
FPGA PUF using Programmable Delay Lines
Mehrdad Majzoobi†,1, Farinaz Koushanfar†,2, Srinivas Devadas‡,3

† Electrical and Computer Engineering Department, Rice University
6100 Main Street, Houston, TX 77005 United States

1 mehrdad.majzoobi@rice.edu
2 farinaz@rice.edu

‡ Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology
77 Massachusetts Avenue, Cambridge, MA 02142 United States

3 devadas@mit.edu

Abstract—This paper proposes a novel approach for efficient
implementation of a real-valued arbiter-based physical unclon-
able function (PUF) on FPGA. We introduce a high resolution
programmable delay logic (PDL) implemented by lookup table
(LUT) internal structure. Using the PDL, we perform fine tuning
to cancel out delay skews caused by asymmetries in routing and
systematic variations. We devise a symmetric switch structure
that can be easily implemented on FPGA. To mitigate the
arbiter metastability problem, we present and analyze methods
for majority voting of responses. Lastly, a method to classify and
group challenges into different robustness sets is introduced, to
further increase the corresponding responses’ stability in the face
of environmental variations. Experimental evaluations show that
the responses to robust challenges have an average error rate of
less than 2% under temperature variations from -10oC to 75oC.

Index Terms—physical unclonable functions, programmable
delay line, FPGA, majority voting, tuning

I. INTRODUCTION

Field programmable gate arrays (FPGA) provide a generic
substrate of interconnected blocks that can be (re)programmed
several times. The inherent flexibility of FPGAs compared to
ASICs together with their lower time-to-market and availabil-
ity of third party IPs, have made them the platform of choice
for many applications. Like other systems, FPGAs demand
security and resilience to attacks. In addition, techniques for
ensuring IP security are necessary for prevention against piracy
and unauthorized access.

A common denominator for many security protocols is the
concept of a secret. For example, in public- and private-
key cryptography, there is a secret key known by a limited
set of parties. However, permanent FPGA key storage is not
straightforward, as FPGAs often do not include nonvolatile
on-chip memory. Even when the keys are externally powered
or hidden in the bitstream, many side channel attacks for
extracting the keys has been reported.

Physical unclonable functions (PUFs) aim at addressing the
shortcomings of the digital key storage by relying on the
secrets generated by the inherent and unclonable unique meso-
scopic characteristics (signatures) of the physical phenomena

WIFS’2010, December 12-15, 2010, Seattle, WA, USA.
978-1-4244-9080-6/10/$26.00 ©2009 IEEE.

[1, 2]. The physical properties of each device determine a
specific mapping between a set of challenges (inputs) to a
set of responses (outputs). Challenge-response (CR) protocols
take advantage of this unique mapping to authenticate the
device and/or its components.

To date, a number of possible implementations of PUFs
on FPGAs based on the unique variations of silicon has
been reported [3–5]. Applications of FPGA PUFs include
securing programs and data, IP protection, RFIDs, and secure
key generation, remote activation and IC entablement [3–9].
However, key limitations of the existing FPGA PUFs include
the polynomial number of CR pairs, high power consumption,
arbiter metastability, and/or the delay imbalances dictated by
the routing constraints [7, 10].

This paper introduces a practical and stable implementation
of an arbiter-based PUF on FPGA. An arbiter-based PUF
works by comparing path timings for two routes with the
same nominal delay (by design) but with differing actual
delays (caused by manufacturing variations). To achieve equal
nominal delays and to avoid bias, the two routes must be
symmetric in signa routing. We introduce a low-overhead high-
resolution programmable delay line (PDL) implemented by a
single lookup table (LUT) on the FPGA. The new PDL is used
to tune and calibrate the delay bias caused by asymmetries in
signal routing. Furthermore, a symmetric PDL-based switch
structure is introduced that can be implemented on FPGA.
To mitigate arbiter metastability and to obtain more stable
results, we introduce redundancy and majority voting on the
responses. Lastly, we present a new method to classify and
group challenges into different robustness sets. The challenge
classification further increases the corresponding responses’
resilience to environmental variations.

