving addresses to the log-

hash scheme; however, in the case that the performance of

the tree-log scheme improves when the log-hash scheme is

used, which is the case we expect, the larger ω is, the greater

the rate at which addresses can be added to the log-hash

scheme and the greater can be the performance benefit of

using the log-hash scheme. Also from the expression for

R, the smaller the tree-log bandwidth overhead compared

to the hash tree bandwidth overhead, the better the tree-log

scheme performs and the greater the rate at which addresses

can be added to the log-hash scheme. This helps the checker

adapt to the performance of the scheme, while still guaran-

teeing the worst-case bound.

6.3. Without Caching: TreeLog Strategy

Section 6.2 describes the minimal requirements that are

needed to guarantee the bound on the worst-case bandwidth

overhead of the tree-log checker. The approach described in

Section 6.2 can be applied as a greedy algorithm in which

addresses are moved to the log-hash scheme whenever R is

sufficiently high. However, it is common for programs to

have a long check period during which they process data,

then have a sequence of short check periods as they per-

form critical instructions to display or sign the results. If

the checker simply moved addresses to the log-hash scheme

as long as R was large enough, for short check periods,

the checker might move a lot of data into the log-hash

scheme and incur a costly penalty during that check period

when the adaptive-tree-log-check operation occurs. We

do not want to risk gains from one check period in sub-

sequent check periods. Thus, instead of using R, we use

Rcp, the reserve that the checker has gained during the cur-

rent check period, to control the rate at which addresses

are added to the log-hash scheme. By using Rcp instead

of R, for short check periods, it is more likely that the

checker will just keep addresses in the tree, instead of mov-

ing addresses to the log-hash scheme. If we let Rcp-start
be the value of R at the beginning of the check period, then

Rcp = R − Rcp-start. Rcp regulates the rate at which ad-

dresses are added to the log-hash scheme during the current

check period.

Figure 7 shows the interface the FSM uses to call the

adaptive tree-log checker. The strategy we use is a sim-

ple strategy and more sophisticated strategies for moving

addresses from the tree to the log-hash scheme can be de-

veloped in the future. Nevertheless, the principal point is

that whatever strategy the checker uses can be layered over

the safety mechanism in Section 6.2 to ensure that the strat-

egy’s bandwidth overhead is never worse than the parame-

terizable worst-case bound.

At this point, we precisely describe the three features of

the adaptive tree-log checker. Firstly, the checker adap-

tively chooses a tree-log strategy for the FSM when the

FSM is executed. This allows FSMs to be run unmodified,

yet still be able to benefit from the checker’s features. Sec-

ondly, even though the checker is adaptive, it is able to pro-

vide a guarantee on its worst case performance, such that,

for all FSMs, the performance of the checker is guaran-

teed to never be worse than the parameterizable worst case

bound. This feature allows the adaptive tree-log checker to

be turned on by default in systems. The third feature is that,

for all FSMs, as the average number of per data FSM op-

erations (total number of FSM data operations/total number

of data accessed) during a checking period increases, the

checker moves from a logarithmic bandwidth overhead to a

constant bandwidth overhead, ignoring the bandwidth con-

sumption of intermediate log-hash integrity checks. This

feature allows large classes of FSMs to take advantage of

the constant runtime bandwidth overhead of the optimized

log-hash scheme to improve their integrity checking perfor-

mance, because FSMs typically perform many data opera-

tions before performing a critical operation.

Let |TIMER| be the bit-length of the log-hash TIMER

counter. In the third feature, we exclude intermediate log-

hash integrity checks because they become insignificant for

sufficiently large |TIMER|. Whenever the TIMER reaches its

maximum value during a check period, an intermediate log-

hash check is performed (cf. Section 5). However, by using

a large enough |TIMER|, intermediate checks occur so in-

frequently that the amortized bandwidth cost of the check is

very small, and the principal overhead is the constant run-

time bandwidth overhead of the time stamps.

6.4. With Caching

We now consider the case where the FSM uses a cache.

The only assumption that we make about the cache is that

it uses a deterministic cache replacement policy, such as

the popular LRU (least recently-used) policy. There are

two main extensions that are made to the methodology in

Sections 6.2 and 6.3. Firstly, to accurately calculate the re-

serves, the checker will need to be equipped with cache sim-

ulators. Secondly, with a cache, the hash tree may perform

very well. There can exist FSMs for which the reserve can

decrease on tree-log-store and tree-log-load operations.

