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A Locally Adaptive Regularization Based
on Anisotropic Diffusion for Deformable
Image Registration of Sliding Organs
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Abstract—We propose a deformable image registration algo-
rithm that uses anisotropic smoothing for regularization to find
correspondences between images of sliding organs. In particular,
we apply the method for respiratory motion estimation in longitu-
dinal thoracic and abdominal computed tomography scans. The
algorithm uses locally adaptive diffusion tensors to determine the
direction and magnitude with which to smooth the components
of the displacement field that are normal and tangential to an
expected sliding boundary. Validation was performed using syn-
thetic, phantom, and 14 clinical datasets, including the publicly
available DIR-Lab dataset. We show that motion discontinuities
caused by sliding can be effectively recovered, unlike conventional
regularizations that enforce globally smooth motion. In the clinical
datasets, target registration error showed improved accuracy for
lung landmarks compared to the diffusive regularization. We also
present a generalization of our algorithm to other sliding geome-
tries, including sliding tubes (e.g., needles sliding through tissue,
or contrast agent flowing through a vessel). Potential clinical
applications of this method include longitudinal change detection
and radiotherapy for lung or abdominal tumours, especially those
near the chest or abdominal wall.

Index Terms—Abdominal computed tomography (CT), de-
formable image registration, locally adaptive regularization,
respiratory motion, sliding motion, thoracic CT.

I. INTRODUCTION

T HE GOAL of deformable image registration [1] is to es-
tablish correspondence, i.e., to find the spatial mapping

from anatomical locations in one image to their matching coor-
dinates in the other image. Accurate correspondence detection
is relied upon for nearly every clinical application of image reg-
istration. These include: 1) change detection in longitudinal pa-
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tient datasets, to quantify disease progression or treatment effec-
tiveness [2]; 2) image-based mapping of preoperative surgical
plans onto the intraoperative patient in image-guided surgery
and radiotherapy [3]; and 3) transfer of population atlas infor-
mation such as expected functional site locations onto patient
images [4]. In this paper, we focus on estimating respiratory mo-
tion between computed tomography (CT) images of the lungs
and abdomen acquired at inhale and exhale, which is impor-
tant for building respiratory motion models [5] and for elimi-
nating the confounding effects of respiratory motion when ac-
complishing the three tasks listed above.
Medical images often contain large regions of nearly homo-

geneous intensity. In noncontrast CT, these include large organs
such as the liver, and lung patches between visible vessels and
airways (which are often 1–2 cm apart). In these regions, local
deformations are unobservable, and correspondence detection is
difficult because of the aperture problem [6]. Since deformable
image registration based on image match alone is ill-posed, a
regularization term is added to the registration cost function to
encourage plausible displacement fields based on some prior
knowledge [7]. Therefore, the resulting transformation is a com-
promise between image similarity and spatial regularity, the reg-
ularization completely dictates motion estimation within homo-
geneous regions, and the regularization forms a very strong prior
on the final mapping.
Conventional regularizers enforce smooth transformations,

and therefore are inaccurate near the discontinuous motion that
occurs when multiple organs move independently. In partic-
ular, during respiration both the lungs and abdominal organs ex-
hibit discontinuous sliding motion, which is facilitated by serous
fluid-filled spaces between their enclosing membranes. In the
lungs, sliding occurs between the visceral and parietal pleural
membranes that form the pleural sacs surrounding each lung
[8]–[10]. In the abdomen, a prominent sliding interface is at
the peritoneal cavity between the abdominal cavity and the ab-
dominal wall [11]. Globally smoothing regularizations will un-
derestimate motion near such sliding boundaries by averaging
discontinuous motions, and/or incorrectly smooth motion onto
static structures. In general, without introducing additional de-
grees of freedom at sliding borders, unnecessary compromises
in image match will be made for the sake of a motion regularity
that does not exist.
The problem of recovering sliding motion using deformable

registration, and of handling motion discontinuities in general,
is receiving increasing attention in medical image analysis. The
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first approaches involved segmenting the images into regions
that move together, registering each independently, and com-
positing the results [12]–[14]. Wu et al. [14] used masks to force
the region boundaries to match when merging the resulting dis-
placement fields. Risholm et al. [15] allowed the deformation
field to “tear” during the registration iterations in regions of high
strain, to register preoperative and intraoperative MR images in
neurosurgical cases involving retraction. Sparse free-form de-
formations [16] or nonquadratic norms for the regularization
penalty [17], [18] also allow motion discontinuities to develop.
Kiriyanthan et al. [19], [20] used joint motion segmentation and
registration, related to the Mumford–Shaw functional, to find
foreground and background regions which are regularized sep-
arately. Freiman et al. [21] also investigated automatic identi-
fication of deformation field discontinuities, by evaluating gra-
dients within local affine transformations that had been fit to
neighborhoods in the dense deformation field.
Locally adaptive regularization has proven useful for sliding

organ registration. Locally adaptive regularization varies across
the image domain, and can therefore formulate complex defor-
mation models (e.g., [22]–[25]). Locally adaptive regulariza-
tion has been used to model spatially varying tissue elasticity
or stiffness [26], [27], enforce rigid motion of rigid structures
like bones [28], and apply volume preserving constraints to tu-
mours to aid longitudinal change detection [29]. Examples in
sliding organ registration include work by Yin et al. [30], who
used inhomogeneous, but still isotropic, diffusive regularization
to handle motion discontinuities at lung lobar fissures, and Ruan
et al. [31], who developed a regularization allowing the shear
discontinuities caused by sliding while preventing local volume
changes.
The notion of direction-dependent, locally adaptive regular-