II. BACKGROUND

A PUF utilizes the inherent specific properties of a physical
device to define a unique mapping from a set of challenges
(inputs) to a set of responses (outputs). The delay variations
of CMOS logic components can be exploited to produce
unique responses. In the PUF structure introduced in [2], the
analog delay difference between two parallel timing paths is
compared. The paths are built identically and their delays must
be equal by construction, but the physical device imperfections

make them different. The architecture of the arbiter-based PUF
racing parallel paths is demonstrated in Figure 1. A step input
simultaneously triggers the two paths. At the end of the two
parallel (racing) paths, an arbiter is used to convert the analog
delay difference between the paths to a digital value. The two
paths can be divided into several smaller subpaths by inserting
path swapping switches. Each set of inputs to the switches act
as a challenge set (denoted by Ci), defining a new pair of
racing paths whose delays can be compared by the arbiter to
generate a one-bit response. DC Q......First Path Segment C0 C1 C2 Cn Last Path SegmentMiddle Path Segments

Fig. 1. Arbiter-based PUF with path swapping switches.

III. RELATED WORK

The authors in [2] were the first to exploit the unique
and unclonable silicon process variations in nanometer scales
for PUF formation. Their PUF used the analog differences
between the delays of two parallel paths that are equal in
design, but the physical device imperfections make the delays
different. An arbiter inserted at the end of the paths generates
binary responses indicating a comparison between the delays.
To generate many CR pairs, the paths are divided into multiple
subpaths and multiplexed by challenges. It is shown in [7,
10] that implementation of delay-based PUFs on FPGAs is
problematic because of the routing constraints and arbiter
inaccuracy. Ring oscillator (RO) PUFs rely on the specific
and unique delay of an oscillating path on each device [5].
The presently known PUFs of this type contain many RO’s so
there are many possible pairs to compare. One can only have
a quadratic number of challenges with respect to the number
of RO’s on FPGAs. Another disadvantage of RO PUF is the
continuous dynamic power dissipation due to oscillation.

Another class of candidate FPGA PUFs are SRAM-PUFs
and butterfly PUFs [3, 4]. Each FPGA SRAM cell would
naturally tend to one logic state (either zero or one) upon
startup. There are only a polynomial number of challenges
with respect to the number of SRAM cells. An FPGA-based
PUF along with a suite of time-bounded authentication proto-
cols is introduced in [11]. The PUF produces binary responses
based on the difference between the clock speed and some
combinational circuit delay. Some instances of analog and
digital PUFs that attempt to implement public cryptography
are presented in [12–15].

IV. ARBITER PUF ON FPGA

One of the major problems in implementation of PUFs
on FPGAs, particulary the arbiter-based PUFs, is in signal
routing. Unlike ASICs where hand-drawn custom layout is
possible, routing on FPGA is constrained by its rigid fabric
and interconnect structure. As a result, performing completely

symmetric routing is physically infeasible in most cases. The
PUF designer may do his/her best to constrain and guide
the placement and routing software to achieve the highest
degree of symmetry in the PUF layout. However, due to
physical constraints of the FPGA fabric, the designer may still
not be able to achieve complete symmetry on some routes.
Asymmetries in routing when implementing PUFs can lead to
bias in delay differences leading to predictable responses, lack
of randomness, and decreased response entropy [7, 10].

The PUF routing can be divided into four different sections;
the routing (1) before the first switch, (2) inside the switches,
(3) between switches, and (4) after the last switch or before
the arbiter (see Figure 1). As we will show later, by placing
the logic components on symmetric sites and locations on
the FPGA, the routing between switches will automatically
follow a symmetric route. However, maintaining a complete
symmetry between the top and bottom path routes before the
first switch and after the last switch is structurally infeasible.
To alleviate this problem, we introduce and exploit accurate
PDLs to tune and remove the bias delay differences caused by
asymmetries in net routing. We further introduce a new switch
structure that by construction has a symmetric implementation.

