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Although researchers have explored how humans perceive the intelligence of virtual characters, few studies
have focused on the ability of intelligent virtual characters to fix their mistakes. Thus, we explored the self-
correction behavior of a virtual character with different intelligence capabilities in a within-group design
(# = 23) study. For this study, we developed a virtual character that can solve a jigsaw puzzle whose self-
correction behavior is controlled by two parameters, namely, Intelligence and Accuracy of Self-correction. Then,
we integrated the virtual character into our virtual reality experience and asked participants to co-solve a
jigsaw puzzle. During the study, our participants were exposed to five experimental conditions resulting from
combinations of the Intelligence and Accuracy of Self-correction parameters. In each condition, we asked our
participants to respond to a survey examining their perceptions of the virtual character’s intelligence and
awareness (private, public, and surroundings awareness) and user experiences, including trust, enjoyment,
performance, frustration, and desire for future interaction. We also collected application logs, including
participants’ dwell gaze data, completion times, and the number of puzzle pieces they placed to co-solve
the jigsaw puzzle. The results of all the survey ratings and the completion time were statistically significant.
Our results indicated that higher levels of Intelligence and Accuracy of Self-correction enhanced not only our
participants’ perceptions of the virtual character’s intelligence, awareness (private, public, and surroundings),
trustworthiness, and performance but also increased their enjoyment and desire for future interaction with
the virtual character while reducing their frustration and completion time. Moreover, we found that as the
Intelligence and Accuracy of Self-correction increased, participants had to place fewer puzzle pieces and needed
less time to complete the jigsaw puzzle. Finally, regardless of the experimental condition to which we exposed
our participants, they gazed at the virtual character for more time compared to the puzzle pieces and puzzle
goal in the virtual environment.
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1 Introduction
Due to the democratization of virtual reality (VR) technologies, VR applications have gained
unprecedented popularity [68]. VR has been successfully used in domains including training [52,
98], education [1], and games [51, 53]. In these domains, several applications allow VR users to
interact with virtual characters [45, 47, 63–65, 92]. Specifically, virtual characters can observe and
interact with virtual environments [100] and react to pre-defined events [20, 54, 69]. They can
also “understand” the context of situations [84] and collaborate with others to achieve goals [5].
Furthermore, verbal or non-verbal communications [101] and emotional expressions [77, 92] are
simulated to enhance the realism of interactions with virtual characters. These abilities enable
virtual characters to deliver knowledge or information [16, 76] and collaborate with people to
complete specific tasks [35, 51].

As virtual characters become more sophisticated, several researchers have explored how humans
interact and experience them. However, although virtual characters can be scripted to perform
a given task efficiently (i.e., act optimally and behave intelligently), exploring how human-like
characteristics and behaviors can impact human perceptions of virtual characters is also important.
For example, understanding how humans perceive mistakes made by virtual characters can help
us further develop human-like intelligent virtual characters [36]. However, although some work
has been conducted to understand how humans perceive agents or robots when the latter make
grammatical mistakes [74, 87], malfunction [57], and perform unexpected movements [30], less
attention has been given to how the self-correction behavior of a virtual character (i.e., its ability to
fix its own mistake) could impact human perceptions of that virtual character.

To explore human perceptions of the self-correction behavior of a virtual character, we imple-
mented a VR application in which a user and a virtual character collaborate to solve a jigsaw
puzzle, which has been considered a cognitively demanding task identified by previously conducted
research [29, 39]. The self-correction behavior we implemented enabled the virtual character to
become aware that a wrong action had been performed and “self-correct” that action (i.e., the
virtual character was scripted to pick up a wrongly placed puzzle piece and place it in a new [either
right or wrong] position on the puzzle board). To control the behavior of our virtual character,
we used two parameters, namely, Intelligence and Accuracy of Self-correction. The Intelligence pa-
rameter denotes the probability of placing the puzzle piece in the correct spot. For example, the
virtual character always places the puzzle pieces correctly if we set Intelligence to 100%. The other
parameter, Accuracy of Self-correction, is the probability that the virtual character will fix its mistake
correctly. When the virtual character has 0% Accuracy of Self-correction, it always picks up its last
wrongly placed puzzle piece but again places it in the wrong spot. In contrast, when the virtual
character has 100% Accuracy of Self-correction, it always places its last wrongly placed puzzle piece
in the correct spot.