ization for sliding motion was first introduced by Schmidt-Rich-
berg et al. in [32]–[34]. Here, organs are not treated as com-
pletely independent structures. Instead, this approach allows
sliding discontinuities while maintaining the coupling between
them (along the direction normal to the sliding interface), and
of course encouraging smooth motion within individual organs.
Originally formulated for dense deformation fields, the general
strategy has been applied to B-spline [35] and thin-plate spline
[36] transformation models, and used primarily to register CT
images of the lungs. Risser et al. [37] presented piecewise dif-
feomorphic sliding organ registration within the Large Defor-
mation Diffeomorphic Metric Mapping (LDDMM) framework,
and also added direction-dependent sliding to the LogDemons
algorithm. A prior segmentation of the sliding boundaries is re-
quired for the majority of the above methods, for which interac-
tive tools [38] and fully-automatic methods (e.g., a workflow of
standard image processing methods followed by level set seg-
mentation [39]) have been very recently presented.
In this paper, we develop a locally adaptive regularization

method for deformable image registration of sliding organs
that is based on anisotropic diffusion smoothing. The work
by Schmidt-Richberg et al. [32], [33] served as a starting
point. Given a border where sliding is expected to occur,
they propose to regularize the motion by explicitly defining

separate foreground and background regularization domains,
relying on this partitioning to ensure that tangential displace-
ment components are not smoothed across the boundary. In
contrast, our regularization is defined over the entire image
domain, and achieves sliding by appropriate local weighting
and direction-dependent anisotropic diffusion smoothing. This
has many advantages. It simplifies gradient computations and
implementation, especially when there are many sliding organs
(and hence many potential separate domains). It allows open
surfaces to be defined for the sliding boundary, allowing for an
organ to have both adhesions and free sliding patches, more
simply without the need to define boundary conditions for
each edge voxel. Furthermore, our approach is more general,
and permits the specification of alternative diffusion tensors,
allowing, for example, the formulation of a sliding registration
for tubular objects such as needles and catheters (as we describe
in Appendix A).
We use the registration algorithm to accomplish respiratory

motion estimation in longitudinal thoracic and abdominal CT
datasets. This paper extends our previous work [40], [41] by
providing a detailed description of the registration algorithm
and implementation, a more effective optimization scheme, and
more comprehensive evaluation with improved results.
A major challenge when comparing deformable image reg-

istration methods is that image similarity is a necessary, but
not sufficient, condition for registration accuracy [42]. In par-
ticular, performance evaluation must include areas where cor-
respondences are uncertain, i.e., homogeneous regions. These
are often the most critical regions that motivate registration and
data fusion in the first place. However, image match metrics do
not measure the quality of the mapping in these areas (hence
the original need for regularization), and evaluation of the es-
timated motion field itself must be used to compare algorithm
performance.
The remainder of the paper is organized as follows. Section II

describes the principles of sliding motion that underlie our reg-
istration algorithm, the novel sliding organ regularization for-
mulation, and the numerical optimization and implementation.
In Section III, the method is applied to synthetic, phantom and
patient image datasets for validation. Finally, Section IV ends
with a discussion of the results and our conclusions.

II. METHODS

A. Deformable Nonparametric Image Registration

Let and be the target and moving
images to be registered, respectively, on the domains
and . The aim of deformable nonparametric image
registration is to find a displacement field that
warps the moving image to align it with the target image [7]. In
this paper, we focus on monomodal images, and so after regis-
tration the intensities within the target and transformed moving
images should ideally match. In Euler coordinates, this is ex-
pressed for each coordinate as

(1)
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Fig. 1. Principles of sliding motion. This example shows the four types of
displacement field discontinuities that can occur in a 2-D domain. Vertical ar-
rows are (normal components); horizontal arrows are (tangential com-
ponents). The motion discontinuities visualized in (b)–(d) should be penalized,
but discontinuities that correspond to sliding motion that occur near specified
sliding boundaries (a) are allowed.

Deformable image registration can be solved by minimizing
a cost function, , composed of an intensity (dis)similarity
distance measure and a regularization , whose
relative importance is defined by a parameter

(2)

is an image match term that quantifies the inten-
sity differences between the target image and the transformed
moving image. For monomodal image registration, the sum of
squared differences (SSD) distance measure is appropriate

(3)

The regularization penalizes displacement fields deemed
to be unrealistic, and is formulated based on domain knowledge.
For example, the diffusive regularization favours smooth trans-
formations by penalizing any gradients in the or compo-
nents of the displacement field, and is related to linear, isotropic
diffusion, i.e., Gaussian smoothing

(4)

where is the gradient of the th scalar component of the
displacement field evaluated at .

B. Sliding Geometries

A regularization for deformable registration of images de-
picting sliding organs should allow sliding motion discontinu-
ities at expected sliding interfaces, while enforcing smooth mo-
tion within individual structures.
Several principles of sliding motion can be uncovered after

decomposing the displacement field into components that are
normal and tangential to the sliding boundary surface
[32], [33]. These principles are visualized in Fig. 1.
1) Sliding motion [Fig. 1(a)]: Sliding motion causes discon-
tinuities in tangential displacements along the normal di-
rection. Such discontinuities should not be penalized close
to organ boundaries, but they should be penalized within
organs to enforce smooth motion of the entire organ.