A. Tuning with Programmable Delay Lines

In this section, we introduce a low overhead and high
precision PDL with pico-second resolution. The introduced
PDL is implemented by a single LUT. Figure 2 shows the
internal structure of an example 3-input LUT. An n-input LUT
can be configured to implement any n-input logic function. The
LUT in Figure 2 is configured so that the inputs A2 and A3 act
as don’t-care bits. The LUT output is inverted A1 and is not a
function of A2 and A3. However, if we look closely, the inputs
A2 and A3 determine the signal propagation path inside LUT.
For instance, if A2A3 = 00, the signal propagates through the
solid path (red), whereas if A2A3 = 11, the signal propagates
through the path marked with the dashed-lines (blue). The
lower dashed path is slightly longer than the upper solid path
which results in a larger propagation delay. Xilinx Virtex 5A1 A2 A3

O10101010
Binary challenge

3-input LUT
A2 A3A1 O
LUTA1A2A3 O

SRAM values

Fig. 2. The internal structure of a 3-input LUT.

FPGAs have 6-input LUTs which can implement a PDL with 5
control bits - there are 4 LUTs in each Slice and two Slices per

each CLB. Similar to the above example, the first LUT input,
A1, is the inverter input and the rest of the LUT inputs control
the delay of the inverter. For, A2A3A4A5A6=A[2:6]=00000,
the inverter has the smallest delay (shortest internal propaga-
tion path) and for A2A3A4A5A6=A[2:6]=11111, the inverter
has the maximum delay. In general if A[2:6] > A′

[2:6] then
DLUT (A) > DLUT (A

′), where DLUT (A) and DLUT (A
′) are

the delay of the inverter with A and A′ as the control inputs
respectively.

We measured the changes in LUTs’ propagation delays
under different inputs. For delay measurements, we used
the timing characterization circuit shown in Figure 3. The
characterization circuit consists of a launch flip-flop, sample
flip-flop, and capture flip-flop, an XOR gate, and the Circuit
Under Test (CUT) whose delay is to be measured.

At the rising edge of the clock a signal is sent through
the CUT by the launch flip-flop. At the falling edge of the
clock, the output of the CUT is sampled by the sample flip-
flop. If the signal arrives at the sample flip-flop well before
sampling takes place, the correct value is sampled. The XOR
compares the sampled value with steady state output of the
CUT and produces a zero if they are the same. Otherwise,
the XOR output rises to ‘1’, indicating a timing violation. If
the signal arrives almost simultaneously with when sampling
occurs, the sample flip-flop enters into a metastable condition
and produces a non-deterministic output. By sweeping the
clock frequency and monitoring the rate at which timing errors
happen, the CUT delay can be measured with a very high
accuracy. For further details on the delay characterization
method the reader is referred to [11, 16].DFFLaunch Flip Flop Sample Flip Flops Capture Flip FlopsDFF DFFBinary ChallengeTTiming Challenge

Fig. 3. Delay characterization circuit.

The measurements performed on Xilinx Virtex 5 FPGAs
suggest that the maximin delay difference (i.e. A=00000, and
A′=11111) achieved by each inverter is 9ps on average.

B. PDL-based Symmetric Switch

The first arbiter-based PUF introduced in [2] (see Figure 1)
uses path swapping switches as shown in Figure 4 (a). The
switch, based on its selector bit, provides a straight or cross
connection. Figure 4 (b) shows the equivalent circuit imple-
mentation and delays. The path swapping switch structure does
not lend itself to FPGA implementation, since it is extremely
difficult to equalize the nominal delays of the top and bottom
paths due to routing constraints, i.e., a and d (or the diagonal
paths b and c). To alleviate the issue, we propose a new non-
swapping switch structure as shown in Figure 4 (c). The yellow
triangles in the figure represent two PDLs. Figure 4 (d) shows

its equivalent circuit where the nominal delay values of a and
d (or the diagonal paths b and c) must be the same.1010bcadacdbselect select select(a) (c)(b)

1010bdac select(d)
Fig. 4. (a),(b) path swapping switch and its delay abstraction (c),(d) PDL-
based switch and its delay abstraction.