In this project, we developed a virtual character programmed to assist study participants in
co-solving a jigsaw puzzle, with its actions guided by a user-defined probability of Intelligence and
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Accuracy of Self-correction when placing the jigsaw puzzle pieces. Although the behavior of the
virtual character might not entirely align with conventional definitions of intelligence, we propose
that it can still be regarded as “intelligent.” According to Fissler et al. [29], solving jigsaw puzzles
involves various cognitive skills, including visual perception for recognizing shapes and patterns,
constructional praxis for coordinating visual and motor information, mental rotation for aligning
pieces, and cognitive flexibility for adjusting strategies. Additionally, these tasks require cognitive
speed, perceptual reasoning for developing strategies, and working and episodic memory to keep
track of the associations between puzzle pieces. Given these demands, we argue that the virtual
character’s ability to address these cognitive challenges supports its classification as “intelligent.”

To explore how study participants perceived the virtual character when they were co-solving the
jigsaw puzzle, we conducted a within-group study (# = 23) and asked our participants to collaborate
with the virtual character and co-solve the jigsaw puzzle in each of the five experimental conditions
we developed. Our experimental conditions were the results of combining Intelligence and Accuracy
of Self-correction parameters: (1) 0% Intelligence without Self-correction, (2) 0% Intelligence and 0%
Accurate Self-correction, (3) 0% Intelligence and 50% Accurate Self-correction, (4) 0% Intelligence
and 100% Accurate Self-correction, and (5) 100% Intelligence without Self-correction. For example,
in the 0% Intelligence with 100% Accurate Self-correction condition, the virtual character places
the puzzle piece in the wrong spot on the board, then picks it up again and places it in the correct
spot. After finishing each condition, we asked participants to self-report their experience with the
virtual character by answering a survey. The survey comprised questions examining 10 variables:
perceived intelligence, intelligence comparison (participants compared their intelligence against
the virtual character’s intelligence), virtual character’s private awareness, virtual character’s public
awareness, virtual character’s surroundings awareness, trust, performance, enjoyment, frustration,
and desire for future interaction as well as an open-ended question for our participants to provide
additional feedback. We also collected application logs, including the participants’ dwell gazing
(virtual character, puzzle pieces, and puzzle goal), completion time, and the number of puzzle pieces
participants placed during co-solving the jigsaw puzzle.

We organized this article as follows. In Section 2, we discuss work related to our project. In
Section 3, we present details of our implementation and methodology. In Section 4, we present our
results, which are discussed in Section 5, along with our study’s limitations. Finally, in Section 6,
we draw conclusions and discuss potential future work.

2 Related Work
2.1 Human–Agent Interaction
Researchers in human–computer interaction have extensively studied how humans interact with
computer systems [38]. Human–agent interaction is an extension of human–computer interaction
as it regards agents as interactive systems. Numerous researchers have defined the concept of
agents. Norman [72] described them as “…forth images of human-like automatons, working without
supervision on tasks thought to be for our benefit, but not necessarily to our liking.” Lewis [50]
also focused on automation as the concept of agents in human–computer interaction. Based on
these concepts, various agents, such as virtual agents or robots, exist within the human–agent
interaction research area.