2) Intra-organ smoothing (IOS) [Fig. 1(b) and (c)]: Individual
organs should deform smoothly, and so both the normal
and tangential components of the displacement field (i.e.,
the displacement vectors themselves) should be smooth in
the tangential plane.

3) Inter-organ coupling (IOC) [Fig. 1(d)]: We ensure that or-
gans do not pull apart (a valid assumption for most med-
ical images) and prevent tearing/folding in the displace-
ment field by penalizing discontinuities in the normal dis-
placements along the normal direction.

In summary, we require the equivalent of a globally smoothing
regularization (e.g., the diffusive regularization), except that dis-
continuities from sliding motion are not penalized near organ
boundaries. Also, note that registering each region separately
using a mask, e.g., [12]–[14], is not guaranteed to satisfy the
normal component smoothness required by the inter-organ cou-
pling constraint.

C. Sliding Organ Deformable Image Registration

The following describes our “sliding organ” (SO) locally
adaptive regularization based on inhomogeneous anisotropic
diffusion.
1) Anisotropic Diffusion Smoothing: Inhomogeneous

anisotropic diffusion implements smoothing with directionality
and magnitude dictated by spatially varying diffusion tensors

. Smoothing is modeled as the diffusion of
particles with concentration against their concen-
tration gradient . The flux (i.e., flow per unit
area per unit time) is defined by .
and are not parallel in general, because an anisotropic
diffusion tensor will further direct the flow along certain
preferred directions. The particle concentration evolves over
time to reach equilibrium according to

(5)

where div is the divergence operator. Additional details and
derivations for anisotropic diffusion can be found in [43].
When the diffusion tensor equals the identity matrix,

Gaussian smoothing results. From linear algebra, the matrix

(6)

is the orthogonal projector onto a given unit normal vector
, and the matrix

(7)

is the complementary orthogonal projector, which projects onto
the plane normal to (where is the 3 3 identity matrix).
Therefore, allows diffusion (i.e., smooths) only in
the normal direction, and smooths in the tan-
gential plane. Here, “smooths in the tangential plane” is more
accurate than “smooths in the tangential direction,” because for
a 3-D image is a projection onto a 2-D plane, not a
1-D line.
2) Sliding Organ Regularization: We use two locally adap-

tive diffusion tensors and
to formulate the ideas described in Section II-B. In the fol-

lowing sliding organ regularization definition, the first term will
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penalize gradients in that violate the intra-organ smooth-
ness constraint, and the second term will penalize gradients in
the normal components of that violate the inter-organ cou-
pling constraint

(8)

Near previously-specified sliding boundaries, sliding motion
discontinuities will not invoke a cost, and thus are allowed to
develop as the registration progresses.
Let be the sliding boundary surface normals

based on a prior segmentation. Close to sliding boundaries, we
define the diffusion tensor to smooth all gradients of

in the tangential plane [Fig. 1(b) and (c)], and the diffusion
tensor to smooth all gradients in the normal displace-
ments along the normal direction [Fig. 1(d)]. Note that
the diffusion tensors dictate the smoothing direction, while the
gradients and are the components of the dis-
placement field that are being smoothed. We use in the
intra-organ smoothing constraint because we want to penalize
gradients in both the normal and tangential compo-
nents if they occur in the tangential plane. We use in
the inter-organ coupling constraint because we do not want to
penalize gradients in that occur along the normal direction,
since that is sliding motion.
Recalling (6) and (7), we set

(9)

(10)

The locally adaptive parameter weights the degree
to which sliding is allowed at a particular voxel. It enables a
transition from allowing sliding near organ boundaries to using
the diffusive regularization within organs. We set to decay
exponentially as a function of the distance from to the
sliding boundary

(11)

where is a small constant user-defined parameter.
Near the sliding surface, and motion disconti-

nuities related to sliding motion are allowed, while enforcing
the intra-organ smoothing and inter-organ coupling constraints.
Within organs, , so ,
and (8) collapses to the diffusive regularization defined in (4).
The requirement for smooth transformations within individual
organs is therefore maintained. Also, the ambiguous choice of

at interior voxels, where , becomes unimportant.
Since the displacement field is defined on the space of the target
image, so are the sliding boundaries and the boundary normals.
Therefore, and are all constant
throughout the registration optimization, and can be precom-
puted only once. This is true even if the organ surface deforms
between the two images to be registered.
Finally, is the component of that is parallel to

the surface normal, and is its displacement along the th

axis. is therefore the projection of onto the th scalar
component of

(12)

Throughout, we assume that the sliding boundary surface
is smooth, and can be locally approximated by a plane. How-
ever, our formulation is general and (8) through (10) can be
extended to consider sliding tubular geometries, as described in
Appendix A. Additional subtle differences in the formulation
compared to Schmidt–Richberg et al. [32], [33] are described
in Appendix B.