The complete PUF circuit that uses the new switch structure
and the tuning blocks is shown in Figure 5. The presented
system consists of N switches and K tuning blocks. The
tuning blocks insert extra delays into either the top or bottom
path based on their selector inputs to cancel out the delay bias
caused by routing asymmetry. The only difference between
a tuning block and a switch block is that in the former,
the selectors to the top and bottom PDLs are controlled
independently but in the latter, the same selector bit drives
both PDLs. Also note that the tuning blocks do not necessarily
have be placed at the end of the PUF. As a matter of fact, they
can be placed anywhere on the PUF in between the switches.

Similar to the arbiter-based PUF with path swapping
switches, the new PUF structure is a linear system. The PUF
response will be ‘1’ if the sum of the delay switch differences
along the path is greater than zero, and ’0’ otherwise:

N∑
i=1

Ci × (ai − di) + (1− Ci)× (bi − ci) + ∆
R=0

≶
R=1

0, (1)

where ai, bi, ci, di are the i-th switch delays as shown in Figure
4 (d), Ci ∈ {0, 1} is the i-th challenge bit, and R is the
response. Also, ∆ is a constant delay difference from first
and last path segments and tuning blocks lumped together. The
security aspects of the linear PUF structures against machine
learning attacks can be boosted by insertion of feed forward
arbiter and attaching input/output XOR logic networks to
multiple rows of PUFs [17, 18]. The work in analyzing the
complexity of machine learning and model attacks against
different classes of PUFs [19]. DCQC1 C2 C3 C4 CN-1 CN Td1 Tu1Td2 Tu2 TdKTuK............Challenge Tune

Fig. 5. The new arbiter-based PUF structure.

V. PRECISION ARBITER

Arbiters in practice are implemented by D flip-flops. As
a result, an arbiter has a limited resolution meaning that if
the absolute delay difference of the arriving signals is smaller

than its setup and hold time, it enters a metastable state and
its output becomes highly sensitive to circuit noise and will be
unreliable. The probability of flip-flop output being equal to
‘1’ is a monotonically decreasing function of the input signal
timing difference (∆T). Such probability in fact follows a
Gaussian CDF curve as shown in [7, 16]:

PO=1(∆T) = Q(
∆T

σ
) (2)

where Q(x) = 1√
2π

∫∞
x

exp
(
−u2

2

)
is the Q function. For

an infinitely precise arbiter, σ is infinitesimal i.e. σ → 1/∞,
and PO=1(∆T) → 1− U(∆T) where U is the step function.DC Q...... Shift Reg.Majority Voting Logic... ResponseTune-upTune-downChallenge
Fig. 6. Reducing the response instability due to arbiter metastability by using
majority voting.

To increase the arbiter accuracy, we propose multiple evalu-
ations of the same challenge to the PUF and running a majority
vote on the output responses as shown in Figure 13. The
repetitive challenge evaluation combined with majority voting
is equivalent to having an arbiter with effectively smaller σ.
We will quantify the reduction in σ as a function of the number
of repetitions in the experimental results section.

VI. ROBUST RESPONSES

Fluctuations in operational conditions such as temperature
and supply voltage can cause variations in device delays. The
impact on delays may not be equal on all devices. As an
example, the signal propagation delay on the PUF top and
bottom paths is represented in Figure 7 by solid and dashed
lines respectively. In this example, the path delays increase
with temperature at different rates. In the diagram in Figure
7 (a), the delay difference ∆d at the end of the PUF for
a given applied challenge at nominal temperature is small,
whereas ∆d in Figure 7 (b) is larger for another challenge.
The response to the challenge in Figure 7 (a) changes as
temperature varies because the delays change their order
(cross). However, in Figure 7 (b) the PUF response remains
the same. As demonstrated by this example, the responses to
those challenges that cause large delay differences are unlikely
to be affected by temperature or supply voltage variations [5].