Several researchers have investigated human–agent interaction using robots. Bradshaw et al. [10]
referred to the derivation of robots to describe agents. Burghart et al. [11] proposed an approach to
train an anthropomorphic robot to solve a jigsaw puzzle like a child with a tutor. They recorded a
video of a child solving a jigsaw puzzle with the tutor and converted it to an applicable format to
train the robot. In the proposed approach, the trained robot solved the jigsaw puzzle cooperatively
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based on human instruction or guidance. Giuliani and Knoll [32] assigned instructive or supportive
roles to robots in human–robot interaction to understand how people react. They found that people
did not prefer the robot to take either role and behaved as the counterpart of whichever role it
played.

Regarding virtual agents, Cerekovic et al. [14] integrated virtual characters to let participants
interact with them and analyzed the interaction through the perspective of personality traits and
non-verbal cues. They built regression models to predict interaction experiences and found that
the best predictions could be made using both personality traits and non-verbal cues. Morton and
Jack [62] proposed a computer-assisted language learning program with a virtual agent that spoke
with users and gave feedback regarding grammatical and ungrammatical utterances. The virtual
agent reacted to the user’s speech and changed its dialog based on the communication difficulties
to support the user’s language learning. Furthermore, Cavazza et al. [13] proposed a prototype for
interactive storytelling based on user intervention. In their prototype, the user could interact with
the virtual agents, and this interaction affected the agents’ subsequent behaviors and triggered
changes in the storyline.

2.2 Collaboration with Virtual Agents
The Merriam-Webster dictionary defines collaboration1 as “working jointly with others or together,
especially in an intellectual endeavor.” Rickel and Johnson [78] used the term “collaboration” to
describe agents helping users learn given tasks and thus meet their objectives. Researchers have
explored how people collaborate with virtual agents. Andrist et al. [2] implemented a virtual agent
that taught users the task of sandwich-making to improve the user experience in human–agent
interaction through producing and detecting gaze cues.The authors found that the bidirectional gaze
of the virtual character (producing its gaze and responding to the user’s gaze) positively impacted
the number of errors, and the virtual character’s response to the participant’s gaze improved the
degree of coordination during collaboration.

Collaborative virtual agents have also been applied to games. Merritt et al. [60] integrated an
artificial agent into a cooperative game to compare the users’ perception of the risk-taking action
of different types of teammates, and the artificial agent collaborated with players to win the game
through risk-taking action. The authors found that the players noticed more risk-taking actions
when they thought about collaborating with humans than with artificial intelligence. Daronnat
[22] explored the human–agent trust relationship in collaborative games through different aspects
of agents, such as predictability or type of errors. The author stated that an error caused by the
agent’s inaction impacted trust and performance less negatively than planning or commission
errors.

While the previously mentioned studies focused on human–agent interaction, other studies
have considered agent–agent interaction. Liu et al. [51] implemented collaboration between virtual
agents driven by behavior trees to measure the degree of collaboration in gameplay. Later, when
Liu et al. evaluated their game levels, they found a strong correlation between the degree of
collaboration data provided by virtual agents and their study participants. Cavazza et al. [13]
described the interaction between agents as an intervention. Specifically, as in a user intervention,
one agent could interfere with other agents and affect the storytelling. Baker et al. [5] presented a
reinforcement learning algorithm to train virtual agents to play hide and seek cooperatively. They
indicated that collaborations between virtual agents were observed as a strategy for winning in
team play.

1https://www.merriam-webster.com/dictionary/collaboration
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2.3 Awareness in Human–Agent Interaction
Some studies on human–agent interaction have found that some virtual agents can detect the
surrounding environment, such as the progress of a task [16], and decide their subsequent behavior.
These dynamically allocated behaviors make the virtual agents look more aware. According to the
Merriam-Webster dictionary, awareness2 is “the quality or state of being aware: knowledge and
understanding that something is happening or exists,” and it has various targets.