To handle this situation, the adaptive checker will need an

additional tree-log operation that allows it to backoff, and

will need to perform an additional test to determine whether

it will need to backoff. We describe the extensions.

Cache performance is very difficult to predict. Thus,

to help determine Btl and Bht, the checker maintains a

hash tree cache simulator and a base cache simulator. The

hash tree simulator simulates the hash tree and gives the

hash tree bandwidth consumption. The base cache simula-

tor simulates the FSM with no memory integrity checking

and gives the base bandwidth consumption, from which the

bandwidth overheads can be calculated. The checker also

maintains a tree-log simulator that can be used to determine

the cost of a particular tree-log operation before the checker

actually executes the operation. It is important to note that

each simulator only needs the cache status bits (e.g., the

dirty bits and the valid bits) and the cache addresses, in par-

ticular the cache address tags [7]; the data values are not

needed. The tag RAM is a small percentage of the cache

[7]. Thus, each simulator is small and of a fixed size (be-

cause the cache is of a fixed size) and can, in accordance

with our model in Section 3, be maintained in the checker.

The simulators do not make any accesses to the untrusted

RAM. The simulators are being used to help guarantee the

worst-case bound when the FSM uses a cache and, in Ap-

pendix C, we discuss how they can be dropped if the strict-

ness of the bound is relaxed.

We expect tree-log-store and tree-log-load operations

to generally perform better than the corresponding hash tree

operations because the log-hash scheme does not pollute the

cache with hashes and because the runtime overhead of the

log-hash scheme is constant-sized instead of logarithmic.

However, unlike a cacheless hash tree, a hash tree with a

cache may perform very well. Furthermore, in the tree-

log scheme, because the log-hash scheme does not cache

hashes, when the hash tree is used, the tree’s cost may be

more expensive on average. Also, the tree-log and hash tree

cache access patterns are different, and the tree-log cache

performance could be worse than the hash tree cache perfor-

mance. Reserve can sometimes decrease on tree-log-store

and tree-log-load operations. Thus, because the FSM uses

a cache, the adaptive checker needs to have an additional

backoff procedure that reverts it to the vanilla hash tree if

the reserve gets dangerously low.

The backoff procedure consists of performing a tree-

adaptive-tree-log-store(a, v):

1. If a is in the tree, and R′

cp > Ctl-mv-to-lh + Ctl-chk(nlh + 1) + Cbuffer(nlh + 1),

then tree-log-moveToLogHash(a).

2. If the tree-log and hash tree caches are not synchronized, if R + ∆Rtl-op < Cbkoff(nlh),

then tree-log-bkoff.

3. tree-log-store(a, v).

Figure 8. adaptive-tree-log-store, with caching

log-check operation and synchronizing the FSM’s cache

by putting the cache into the exact state in which it would

have been in the hash-tree scheme. This is done by writ-

ing back dirty tree nodes that are in the cache and updat-

ing them in the tree in RAM, then checking and bringing

into the cache, blocks from RAM that are in the hash tree

cache simulator that are not in the FSM’s cache3. We re-

fer to the backoff procedure as tree-log-bkoff. Let Csync
be the cost of synchronizing the cache (it is independent

of nlh). Then the bandwidth consumed by tree-log-bkoff

is Cbkoff(nlh) = Ctl-chk(nlh) + Csync. Whenever the

checker backs off, it continues execution just using the tree

alone, until it has enough reserve to try moving addresses to

the log-hash scheme again.

Again, we indicate how R changes with each tree-log

operation:

• tree-log-store/tree-log-load: With each operation,

R usually increases; however it can decrease. Let

∆Rtl-op be the change in R that occurs when the

store/load operation is performed; ∆Rtl-op can be

positive or negative (and is different for each store/load

operation). ∆R = ∆Rtl-op.

• tree-log-moveToLogHash: R decreases with each

operation. ∆R = −Ctl-mv-to-lh.

• tree-log-check: R decreases with each operation.

∆R ≥ −Ctl-chk(nlh).

• tree-log-bkoff: R decreases with each operation.