In this paper, we use the PDL-based tuning blocks to distin-
guish those challenges that cause a larger delay difference and
mark them as robust challenges. For each challenge, the PUF
is evaluated with (i) an extra delay inserted to the top path
by tuning upward (ii) an extra delay inserted to the bottom
path by tuning downward (iii) equal tuning on both the top
and bottom paths. If the response to these three cases are
the same, we conclude that the resulting delay difference by
the applied challenge is large enough not to be affected by

Tmin TmaxTnomDelay Tmin TmaxTnomDelay
(a) (b)

∆d∆d
Fig. 7. Signal propagation delay as a function of temperature.

small additions and subtractions. However, it’s critical to note
that from information theoretical point of view, the responses
from more robust challenges are more likely to have lower
entropy. In other words, ultimate robustness exists when the
responses are absolutely biased toward either zero or one,
however, the entropy is zero and the responses are not distinct
enough for identification. Quantification of such a trade-off
between response robustness and entropy in PUFs is not being
addressed in this paper and is a subject of future study.

VII. EXPERIMENTAL EVALUATION

In this section, we present the results of experiments per-
formed on a Xilinx Virtex 5 XC5VLX110T FPGA device.
The implemented PUF has 16 rows whose challenge input bits
are connected together and placed in parallel on the FPGA to
produce 16 bits of responses per challenge. Each PUF consists
of 64 stages of PDLs, where the PDL is implemented by 2
LUTs each acting as an inverter. Figure 8 shows the placement
and routing of one of the PUF rows. As it can be seen, except
for the routing at the beginning and end of the PUF, the
rest follows a completely symmetric pattern. A TCL script
is developed to control the PUF challenges to the PDLs and
read back the responses using ChipScope Pro VIO Core.

(a) (b)

Fig. 8. Routing and placement of the PUF (a) first segment (b) last segment.

Before using the PUF and in order to see any changes in
the responses, it must be tuned to remove the delay bias from
routing asymmetry. In the first experiment, we look at all 16
responses to observe at what tuning level their response to a
fixed challenge begins to transition. At first, the selectors to
PDLs are all set to zero, and then more delay is added to the
top path by raising their selectors bits to ‘1’. We refer to the
difference in the number of ‘1’s in the top and bottom PDL
selector bits as the tuning level. This quality can be either

positive or negative indicating insertion of delays to the top
and bottom path respectively. The response for each tuning
level is repeated 100 times, and the number of ‘1’s in the
responses are counted and normalized to find the probability
of ‘1’ response as shown in Figure 9. The probability of the
response being equal to one is shown for 4 PUF response bits.
For instance, the third response bit goes from one to zero as
the tuning is increased from 8 to 9. We average the transition
points for all 16 bits and find the best tuning level to be 14.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

 Tuning level

 P
ro

ba
bi

lit
y

of
 r

es
po

ns
e=

1

 response bit 1

 response bit 2

 response bit 3

 response bit 4

Fig. 9. Probability of observing a 1 response versus different tuning levels
for four of the PUF response bits.

In the previous experiment, the challenges to the PUF were
fixed. Next, we apply 1000 random challenges to the PUF
repeating each 10 times. If more than half of the responses
are ones, the responses is considered one, and zero otherwise.
Figure 10 shows the frequency of ‘1’ responses obtained from
1000 challenges for all 16 bits. Each boxplot represent 16
points and each point is derived by dividing the number of
ones in the 1000 responses. As it can be seen the median of
the distribution is biased toward ‘1’ as tuning is increased.
Again, for the tuning level of 14 the median is closest to
50%. From now on, we choose the tuning level of 14 as the
optimum tuning level. The tuning level is determined once
from statistics across a few chips and it will be permanently
set to that level. Note that from the PUF definition, the circuit
must always be the same on every chip and the response must
be only a function of the input challenges and manufacturing
variations. Having different tuning levels for each circuit on
different ICs contradicts with the standard definition of the
PUF. Nevertheless, the tuning bits can be treated as a separate
set of challenges.