Munir et al. [67] defined situational awareness as “the perception of entities in the environment,
comprehension of their meaning, and projection of their status in the near future.” Similarly, Livnat
et al. [55] indicated that situational awareness is “the ability to identify, process, and comprehend
the critical elements of information about what is happening.” Situational awareness can be applied
to decision-making [55], such as remotely controlling urban search and rescue robots [99]. Govern
and Marsch [33] proposed the situational self-awareness scale, which comprises three types of
awareness: private, public, and surroundings. The authors stated that private awareness is related to
attention to one’s inner feelings, public awareness is based on attention to how one shows oneself to
others, and surroundings awareness describes attention to the environment. Ijaz et al. [41] defined
three types of awareness (environment awareness, self-awareness, and interaction awareness) and
provided detailed information for all three types to implement an aware virtual agent. The authors
found that the aware virtual agent was more believable than the unaware one. Contrarily, the
awareness target of virtual agents can be the users. McNeely-White et al. [58] presented a virtual
agent that was aware of aspects of the users, such as gestures or gazes, through videos and depth
sensors. They found that the shared perception and user awareness of the virtual character made
the user feel and interact with it as if it were a person. Furthermore, Tan et al. [89] implemented a
location-aware virtual character based on the locations of users and objects and stated that people
perceived higher presence and adaptivity from the location-aware virtual character than a virtual
character that was unaware of the location of users and objects.

2.4 Perceived Intelligence
Norman [72] used the term “intelligent” to describe “agents.” Numerous studies demonstrate that
intelligence is one of the main components of agents [5, 32, 59, 88, 90]. Perceived intelligence is
humans’ perceptions of agents’ intelligence [66], and researchers have explored various factors
that can affect it. Deshmukh et al. [24] focused on the relationship between human perception and
the understandability of robot gestures. They found a correlation between perceived intelligence
and understandability. Lee et al. [49] applied an anthropomorphic layer to a virtual agent, showing
that the virtual agent’s appearance positively affected perceived intelligence. They identified that
anthropomorphism due to a human-like appearance caused higher social presence and positively
impacted perceived intelligence. Choi et al. [17] explored the effect of virtual characters’ appearance
and voice mismatch on perceived intelligence and found that virtual characters with a robot-like
appearance had a higher perceived intelligence than those that looked like humans. Finally, Bartneck
et al. [6] explored the connection between a robot’s perceived intelligence, animacy, and design
and found a correlation between animacy and perceived intelligence.

2.5 Self-Correction
Even if an intelligent virtual character is designed to perform tasks correctly, it is hard to guarantee
that a virtual character can treat all cases without errors. Thus, several researchers have studied
how people perceive virtual characters when they make mistakes. According to Wang et al. [94],
even if virtual characters make errors such as unresponsiveness, irrelevant responses, or other

2https://www.merriam-webster.com/dictionary/awareness
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conversational mistakes, they can still provide social influence and impact user interaction. However,
according to Lucas et al. [56], such errors affect human task performance and reduce a virtual
character’s persuasive ability. In contrast, according to Skarbez et al. [83], there is a strong correlation
between error metrics and the perceived quality of interaction with the virtual character.

However, when a virtual character performs tasks incorrectly, it should be able to identify and
correct its mistakes, resulting in a self-correction behavior. Satne [82] presented three components of
self-correction: the application of concepts, the ability to evaluate the applications of concepts, and
the modification of the application of concepts based on the evaluation. Self-correction behaviors
vary in terms of how the corrective actions are applied. Lasecki and Bigham [48] researched how
to leverage self-correction from crowds and proposed two types of self-correction: averaging and
voting. They found that self-corrections helped crowds reach the appropriate correction before the
final decision without the identification of invalid input. Ming et al. [61] proposed a framework that
enables robot self-correction. They used a perception detector to collect environmental information
and determine whether there were errors. Based on the decisions, the corrector assigned appropriate
feedback, such as high-level or low-level feedback, to correct the error. The authors applied the
framework to a robot in a real environment and showed its error detection and correction capacity.
Such findings highlight the need to conduct studies to understand how mistakes made by virtual
characters could impact human perceptions of and interactions with them.