D. Numerical Solution

1) Euler–Lagrange Equations: The following Euler–La-
grange equation will hold for the displacement field that
minimizes [defined in (2)] for all

(13)

The gradient of the SSD intensity distance metric (3) at voxel
with respect to an infinitesimal perturbation in is

(14)

The gradient of the sliding organ regularization term at voxel
with respect to is derived in Appendix C, and equals

(15)

(16)

(17)

with the th canonical unit vector (e.g., ).
2) Optimization: Equation (13) is solved using an explicit fi-

nite difference scheme, and iteratively optimized using gradient
descent with a line search method [44]. Let be the time step
and the displacement field at iteration . Using a forward
difference in time and the initial conditions

(18)

On each iteration, is computed using (13)–(17).
First- and second-order central differences in space are
used to calculate discrete gradient and divergence op-
erations in a 3 3 3 neighborhood around each voxel.

is calculated by deforming the moving
image using linear interpolation. To determine the time step
in the line search, we found that for a precomputed descent

direction , the plot of with respect to
is well approximated by a concave-up quadratic. We, therefore,
perform the 1-D line search using second-order polynomial
interpolation, based on function values at three sample points,
and choose at the vertex. If the polynomial interpolation
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Fig. 2. Sliding boundary normals and weights . (a) Example surface
models and associated normals extracted using image segmentation, which are
subsequently discretized onto the image grid using nearest neighbors interpola-
tion; (b) Example slice through the weight image . At sliding boundaries,

and sliding motion may occur, while inside organs and
all motion discontinuities should be penalized.

does not give satisfactory results [e.g., outside specified
minimum/maximum bounds, or leads to an increase in ],
we use golden section search to find optimizing . This
setup gives good results while keeping evaluations of to
a minimum, which are relatively expensive.
Registration is performed in a multiresolution framework,

with resampling by a factor of two between each level. Before
registration, image intensities are rescaled to . The stop-
ping criterion at each level is determined by the convergence
of , by defining a minimum slope in versus below
which the registration is halted and a large number of maximum
iterations. The values for (weighting between the intensity
distance measure and the regularization) and [the exponential
decay constant used to compute ] were determined empir-
ically for each of the validation studies described below. To pri-
oritize image match, for all experiments was chosen to be
roughly the smallest possible value that did not cause tearing or
folding.

E. Implementation

The sliding organ registration algorithm is freely dis-
tributed as open-source software within the TubeTK Toolkit
(www.tubetk.org). The algorithm is implemented in C++
as an Insight Toolkit (ITK) [45] deformable image registra-
tion filter, and uses multithreading to speed computations.
The registration tool can be used either via the command
line, or using a graphical user interface within 3D Slicer
(www.slicer.org), an open-source software application
for medical image computing and visualization [46].

F. Segmentation of Sliding Boundaries

We segment the target image to define the sliding boundary
surface(s), which is required to compute the images and

(Fig. 2). Image segmentation is described separately for
each validation study presented in Section III. A surface model
is constructed using the Marching Cubes [47] implementation
provided by 3D Slicer, and is stored as Visualization Toolkit
(VTK) polydata [48]. We found that some surface model
smoothing and decimation was beneficial, to remove any sharp
corners caused by noise in the label map and reduce the compu-
tation time, respectively. The model may represent more than

Fig. 3. Evaluation using synthetic data. (a)–(b) Corresponding slices through
the target and moving images, respectively; (c) Volume rendered target image
with annotations of the applied translations; (d)–(e) Displacement field magni-
tudes (mm) for the diffusive and sliding organ regularizations, respectively. The
sliding registration better captures the left and right block translations.

TABLE I
ACCURACY RESULTS FOR REGISTRATION IN THE SYNTHETIC DATASET.
SSD IS REPORTED FOR AN INTENSITY RANGE OF 0–1. DISPLACEMENT
VECTOR ERROR MAGNITUDES ARE IN THE INTENSITY RAMP SECTIONS
OF THE TRANSLATED BLOCKS ONLY, GIVEN AS MEAN STANDARD
DEVIATION. THE SLIDING ORGAN REGISTRATION IS MORE ACCURATE

THAN THE DIFFUSIVE REGISTRATION

one organ. The normal vector is set to that of the nearest
vertex on the surface model. At each voxel, the minimum
distance to the polygonal mesh triangles is calculated.
Especially when several multiresolution levels are used in the
registration, it is useful to add the stipulation that any voxels
that intersect the surface model have . These distances
are used to calculate the weight image using (11).

III. VALIDATION

Several datasets were used to validate the accuracy of the
sliding organ registration method, and to compare its results to
those from registration with the diffusive regularization, a glob-
ally smoothing regularizer [(4)].
1) A synthetic dataset of sliding geometrical shapes, which
demonstrates better recovery of known applied displace-
ments.

2) Simulated full-inhale/systole and full-exhale/diastole chest
CT images created using the XCAT software phantom. This
characterized the different displacement fields from the
two regularizations in anatomically realistic images with
especially large homogeneous regions, in which case the
regularizer is especially influential.
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Fig. 4. Image registration of XCAT phantom images. An ideal difference image is all gray. The sliding organ regularization gives a much better spine alignment
(light blue arrows), while maintaining good registration of the heart, lungs and liver. The diffusive registration does have a better alignment at the lung-liver
interface (yellow arrows) in the XCAT phantom images.

TABLE II
ACCURACY RESULTS FOR XCAT PHANTOM IMAGE REGISTRATION. THE BONE
CLASS INCLUDES BOTH THE SPINE AND RIBS. THE SLIDING REGISTRATION
COULD ACHIEVE A SMALLER SSD THAN THE DIFFUSIVE REGISTRATION, AND
IS BETTER AT SIMULTANEOUSLY ALIGNING THE BONES. SSD IS REPORTED FOR
AN INTENSITY RANGE OF 0–1. SURFACE DISTANCES ARE UNSIGNED VERTEX
DISTANCES, GIVEN AS MEAN STANDARD DEVIATION, IN MILLIMETERS

3) Ten inhale and exhale thoracic CT image pairs, from the
DIR-Lab open dataset [49], plus four inhale and exhale ab-
domial CT image pairs from Children’s National Medical
Center/Stanford.Wedemonstate reduced target registration
error (TRE) in the thoracic images and in the lungs of the ab-
dominal images,andrecoveryofslidingmotion inboth.