0

0.2

0.4

0.6

0.8

1

12 13 14 15 16
 Tuning Level

 F
re

qu
en

cy
 o

f
’1

’
re

po
ns

es

Fig. 10. Probability of observing a ‘1’ response for 1000 challenges versus
different tuning levels.

Figure 11 shows the percentage of ‘1’ responses in each

response bit to 1000 random challenges and tuning level of 14.
Similar to the previous study, each challenge is being repeated
10 times to obtain a stable response. To ensure uniqueness
of the responses, the hamming distance between each pair of
output response bits to 1000 random challenges is calculated
and shown in Figure 12. The low and high hamming distances
correspond to the skewed response bits.

0 2 4 6 8 10 12 14 16
0

20

40

60

80

100

 Response Bit Number

 P
er

ce
nt

ag
e

of
 1

s
in

 r
ep

on
se

s

Fig. 11. The percentage of 1 responses in each response bit to 1000 random
challenges and tuning level of 14.

 Response Bit Number

 R
es

po
ns

e
B

it
 N

um
be

r

5 10 15

2

4

6

8

10

12

14

Fig. 12. Hamming distance of pairs of output response bits.

As discussed in the paper, repeating the challenges to the
PUF and running majority voting on the obtained responses
can help improve the precision of the arbiter. In this section,
we quantify this effect. Figure 13 shows the probability of
observing a ‘1’ output from a flip-flop as a function of the
input signals delay difference. This characteristic has been
measured on Xilinx Virtex 5 FPGAs [7, 16]. The width of the
transition region (3σ) gets narrower as evaluation is repeated
and more statistics is gathered.

−20 −15 −10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

 Delay difference (∆ in ps)

 P
ro

ba
bi

lit
y

of
 o

ut
pu

t=
1

1 repetition
3 repetitions
5 repetitions
7 repetitions
9 repetitions
11 repetitions

Fig. 13. The probability of majority voting system output being equal to 1
as a function of the delay difference.

The equivalent σ which represents the width of the
metastable window (i.e. 3σ) is calculated for different number
of repetitions as shown Figure 14. The reduction in the
metastable window width is logarithmic with respect to the
number of repetitions. For 10 repetitions, σ = 2.5 ps.

0 2 4 6 8 10 12
2

3

4

5

6

7

8

 Number of repetitions

 T
ra

ns
it

io
n

sl
op

e
(σ

)
in

 p
s

Fig. 14. The sharpness (σ) of the transition slope versus the number of
repetitions for majority voting.

Finally, we study the effect of robust challenge classification
on PUF error rate in presence of temperature variations. In
order to separate and classify challenges into different robust-
ness groups, we perform the following three experiments. We
apply a 1000 sets of random challenges to the PUF while
the tuning level is once set to 14, once 13 and once to 15
and we obtain 1000×16 responses for each case. Then the
challenges that produce those responses that do not change
across the three cases are marked as low robust challenges.
These challenges are a subset of all 1000 normal challenges.
Next, the same experiment is repeated but this time with a
wider range of tuning level variations from 12 to 16. The
challenges that produce responses that remain the same over
this interval are marked as high robust. To find the response
error rate for these three different sets of challenges, they
are applied to the PUF (with tuning level fixed to 14) and
the operational temperature is set to -10oC and 75oC in two
experiment settings. Then the responses from the three group
of challenges are compared to capture the error rate as shown
in Figure 15. Each boxplot consists of 16 points where each
point corresponds to one response bit. As it can be observed
the error rate is considerably reduced for low and high robust
challenges.

0

5

10

15

Normal Low High
 Level of Robustness

 E
rr

or
 R

at
e

(%
)

 Temperature varies from −10o C to 75o C

Fig. 15. The response error rate for sets challenges with different robustness
level under temperature variations.