2.6 Contributions
Researchers on human–agent interaction have extensively examined how virtual agents and robots
collaborate with humans, focusing on factors like awareness [67, 89], perceived intelligence [6, 17,
49], and user experience [2, 22, 60]. However, there is a lack of research specifically investigating how
self-correction behaviors in virtual characters impact these factors. Most studies have explored basic
interaction dynamics and task performance [10, 32, 62], but the effects of self-correction accuracy
and intelligence remain underexplored [48, 61]. Our research addresses this gap by examining
how self-correction behavior influences perceived intelligence, awareness, user experience, and
behavioral responses, providing a more comprehensive understanding of effective human–virtual
character interactions.

Specifically, the contributions of our work are as follows. First, we introduce algorithms that
control how a virtual character could solve a jigsaw puzzle based on Intelligence and Accuracy
of Self-correction parameters. Second, we conducted a user study to understand further how the
self-correction behavior of an intelligent virtual character could impact humans’ perception of
the virtual character and the user experience of the developed application and task with which
study participants were asked to interact. Finally, we think our findings could help researchers
explore further how self-correction behavior can be implemented in intelligent virtual characters,
an underexplored research direction of the human-virtual character interaction field.

2.7 ResearchQuestions
We identified several research questions for our study to understand how a virtual character’s
self-correction behavior could impact participants’ perceptions of the virtual character as well as
their experiences as users. Specifically, we examine four research questions:

— Intelligence: This research question explores how participants perceive the intelligence of a
virtual character when it exhibits self-correction behaviors. It includes investigating subjective
perceptions of intelligence and comparative ratings whenwe asked our participants to evaluate
the virtual character’s intelligence.
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–RQ1: How do the self-correction behaviors of a virtual character impact participants’ per-
ceptions and comparative ratings of that virtual character’s intelligence?

—Awareness: This research question delves into how self-correction behaviors influence par-
ticipants’ views on the virtual character’s awareness. It covers: (1) Private Awareness, the
perception of the virtual character’s self-awareness or internal state; (2) Public Awareness,
the perception of the virtual character’s awareness of others and social contexts; and (3)
Surroundings Awareness, the perception of the virtual character’s awareness of the physical
environment and situational context.
–RQ2 : How do the self-correction behaviors of a virtual character impact participants’ per-
ceptions of the virtual character’s awareness in various contexts?

—User Experience: This research question assesses the overall user experience when interacting
with a self-correcting virtual character. Key aspects include: (1) Trust, the level of trust
participants have in the virtual character; (2) Performance, how well participants perform
tasks in conjunction with the virtual character; (3) Enjoyment, the degree of enjoyment
participants experience during the interaction; (4) Frustration, the amount of frustration felt
by participants; and (5) Desire for Future Interaction, participants’ willingness to engage with
the virtual character again in the future.
–RQ3: How do the self-correction behaviors of a virtual character impact participants’ user
experience, including trust, performance, enjoyment, frustration, and willingness to interact
in the future?

—Behavioral Responses: This research question focuses on the observable behavioral responses
of participants. It includes: (1) Dwell Gazes, where participants focus their gaze, specifically
on the virtual character, the puzzle goal, and the puzzle pieces; (2) Task Completion Times,
how quickly participants complete tasks when interacting with the self-correcting virtual
character; and (3) Number of Puzzle Pieces, how many puzzle pieces participants placed on
the puzzle board to solve the jigsaw puzzle.
–RQ4: How do the self-correction behaviors of a virtual character impact participants’ behav-
ioral responses, including gaze patterns, task completion times, and the number of puzzle
pieces they place when co-solving the jigsaw puzzle?