∆R ≥ −Cbkoff(nlh).

Figure 8 shows the adaptive-tree-log-store operation

when the FSM uses a cache. The adaptive-tree-log-load

operation is similarly modified. adaptive-tree-log-check

is similar to the operation in Figure 7. The actual costs

of ∆Rtl-op and Ctl-mv-to-lh are obtained at runtime from

the simulators. The worst-case costs of Ctl-chk(nlh) and

3In the synchronized cache, the hashes of cached nodes may not be the

same as they would have been if the hash tree had been used. However, the

values of these hashes are not important (cf. the invariant in Section 4.1).

Cbkoff(nlh) can be calculated; on the tree-log-check and

tree-log-bkoff operations, R decreases by an amount that

is guaranteed to be smaller than these worst-case costs.

We show how to calculate these worst-case costs in Ap-

pendix B.

In Figure 8, the first test in step 1 is similar to the

test in Section 6.3. However, in this case, the reserve

that the checker uses to regulate the rate at which ad-

dresses are added to the log-hash scheme is R′

cp, where

R′

cp is the reserve that the checker has gained after R >

Cbkoff(0) during the current check period. Thus, R′

cp =

R − max(Cbkoff(0), Rcp-start). R′

cp only begins record-

ing reserve after R has become greater than Cbkoff(0) be-

cause otherwise, the checker would not have enough re-

serve to be able to backoff if it needed to. The test also

gives a small reserve buffer per address in the log-scheme,

Cbuffer(nlh), for the tree-log scheme to start outperforming

the hash tree.

The test in step 2 determines whether the checker needs

to backoff. The tree-log and hash tree caches are unsynchro-

nized if the log-hash scheme has been used (since the begin-

ning of the FSM’s execution or since the checker last backed

off). It is only necessary to perform the test if the tree-log

and hash tree caches are unsynchronized. From the expres-

sion for R′

cp, R > R′

cp + Cbkoff(0). From the first test,

to successfully move an address to the log-hash scheme,

R′

cp > (Ctl-mv-to-lh + Ctl-chk(nlh + 1) + Cbuffer(nlh +

1)). Thus, R > (Ctl-mv-to-lh + Ctl-chk(nlh + 1) +
Cbuffer(nlh + 1) + Cbkoff(0)). From the expression for

Cbkoff(nlh), R > (Ctl-mv-to-lh + Ctl-chk(nlh + 1) +
Cbuffer(nlh+1)+Ctl-chk(0)+Csync) > (Ctl-mv-to-lh+
Cbkoff(nlh + 1) + Cbuffer(nlh + 1) + Ctl-chk(0)). Thus,

R > (Ctl-mv-to-lh + Cbkoff(nlh + 1) + Cbuffer(nlh +
1)). This means that, whenever an address is success-

fully moved to the log-hash scheme, R > (Cbkoff(nlh) +
Cbuffer(nlh)), (recall that nlh is incremented when an ad-

dress is successfully moved to the log-hash scheme). If

the log-hash scheme has been used, the second test uses

∆Rtl-op, obtained from the simulators, to determine if per-

forming the store operation would result in its reserve drop-

10
0

10
2

10
4

10
6

10
8

0

5

10

15

20

25

Check Period (FSM operations)

B
a

n
d

w
id

th
 O

v
e

rh
e

a
d

(b
y
te

s
 p

e
r

o
p

e
ra

ti
o

n
)

Tree-Log

Hash Tree

(a) b1, cache size = 16 blocks

10
0

10
2

10
4 10

6 10
80

5

10

15

20

25

30

Check Period (FSM operations)

B
a

n
d

w
id

th
 O

v
e

rh
e

a
d

(b
y
te

s
 p

e
r

o
p

e
ra

ti
o

n
)

Tree-Log

Hash Tree

(b) b1, cache size = 12 blocks

0

10

20

30

40

50

60

70

80

90

100

b1 b2 b3 b4

B
a

n
d

w
id

th
 O

v
e

rh
e

a
d

(b
y
te

s
 p

e
r

o
p

e
ra

ti
o

n
) Tree-Log

Hash Tree

Log-Hash

(c)

Figure 9. Experimental Results

ping below Cbkoff(nlh). If it does, the checker backs off,

then performs the operation. Otherwise, it just performs the

operation in its current state.