We use landmarks to evaluate TRE wherever possible. Some
abdominal organs, e.g., the liver, lack internal structure that is
visible on CT that can be used to evaluate accuracy. In these
cases, we also report Dice coefficients for the segmented organ,
augmented with surface-to-surface distance measures to add an-
other physically meaningful metric in millimeters. Finally, we
examine the displacement field itself for the plausibility of the
resulting correspondences.
Note that experiments (1) and (2) are extensions of our pre-

vious work [40], showing improved results with updated soft-
ware and optimization process.

A. Synthetic Dataset

1) Registration Task: The sliding organ registration method
was first evaluated using 3-D images of simple geometrical

Fig. 5. Representative displacement field patches from registering the XCAT
images. The pink border in the top image shows the input sliding boundary. The
diffusive regularization overestimates motion at the chest wall (yellow arrow)
and mediastinum (yellow circle), while the displacement field from the sliding
organ regularization shows sliding at these interfaces. Displacement vectors are
from the target image (inhale) to the moving image (exhale), colored by dis-
placement magnitude (mm).

objects, which slide against each other and against their back-
ground. The two images to be registered [Fig. 1(a)–(c)] each
contain two blocks suspended within a dark background. From
left to right, each block has uniform intensity, followed by
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TABLE III
TRE EVALUATING REGISTRATION ACCURACY IN THE DIR-LAB THORACIC CT CASES. ALL VALUES IN MILLIMETERS. A INDICATES A STATISTICALLY

SIGNIFICANT IMPROVEMENT WHEN COMPARING THE DIFFUSIVE AND SLIDING REGISTRATIONS. THE SLIDING ORGAN REGISTRATION
SHOWS A REDUCED TRE, INDICATING BETTER REGISTRATION ACCURACY FOR LUNG REGISTRATION

TABLE IV
TRE EVALUATING REGISTRATION ACCURACY IN THE ABDOMINAL CT CASES. ALL VALUES IN MILLIMETERS. A INDICATES A STATISTICALLY SIGNIFICANT

IMPROVEMENT WHEN COMPARING THE DIFFUSIVE AND SLIDING REGISTRATIONS. THE SLIDING ORGAN REGISTRATION SHOWS A REDUCED
TRE IN THE LUNG LANDMARKS, INDICATING BETTER REGISTRATION ACCURACY THERE

TABLE V
DICE COEFFICIENTS AND SURFACE DISTANCES EVALUATING ABDOMINAL CT REGISTRATION ACCURACY. SURFACE DISTANCES ARE UNSIGNED

VERTEX DISTANCES IN MILLIMETERS (MM), GIVEN AS MEAN STANDARD DEVIATION

a ramp of increasing intensity, followed again by a uniform
(higher) intensity. To mimic sliding motion in the moving
image, the intensity ramp section in the upper block was
translated four voxels to the right, and the intensity ramp
section in the lower block was translated four voxels to the left.
Fig. 3(c) shows a volume rendering of the target image with
superimposed annotations of the applied motion. Each image
has dimensions 80 80 80 with isotropic 1 mm spacing.
For this demonstration, we used SSD with normal-

ized gradients1. This version gives a unit update vector
for all voxels with an intensity mismatch

between the two images. The target and moving images were
registered with one resolution level, using and ,
with uniform time step for 1000 iterations. Segmen-
tation of the sliding boundaries is given by construction in this
synthetic example.
2) Image Match and Displacement Fields: This example

illustrates how using a globally smoothing regularization
produces incorrect motion estimates when sliding motion is

1itk::PDEDeformableRegistrationFunction:: SetNor-
malizeGradient(true)

present, which can lead to a reduced image match after regis-
tration.
Fig. 3(d) shows a slice through the displacement field after

registration with the diffusive regularization. It is clear that the
estimated displacements do not match the applied translations,
both at the interface between the two sliding boxes and in the
dark background regions, which should be stationary. In con-
trast, the sliding organ registration [Fig. 3(e)] effectively iso-
lates the motion within the translated blocks and preserves the
motion discontinuities at the object interfaces.
Table I summarizes the displacement error magnitudes

evaluated within the translated intensity
ramp sections of the two blocks. The sliding organ registration
more accurately estimates the known applied motion. Table I
also shows that the diffusive regularization leads to a worse
SSD by forcing smooth motion, while image match is better
using the sliding organ registration.