VIII. CONCLUSION

We introduced a new arbiter-based PUF structure that
exploits programmable delay lines (PDL) to tune and can-
cel out the delay skews caused by asymmetries in routing
on FPGAs. A low-overhead high-resolution PDL based on
LUT internal propagation paths was introduced and used for
tuning. A PDL-based symmetric switch structure was further
introduced to resolve the routing issues. To mitigate the arbiter
metastability problem, we presented and analyzed majority
voting of responses. Lastly, a method to classify challenges
into different robustness groups was introduced, to increase the
response stability in the presence of environmental variations.
Experimental evaluations demonstrated that the responses to
robust challenges have an average error rate of less than 2%
under temperature variations from -10oC to 75oC.

REFERENCES

[1] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way
functions,” Science, vol. 297, pp. 2026–2030, 2002.

[2] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon physical
random functions,” in CCS, 2002, pp. 148–160.

[3] J. Guajardo, S. Kumar, G. Schrijen, and P. Tuyls, “FPGA intrinsic PUFs
and their use for IP protection,” in CHES, 2007, pp. 63–80.

[4] S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, and P. Tuyls, “The
butterfly PUF protecting IP on every FPGA,” in HOST, 2008, pp. 67–
70.

[5] G. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in DAC, 2007, pp. 9–14.

[6] G. Suh, C. O’Donnell, I. Sachdev, and S. Devadas, “Design and im-
plementation of the AEGIS single-chip secure processor using physical
random functions,” in ISCA, 2005, pp. 25–36.

[7] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Techniques for design
and implementation of secure reconfigurable PUFs,” TRETS, vol. 2,
no. 1, pp. 1–33, 2009.

[8] Y. Alkabani, F. Koushanfar, and M. Potkonjak, “Remote activation of
ICS for piracy prevention and digital right management,” in Interna-
tional Conference on Computer Aided Design (ICCAD), 2007, pp. 674–
677.

[9] Y. M. Alkabani and F. Koushanfar, “Active hardware metering for
intellectual property protection and security,” in USENIX Security Sym-
posium, 2007, pp. 1–16.

[10] S. Morozov, A. Maiti, and P. Schaumont, An Analysis of Delay Based
PUF Implementations on FPGA. Springer, 2010, pp. 382–387.

[11] M. Majzoobi, A. Elnably, and F. Koushanfar, “FPGA time-bounded
unclonable authentication,” in IH, 2010.

[12] U. Rührmair, “SIMPL system: on a public key variant of physical
unclonable function,” Cryptology ePrint Archive, 2009.

[13] N. Beckmann and M. Potkonjak, “Hardware-based public-key cryptog-
raphy with public physically unclonable functions,” in IH, 2009, pp.
206–220.

[14] G. Csaba, X. Ju, Q. Chen, W. Porod, J. Schmidhuber, U. Schlichtmann,
P. Lugli, and U. Rührmair, “On-chip electric waves: An analog circuit
approach to physical uncloneable functions,” Cryptology ePrint Archive,
2009.

[15] C. Jaeger, M. Algasinger, U. Ruhrmair, G. Csaba, and M. Stutzmann,
“Random pn-junctions for physical cryptography,” Applied Physics
Letters, vol. 96, no. 17, pp. 172 103 –172 103–3, 2010.

[16] M. Majzoobi, E. Dyer, A. Elnably, and F. Koushanfar, “Rapid FPGA
characterzation using clock synthesis and signal sparsity,” in ITC, 2010.

[17] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Testing techniques for
hardware security,” in ITC, 2008, pp. 1–10.

[18] L. Daihyun, J. Lee, B. Gassend, G. Suh, M. van Dijk, and S. Devadas,
“Extracting secret keys from integrated circuits,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 13, no. 10, pp. 1200
– 1205, 2005.

[19] U. Rhrmair, F. Sehnke, J. Slter, G. Dror, S. Devadas, and J. Schmidhuber,
“Modeling attacks on physical unclonable functions,” in Conference on
Computer and Communications Security, 2010.