With regards to the theoretical claims on the tree-log al-

gorithm in Section 6.3, the first two features on being adap-

tive and providing a parameterizable worst case bound re-

main the same. (With the second feature, it is implicit that

if, for a particular FSM, the hash tree performs well, then

the tree-log scheme will also perform well, because the tree-

log bandwidth overhead will be, at most, the parameteriz-

able worst case bound more than the hash tree bandwidth

overhead.) With regards to the third feature, with a cache,

the adaptive tree-log checker will not improve over the hash

tree for some FSMs. FSMs whose runtime performance im-

proves when the log-hash scheme is used experience the

asymptotic behavior. From the expression for calculating

reserve (and from our experiences with experiments), we

see that the general trend is that the greater the hash tree

bandwidth overhead, the less likely it is for the checker to

backoff and the greater the tree-log scheme’s improvement

will be when it improves the checker’s performance. Thus,

if the hash tree is expensive for a particular FSM, the adap-

tive tree-log scheme will, when it has built up sufficient re-

serve, automatically start using the log-hash scheme to try

to reduce the integrity checking bandwidth overhead.

7. Experiments

We present some experimental evidence to support the

theoretical claims on the adaptive tree-log algorithm. In

the experiments, a 4-ary tree of height 9 was used; the data

value/hash block size was 64 bytes and the time stamp size

was 32 bits. ω was set at 10%. The benchmarks are syn-

thetic and give the access patterns of stores and loads. The

size of the working set, the amount of data accessed by the

benchmarks, is about 214 bytes. (Cbuffer(nlh) was about

(4 ∗ 9 ∗ 64 ∗ nlh) bytes.) Figure 9(a) shows the bandwidth

overhead for different check periods for a particular bench-

mark, b1. The cache size was 16 blocks. The tree-log

scheme has exactly the same bandwidth overhead as the

hash tree for check periods of 103 FSM store/load opera-

tions and less. Around check periods of 104 operations,

there is a slight degradation (tree-log: 21.4 bytes per opera-

tion, hash tree: 21.0 bytes per operation), though not worse

than the 10% bound. Thereafter, the bandwidth overhead

of the tree-log scheme becomes significantly smaller. By

check periods of 107 operations, the tree-log scheme con-

sumes 1.6 bytes per operation, a 92.4% reduction in the

bandwidth overhead compared to that of the hash tree. (We

do not show the results for the log-hash scheme for this ex-

periment because its bandwidth overhead is prohibitively

large when check periods are small.) In Figure 9(b), the

cache size is reduced to 12 blocks, making the hash tree

more expensive. The figure shows a greater tree-log scheme

improvement over the hash tree bandwidth overhead when

the tree-log scheme improves on the hash tree. Figure 9(c)

shows the results for different benchmarks of an access pat-

tern that checked after a check period of 106 operations,

then after each of five check periods of 103 operations. The

experiment demonstrates a simple access pattern for which

the tree-log scheme outperforms both the hash tree and log-

hash schemes.

8. Conclusion

We have introduced an adaptive tree-log scheme as a

general-purpose integrity checker. We have provided a the-

oretical foundation for the checker and the methodology

that can be used to provide the guarantees and the asymp-

totic behavior of the checker’s performance. The adaptive

tree-log algorithm can be implemented anywhere hash trees

are currently being used to check the integrity of untrusted

data. The application can experience a significant benefit if

programs can perform sequences of data operations before

performing a critical operation.

References

[1] M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and M. Naor.

Checking the Correctness of Memories. In Algorithmica,

volume 12, pages 225–244, 1994.

[2] D. Clarke, S. Devadas, M. van Dijk, B. Gassend, and G. E.

Suh. Incremental Multiset Hash Functions and Their Appli-

cation to Memory Integrity Checking. In Advances in Cryp-

tology - Asiacrypt 2003 Proceedings, volume 2894 of LNCS,

pages 188–207. Springer-Verlag, November 2003.

[3] D. Clarke, G. E. Suh, B. Gassend, A. Sudan, M. van Dijk,

and S. Devadas. Towards Constant Bandwidth Overhead In-

tegrity Checking of Untrusted Data. In MIT CSAIL CSG

Technical Memo 480, November 2004.