B. XCAT Software Phantom Dataset

1) Registration Task: The second evaluation involved regis-
tering simulated chest CT images of the lungs, heart and supe-
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rior liver generated using the 4-D extended cardio-torso (XCAT)
software phantom [50]. The XCAT images are anatomically re-
alistic but have a very simplified intensity profile, with only a
few gray levels (Fig. 4). Thus, the large homogeneous regions
present a challenging case with which to compare regularization
strategies. In this way, we can evaluate how different regular-
izations would do “on their own” without a dense field of forces
from the image match term.
The XCAT phantom models human anatomy using images

from the Visible Human Project, and creates images corre-
sponding to user-defined respiratory rate, heart rate, and other
parameters by applying motion models to organ surfaces rep-
resented by nonuniform rational B-splines (NURBS). Note
that although the phantom can output the displacement field
generated by the motion models, these have undergone signif-
icant smoothing [50]. This does not impact the realism of the
organ shapes in the output images, but does preclude us from
using the output displacement fields as a gold standard when
characterizing discontinuous motion estimation.
The XCAT phantom was used to generate a target image at

full inhale and systole, and a moving image at full exhale and
diastole. Parameters corresponding to a typical healthy person
were used (respiratory period 5 s, cardiac cycle 1 s), and the
resulting six gray levels were adjusted to match those of a typ-
ical CT scan. The motion to be estimated includes the chest and
lung expansion, the liver’s downward motion, the heart’s con-
traction, and the heart’s anterior and inferior motion.
The parameters used for registration were and

, using two resolution levels and the line search
strategy and stopping criteria described in Section II-D. Each
image has dimensions 80 75 74 with isotropic 3.125 mm
spacing. The sliding boundary was defined by segmenting the
lungs, and thus incorporated both the lung/chest wall inter-
face and the lung/liver interface (diaphragm). Segmentation
involved thresholding, manual removal of the smaller bronchi,
label map smoothing, surface model generation using Marching
Cubes, and surface smoothing and decimation.
2) Image Match: Image registration results are shown in

Fig. 4. In Table II, we report Dice coefficients and surface to
surface distances calculated before and after registration. To cal-
culate these, the lungs, liver and bones (ribs and spine) can be
easily segmented in the original and transformed moving im-
ages via thresholding. For each pair of segmentations to be com-
pared, the Dice coefficient is

(19)

The distances between organ surfaces were computed on gen-
erated surface models of the lungs, liver, and bones. The lower
diaphragm surface and points within 1 cm of the lower boundary
were eliminated from the lung surfaces, as this is replicated on
the liver surface. The unsigned minimum surface vertex dis-
tances were computed usingMeshValmet (www.nitrc.org/
projects/meshvalmet), combining both the forward and
backward distances.
As shown in Table II and Fig. 4, the sliding organ registration

could achieve better SSD imagematch after registration than the

Fig. 6. Thoracic CT registration (C4). Displacement fields are visualized with
glyphs and displacement field magnitude (mm). The diffusive regularization un-
derestimates motion inside the lung near the chest wall. The sliding registration
recovers more uniform lung motion, with clear sliding. Crosses on the fixed
image show the motion of an example landmark from its moving (red) to target
(green) position. The sliding registration (orange) does better than the diffusive
registration (yellow) in this region.

diffusive registration, and the Dice and surface distance metrics
show that it was also much better at registering the spine. This is
a good illustration of how modeling sliding in the motion prior
can improve global registration results, allowing to simultane-
ously align multiple independent objects. In contrast, the diffu-
sive registration actually reduces the bone Dice score compared
to the value before registration. However, the diffusive regis-
tration does give a better alignment at the lung-liver interface.
Including sliding at the boundary between the liver and the spine
would completely decouple their inferior-superior (I-S) motion,
and may remove any associated inhibition of the liver’s upward
motion.
3) Displacement Fields: Fig. 5 illustrates the sliding motion

recovered at the lung boundaries, both at the lateral sides and
near the spine/mediastinum. This is compared to the smooth
motion estimated by the diffusive regularization, which overes-
timates motion in the chest wall and spine. There is a significant
difference in the estimated displacement fields

has mean 3.89 mm and standard deviation 3.07
mm. Difference vector magnitudes in the lungs are relatively
small; instead, the biggest differences are in the spine, withmag-
nitudes up to 2 cm inferiorly. There are also differences in the
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Fig. 7. Abdominal CT registration (P0). At left, the target image (inhale) with superimposed differences in the moving image (exhale) in green. Displacement
fields are visualized with glyphs and as displacement field magnitude (mm). In the lungs (middle), the sliding registration gives more uniform lung motion near
the lung surface, and prevents incorrect motion overestimation in the chest wall. In the liver (right), the main difference is to fix the motion overestimation in the
abdominal wall.

displacements measuring up to 1 cm in the chest wall, heart and
liver. We note that in this example, the sliding organ regulariza-
tion estimates less liver motion than the diffusive regularization,
which gives smoother motion.

C. Patient CT Image Pairs

1) Registration Task: We evaluated the sliding organ reg-
istration using fourteen paired inhale-exhale CT images from
freely available datasets. This included ten thoracic CT patient
images from the DIR-Lab dataset [49], plus four abdominal CT
images hosted on ITK’s medical development database2 pro-
vided by researchers at Children’s National Medical Center and
Stanford. Of the abdominal cases, Patient 3 showed substantial
gating artifacts and was excluded from the study. In all cases,
we selected the end-inhale image (0%) as the target image and
the end-exhale image (50%) as the moving image.
The DIR-Lab images are cropped on the lungs, and show

clear sliding motion at the chest wall interface. The four ab-
dominal images depict the abdominal organs (liver, colon, in-
testines, etc.), the heart, and either the whole lungs or their lower
half. The abdominal images show sliding between the abdom-
inal wall and the abdominal organs (including the liver) in ad-
dition to the sliding at the lung boundary.
The lungs were segmented in all 14 images using 3D Slicer’s

thresholding, island removal, label map smoothing, morpholog-
ical and manual editing operators. The abdominal dataset in-
cludes expert manual segmentations of the liver. Before reg-
istration, the images were cropped, thresholded and intensity
normalized. The abdominal images were linearly resampled to
isotropic 2 mm spacing. The DIR-Lab images were registered
at their original resolution, approximately 1 1 2.5 mm. The
registration parameters were (DIR-Lab) and

(abdominal), with three resolution levels, a
line search to find the time step for each iteration, and stopping
criterion based on convergence evaluated within body voxels
only.