[4] B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and S. De-

vadas. Caches and Merkle Trees for Efficient Memory In-

tegrity Verification. In Proceedings of Ninth International

Symposium on High Performance Computer Architecture,

pages 295–306, February 2003.

[5] O. Goldreich and R. Ostrovsky. Software Protection and

Simulation on Oblivious RAMs. Journal of the ACM,

43(3):431–473, 1996.

[6] E. Hall and C. S. Jutla. Parallelizable Authentication Trees.

In Cryptology ePrint Archive, December 2002.

[7] J. L. Hennessy and D. A. Patterson. Computer Organization

and Design. Morgan Kaufmann Publishers, Inc., 1997.

[8] D. Lie. Architectural Support for Copy and Tamper-

Resistant Software. PhD thesis, Stanford University, De-

cember 2003.

[9] R. C. Merkle. Secrecy, Authentication, and Public Key Sys-

tems. PhD thesis, Stanford University, June 1979.

[10] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and

S. Devadas. AEGIS: Architecture for Tamper-Evident and

Tamper-Resistant Processing. In Proceedings of the 17th

Int’l Conference on Supercomputing, pages 160–171, June

2003.

[11] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. De-

vadas. Efficient Memory Integrity Verification and Encryp-

tion for Secure Processors. In Proceedings of the 36th Int’l

Symposium on Microarchitecture, pages 339–350, Decem-

ber 2003.

[12] J. Yang, Y. Zhang, and L. Gao. Fast Secure Processor for In-

hibiting Software Piracy and Tampering. In Proceedings of

the 36th Int’l Symposium on Microarchitecture, pages 351–

360, December 2003.

A. Proof of Tree-Log Checker

In this appendix, we prove the security of the tree-log

checker in Section 5. We refer to a multiset as a finite un-

ordered group of elements where an element can occur as

a member more than once. Recall from Section 3 that we

say that RAM behaves like valid RAM if the data value that

the checker reads from a particular address is the same data

value that the checker most recently wrote to that address.

The simplified definition of valid RAM in Section 3 does

not specify what happens in the log-hash scheme (cf. Sec-

tion 4.2) if a store or load operation is done on an address

that has not been added to the RAM. For clarity, if log-

hash-store or log-hash-load is called on an address before

log-hash-add is called to add the address to the log-hash

scheme, then the RAM has not behaved like valid RAM.

We first prove the security of the log-hash scheme in Sec-

tion 4.2.

Lemma A.1 Denote the addresses on which log-hash-add

has been called on as the multiset, Mlh-add. If Mlh-add is

a set (log-hash-add has been called exactly once on each

address), the log-hash-check operation returns true if and

only if the untrusted RAM has behaved like valid RAM and

the log-hash-check operation has read exactly the set of

addresses in Mlh-add.

Proof Let W be the multiset of triples written to memory

and let R be the multiset of triples read from memory. That

is, W hashes to WRITEHASH and R hashes to READHASH.

If the untrusted RAM has behaved like valid RAM and

the log-hash-check operation has read exactly the set of

addresses in Mlh-add, it is easy to verify that the log-hash-

check operation returns true. Suppose the RAM does not

behave like valid RAM (i.e., the data value that the checker

reads from an address is not the same data value that the

checker had most recently written to that address). We will

prove that W 6= R.

Consider the put and take operations that occur on an

address as occurring on a timeline. To avoid confusion with

the values of TIMER, we express this timeline in terms of

processor cycles. Let x1 be the cycle of the first incorrect

take operation. Suppose the checker reads the pair (v1, t1)
from address a at x1. If there does not exist a cycle at which

the checker writes the pair (v1, t1) to address a, then W 6=
R and we are done.

Suppose there is a cycle x2 when the checker first writes

(v1, t1) to address a. Because of line 3 in the take opera-

tion, the values of time stamps of all of the writes to a after

x1 are strictly greater than t1. Because the time stamps at

x1 and x2 are the same and since put operations and take

operations do not occur on the same cycle, x2 occurs before

x1 (x2 < x1). Let x3 be the cycle of the first read from a

after x2. Notice that x1 is a read after x2, so x1 ≥ x3. If x1

were equal to x3, then the data value most recently written

to a, i.e. v1, would be read at x1. This contradicts the as-

sumption that x1 is an incorrect read. Therefore, x1 > x3.

Because the read at cycle x1 is the first incorrect read, the

read at cycle x3 is a correct read. So the read at x3 reads the

same pair that was written at x2. Again, because of line 3

in the take operation, the values of time stamps of all the

writes to a after x3 are strictly greater than t1. Therefore,

(v1, t1) cannot be written after x3. Because x2 is the first

cycle on which (v1, t1) is written to a, (v1, t1) cannot be

written before x2. Because Mlh-add is a set, two writes to

an address always have a read from that address between

them. Because x3 is the first read from a after x2, and two

writes to an address always have a read from that address

between them, (v1, t1) cannot be written between x2 and

x3. Therefore, the pair (v1, t1) is written only once, but it is

read at x1 and x3. Therefore, W 6= R.

Suppose the log-hash-check operation has not read ex-

actly the set of the addresses in Mlh-add. Then, there is a

triple in W that is not in R, or a triple in R that is not in W .

Therefore, W 6= R.

W 6= R implies that WRITEHASH is not equal to READ-

HASH i.e. the log-hash-check operation fails, or that a

collision has been found in the multiset hash function. �

We now prove the security of the tree-log scheme in Sec-

tion 5.

Theorem A.2 The untrusted RAM has behaved like valid

RAM if and only if the tree-log integrity checks (using the

hash tree and the tree-log-check operation) return true.

Proof The validity condition, that if the RAM has behaved

like RAM, then the tree-log integrity checks return true, is

easy to verify. We present an argument for the safety con-

dition: if the tree-log integrity checks return true, then the

RAM has behaved like valid RAM.

We assume that the bookkeeping data structures (cf. Sec-

tion 5.2) are not protected. The adversary can tamper with

the data structures, data values and time stamps at will. We

will assume that all of the hash tree integrity checks and

tree-log-check integrity checks return true. We will prove

that an adversary is unable to affect the validity of the RAM.

First we show that Mlh-add, the multiset of addresses

on which log-hash-add has been called, is a set. Sup-

pose tree-log-moveToLogHash is called on an address

that has already been added to the log-hash scheme. When

the checker first called tree-log-moveToLogHash on the

address in the tree to add it to the log-hash scheme, hash-

tree-updateParent(a, NULL) was called to update, in the

tree, the parent node of the address with a value that the ad-

dress can never have. If the checker subsequently calls the

tree-log-moveToLogHash operation on the address again

during the same check period, the operation first checks the

integrity of the old value of the node and its siblings in the

hash tree. The hash tree integrity check will not pass. Thus,

we infer that if all of the integrity checks pass, then Mlh-add
is a set and the results of Lemma A.1 apply.

We now show that the adversary cannot tamper with

the bookkeeping data structures without the checker de-

tecting the tampering. If the adversary did tamper with

the bookkeeping data structures, then either the tree-log-

check operation would not read exactly the set of address

in Mlh-add, or a hash tree store or load operation would be

performed on an address that is in the log-hash scheme, or a

log-hash store or load operation would be performed on an

address that is in the hash tree. Suppose that the tree-log-

check operation does not read exactly the set of addresses

in Mlh-add. This means that the log-hash-check operation

does not read exactly the set of addresses in Mlh-add. By

Lemma A.1, the tree-log-check operation will not pass.

Suppose that a hash tree store or load operation is per-

formed on an address that is in the log-hash scheme. Be-

cause the NULL value was recorded in the address’s parent

in the tree when the address was first moved to the log-hash

scheme and because hash-tree-store and hash-tree-load

each check the integrity of the data value read from the

RAM (recall that hash-tree-store checks the integrity of

the old value of node and its siblings before updating the

node), the hash tree integrity will not pass. Suppose that a

log-hash store or load operation is performed on an address

that is in the hash tree. log-hash-store or log-hash-load

is then called on the address before log-hash-add is called

to add the address to the log-hash scheme. By Lemma A.1,

the tree-log-check operation will not pass. Thus, if the ad-

versary tampers with the bookkeeping data structures, the

checker will detect the tampering.