2Community “4D CT—Liver—with segmentations” http://midas.
kitware.com/community/view/47

2) Image Match: Image match was evaluated using TRE.
Each DIR-Lab dataset has 300 landmarks for registration accu-
racy evaluation. For the abdominal datasets, we computed TRE
using approximately 75 manually identified landmarks: on
vessel/airway bifurcations in the lungs, and on uniquely
identifiable points inside the abdomen or heart. For the abdom-
inal datasets, we also report Dice coefficients and surface to sur-
face distances for the segmented liver. Features (landmarks or
segmentations) were identified in both the target and moving
images, and the moving image features were warped by the reg-
istration displacement field for subsequent comparison.
The DIR-Lab results are shown in Table III, and the abdom-

inal CT results are shown in Tables IV and V. In all cases, both
the diffusive and sliding registrations gave a statistically signif-
icant improvement in TRE compared to the values before reg-
istration . The sliding organ regularization showed
improved accuracy for lung registration in both datasets. For the
DIR-Lab data, the average TRE was reduced from
mm (diffusive) to mm (sliding). For reference, the
results reported by Schmidt–Richberg et al. [33] were

mm for the diffusive regularization and mm
for their sliding implementation. The differences between these
results are likely due to parameter selection and optimization
strategy, especially for the diffusive registration as the same en-
ergy was implemented. In the abdominal CT dataset, the av-
erage TRE in the lungs was reduced from mm (dif-
fusive) to mm (sliding). However, in the abdom-
inal dataset there was some compromise in alignment of the ab-
dominal landmarks. The TRE for the diffusive registration was

mm, versus mm for the sliding reg-
istration. The Dice scores and surface distances for global liver
alignment show a very slight improvement for the diffusive reg-
ularization: approximately 0.003 in Dice and mm for sur-
face distance. From these results, we conclude that the sliding
organ registration is superior for lung registration, but that the
application for abdominal registration is less certain.
3) Displacement Fields: Example displacement field

patches from the thoracic and abdominal registrations are
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shown in Figs. 6 and 7, respectively. The sliding organ reg-
istration effectively recovered sliding motion, giving more
plausible displacement fields and correspondences, in the left
and right lung surfaces near the chest wall, the posterior lung,
and near the liver interface with the abdominal wall.
In the lungs, the diffusive regularization underestimates

motion near the lung surface, where the “zero” motion in
the background is blurred into the body (Figs. 6 and 7).
This band of reduced motion was approximately 1.5–5.0
cm deep in the DIR-Lab datasets, and 1.5–3.0 cm deep in
the abdominal datasets. The difference vector magnitudes

in this region were large: 5–10
mm in the thoracic cases, and 2–6 mm in the abdominal
cases. Modeling sliding also removed the false motion that
the diffusive regularization estimates in the chest/abdominal
wall, compared to the true motion indicated by the ribs. Fig. 7
shows that this type of error was the primary difference near
the liver, explaining why the sliding registration did not yield
an improvement in accuracy inside the abdomen. Decomposing
the displacement fields into left–right, anterior–posterior, and
inferior–superior motion (well approximated by the and
components) reveals that in all cases, the motion differences
between the two regularizations are almost entirely in the I-S
direction, which is the direction in which sliding occurs.

IV. DISCUSSION AND CONCLUSION

We have presented a locally adaptive regularization based on
anisotropic diffusion that is designed for registering images of
sliding organs. We have shown improved registration accuracy
for lung registration in longitudinal thoracic and abdominal CT
datasets.Theproposedmethodalsogivesmore realistic displace-
ment fields than a globally smoothing regularization, given that
respiration-induced sliding motion is known to occur within the
chest and abdomen. This is important for accurate correspon-
dencedetection in regions thatlackdistinguishing imagefeatures.
Hence, the sliding organ registration should be useful for tasks
such as longitudinal change detection of juxtapleural lung nod-
ules,orradiotherapyfor tumours locatednearasliding interface.
Key advantages of our formulation are its generality and ex-

tensibility. As noted in Appendix C, there is an inherent assump-
tion of a smooth sliding surface boundary so that the gradient
can be computed. However, there are cases where organs have
relatively sharp edges and the surface smoothness assumption
is challenged. Examples include the shape of the lungs near
the diaphragm, and the shapes of individual lung lobes (some
additional areas where both the lung and liver surfaces have
relatively sharp edges can also be seen in Fig. 2). The sliding
organ regularization presented in Section II is not designed to
directly handle this issue. However, in Appendix A we describe
a “geometry conditional” extension that also models sliding of
tubular structures, such as needles, catheters and contrast agent
flowing through vessels. Although it is not the focus of this
paper, the geometry conditional formulation could be extended
in future to address the problem of surfaces that are not lo-
cally smooth. Specifically, one could modify the tube formu-
lation to specify multiple normals locally at surface edges and
corners, with one normal for each of the coincident planes. This

would introduce additional degrees of freedom to allow sliding
to occur along all of the planes simultaneously, which would
address the problem of sharp surface edges.
Registering the clinical CT scans takes several hours. The

proposed registration method uses two parameters, and , the
first of which is present in all registration methods involving
regularization. We found that can be tuned fairly easily by
picking an exponential decay factor that remains large within
1–2 voxel widths and subsequently decays. However, the
method is sensitive to the accuracy of the prior segmentation,
since this completely defines the borders along which motion
discontinuities are allowed to develop.
An acknowledged limitation of this study is that we modeled

sliding around the lungs and liver, but not along the entire abdom-
inal wall. In actuality, the abdominal organs are enclosed in the
peritoneal sac, and slide against the abdominal wall as a group.
We suspect that enclosing all of the abdominal organs within one
sliding surface at the abdominal wall would be a better model of
how these organs slide, compared to segmenting the liver alone.
Methods for abdominal wall segmentation have been very re-
cently presented [38], [39], and should be taken advantage of in
future to further improve the results in theabdomen.