Finally, we show that the adversary cannot tamper with

the data values (or time stamps) without the checker de-

tecting the tampering. Suppose the adversary tampers with

the data value of an address that is protected by the tree.

tree-log-moveToLogHash, tree-log-store and tree-log-

load each check the integrity of the data value read from the

untrusted RAM. If the data value is tampered with, the hash

tree integrity check will not pass. Suppose the adversary

tampers with the data value (or time stamp) of an address

that is protected by the log-hash scheme. By Lemma A.1,

the tree-log-check operation will not pass. Thus, if the ad-

versary tampers with the data values (or time stamps), the

checker will detect the tampering.

Thus, if all of the hash tree integrity checks and tree-

log-check integrity checks return true, then the RAM has

behaved like valid RAM. This concludes the proof of The-

orem A.2.�

The proof demonstrates that, with regards to security, the

bookkeeping data structures do not have to be protected.

B. Worst-case Costs of tree-log-check and

tree-log-bkoff, with caching

In this appendix, we give the worst-case costs of

Ctl-chk(nlh) and Cbkoff(nlh) for the adaptive checker in

the case that the FSM uses a cache (cf. Section 6.4). For

Table 2. Worstcase Costs of tree-log-check and tree-log-bkoff, with caching, when a range is used for
bookkeeping (cf. Section 5.2). In the table, bt is the number of bits in a time stamp, bb is the number
of bits in a data value/hash block, h is the height of the hash tree (the length of the path from the root

to the leaf in the tree) and C is the number of blocks that can be stored in the cache.

Ctl-chk(nlh) 2Chbb + nlh((bb + bt) + 2(h − 1)bb)

Cbkoff(nlh) Ctl-chk(nlh) + 2Chbb + Chbb

this analysis, we assume a range is used for bookkeeping

(cf. Section 5.2). Table 2 summarizes the costs.

The worst-case bandwidth consumption of the tree-log-

check operation is 2Chbb + nlh((bb + bt) + 2(h− 1)bb),
where 2Chbb is the cost of evicting dirty tree nodes that

are in the cache and updating them in the tree in RAM, and

nlh((bb + bt) + 2(h − 1)bb) is the cost of reading the

addresses in the log-hash scheme and moving them to the

tree.

The worst-case bandwidth consumption of the tree-log-

bkoff operation is Ctl-chk(nlh) + 2Chbb + Chbb, where

Ctl-chk(nlh) is the worst-case cost of the tree-log-check

operation and 2Chbb + Chbb = 3Chbb is the cost of syn-

chronizing the cache (Csync). Cbkoff(nlh) covers the cost

of the backing off in both the case where the cache is unsyn-

chronized and all of the addresses are in the tree, and in the

case the cache is unsynchronized and some of the addresses

are in the log-hash scheme.

These bounds on the worst-case costs are actually the

costs of the operations if the cache is not used for the op-

erations. The checker could simulate the operation using

the tree-log simulator to determine the actual costs when

caching is used when the operation is called. If this cost

is less than the bound, caching is used for the operation;

otherwise caching is not used for the operation.

C. Tradeoffs

In this appendix, we discuss some of the tradeoffs a sys-

tem designer may consider making, particularly with re-

gards to the cache simulators in Section 6.4. The simulators

are being used to help guarantee the worst-case bound when

the FSM uses a cache. Though they are small, they do con-

sume extra space overhead. Firstly, if the bound was guar-

anteed on bandwidth consumption, instead of bandwidth

overhead, the base simulator could be dropped. Secondly, if

the strictness of the bound is relaxed, we could have conser-

vative estimates for the various tree-log operations. Then,

the tree-log simulator could be dropped. Finally, we could

have an estimate on the hash tree cost, using information on

its cost when all of the data is in the tree and information

on the current program access patterns. Then, the hash tree

simulator could also be dropped. (If the hash tree simula-

tor is not used, the checker will not be able to synchronize

the cache if it backs off, but, in practice, the performance

of the tree after it has moved all of the addresses back into

the tree should soon be about the same with the unsynchro-

nized cache as with a synchronized cache.) Areas of fu-

ture research are to investigate heuristics for the various es-

timations, as well as more sophisticated tree-log strategies

(cf. Section 6.3), that would work well in practice in differ-

ent system implementations.