APPENDIX A
GENERALIZATION TO ALL SLIDING GEOMETRIES

In Section II, we assumed that the surface along which sliding
occurs is locally planar, i.e., smooth. However, the sliding organ
regularization can be extended to handle sliding structures that
have tubular geometries [41]. An example of a sliding tube is a
needle sliding through tissue, or contrast agent flowing through
a vessel.
We will use local structure classifications to form a “geom-

etry conditional” sliding regularization. Image neighborhoods
can be classified into four types: those representing homoge-
neous regions, roughly planar surfaces, tubes, and small point-
like (spherical) structures. With respect to sliding motion:
1) Homogeneous regions do not contain a sliding boundary,
and should undergo globally smoothing regularization.

2) As described above, for locally planar surfaces we allow
sliding motion by not penalizing discontinuities in the
tangential displacement components that occur along the
plane’s normal direction.

3) For tubes, the tangential direction is along the tube’s axis,
and there are two normal vectors. These lie in the tube’s
cross-sectional plane, and can be any pair of orthogonal
unit vectors that are perpendicular to the centerline. Then,
tube sliding also manifests as discontinuities in the tangen-
tial displacements that occur in the normal plane. Allowing
such discontinuities means that the tube can slide along its
axis without influencing its surrounding structures.

4) Extending the above, point-like structures can be thought
of as having three orthogonal normals. Spheres do not
slide, and so they should also undergo a globally smoothing
regularization.

A regularization implementing the rules for all four geom-
etry types can be defined as follows. We begin with a segmen-
tation of the expected sliding surfaces, sliding tubes, and any
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point-like structures (landmarks). In practice, this classification
can come from combining the results of several segmentation
algorithms, e.g., a multi-organ segmentation algorithm to de-
fine the locally planar surfaces, and a segmenter such as [51] to
define tubular structures.
We add the geometry conditional variables
. For planes, , for tubes

and , and for points . Up to three
unit normals, , and , are included at each
coordinate, and are computed according to the given structure
segmentations. Again, is defined based on the distance
to the closest segmented geometry. Define
as a diagonal matrix with diagonal elements .
Define as a matrix whose columns are given
by and .
Then, the th scalar component of the normal displacement is

given by

(20)

and the diffusion tensor that smooths in the normal direction(s)
is

(21)

Equations (8)–(10) can now be used to define the sliding reg-
ularization as before. The gradient in (15) and (16) is also the
same, with the one exception being that (17) is substituted by

.

APPENDIX B
COMPARISON TO SCHMIDT–RICHBERG ET AL.WHEN

For the sake of completeness, note that there are subtle differ-
ences between our formulation and that of [32], [33] in howmo-
tion is smoothed on the sliding boundary itself. Both methods
use a function such that at the ob-
ject boundary and inside the organ. In the limit case

, the tangential component is not smoothed across
the boundary, but it should be smoothed in the tangential plane.
When (and dropping the notation for concise-
ness), the regularizer of Schmidt–Richberg et al. takes the form

(21)

where denotes the full target image domain, denotes the
domain of the object, , and is the set difference.
This can be rewritten as

(23)

where is the boundary between the background and the
object, and is the full domain minus the boundary.
When , our proposed regularization is

(24)

Therefore, regularizer (22)/(23) penalizes only the gradient of
the normal displacement component on the boundary

. In contrast, regularizer (24) also smoothes the tangential
components in the tangential plane, as desired.

APPENDIX C
DERIVATION OF THE GRADIENT OF THE SLIDING

ORGAN REGULARIZATION

The derivation of (15)–(17) is as follows. It includes taking
the gradient of terms that include the surface normals, so there is
an inherent assumption that these terms are sufficiently smooth
so that one can differentiate. Relatively smooth surfaces are also
required to accurately compute surface normals in the first place,
and so that the direction-dependent smoothing using the
and diffusion tensors is sensible. We drop the nota-
tion for conciseness.

Proof: For a given and with , we
must find the gradient of

from (8). Define

The variation is then

Recalling the definition of the perpendicular component
from (12) (with a scalar and defining )
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Hence, , and we can write the variation as

To get rid of the gradient, recall that the negative divergence is
the adjoint to the gradient operator which can be seen through
the divergence theorem. Assume a vector field , then the di-
vergence theorem states

where the integral on the right is over the boundary surface
of and denotes the unit outward normal to this surface.
Assume that the vector field can be decomposed as ,
where is a scalar field and a vector field. Substituting into
the divergence theorem results in

which provides us with the multi-dimensional equivalent to in-
tegration by parts. The negative divergence is the adjoint of
the gradient operator. Note that this adjoint also creates spatial
boundary conditions. We obtain (picking appropriate boundary
conditions)
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