3 Materials and Methods
3.1 Participants
We conducted an a priori power analysis using the G*Power version 3.1 software [27] to determine
the appropriate sample size for our study. For an 80% power (1-V error probability), a small effect size
of 5 = .25 [18], one group with five repeated measures, a non-sphericity correction n = .90, and an
U = .05, the analysis recommended a minimum of 22 participants. We recruited 23 participants (age:
" = 23.82, (� = 4.26) through e-mails sent to our university’s students and class announcements.
All of our participants were undergraduate and graduate students at a Midwest U.S. university.
Of the sample, 15 were males (age: " = 24.60, (� = 4.35), and 8 were females (age: " = 22.37,
(� = 3.92). All participants had prior VR experience.

3.2 Implementation
We developed a VR jigsaw puzzle application in the Unity game engine version 2020.3.20. We used
Meta’s Quest 1 as a VR head-mounted display (HMD) and a Dell Alienware Aurora R7 desktop
computer with Intel Core i7, NVIDIA GeForce RTX 2080, and 32GB RAM for the implementation
of our application and study. Our VR application comprises a virtual environment (see Figure 1), an
intelligent virtual character (see Figure 2), a dialog manager, and user interaction tools.
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Fig. 1. We designed a semi-realistic living room as the virtual environment where we immersed the participants
in our study.

Fig. 2. We applied an L-shaped formation to support social interaction between the participant and the
virtual character. The virtual character is on the participant’s right side.

3.2.1 Virtual Environment. The virtual environment of our application was a semi-realistic living
room three-dimensional model (see Figure 1). In the living room, we added furniture and appliances
to provide a cozy atmosphere for the participants. Both the virtual character and participant sat on
chairs around the table. We applied an L-shaped formation (see Figure 2) from the F-formations
models to support social interaction between the participant and the virtual character [75]. Thus,
the participants could see the virtual character sitting to their right. We want to note that in our
study, we used a female virtual character in all conditions to standardize the stimulus across all
participants.

We placed all the puzzle pieces, the puzzle board, and the puzzle targets on the table. During
our application’s development and testing process, we conducted a preliminary study with our
laboratory members to explore the application’s flow, identify bugs, and determine the optimal
number and size of puzzle pieces to eliminate any negative effects on participants’ experiences
during the study. We realized that fewer pieces (25 in our case) would make the jigsaw puzzle
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Fig. 3. Left: The size of a puzzle piece. Right: All (25 total) puzzle pieces and the semi-transparent puzzle
board.

Fig. 4. The virtual character picks a puzzle piece and places it in a spot on the puzzle board. The brain system
decides which puzzle piece the virtual character picks up and where the virtual character places it.

co-solving process more efficient, while more pieces would frustrate participants. In total, our
puzzle was composed of 25 puzzle pieces, each one 4 × 4 cm in size. If we had too many puzzle
pieces, this would significantly increase the duration of the experiment and might cause fatigue
and loss of motivation among participants. We used a semi-transparent puzzle board to help the
participants find the appropriate spot to place each puzzle piece, and the initial distributions of
puzzle pieces remained consistent across all conditions (see Figure 3).

3.2.2 The Intelligent Virtual Character. Our intelligent virtual character can co-solve the puzzle
with the participant. We implemented and assigned brain and animation systems to make our
virtual character capable of solving the jigsaw puzzle (see Figure 4) and correcting its mistakes
(see Figure 5). We want to note that the virtual character was not scripted to correct potential
mistakes made by participants; however, the participants were able to fix the mistakes made by the
virtual character. For the brain system, we integrated the Intelligence and Accuracy of Self-correction
parameters. The brain system decides the state and behavior of the virtual character, and the
animation system animates the virtual character according to the decision of the brain system. We
provide a video as supplementary material that demonstrates the behaviors of our virtual character.

Brain System. The brain system (see Algorithm 1) controls how our virtual character solves the
puzzles based on the user-defined Intelligence and Accuracy of Self-correction parameters. These
parameters allow the virtual character to pick up a puzzle piece, place it in the right or wrong
target spot, and trigger the self-correction behavior if required. We want to note that we did not
implement a turn-taking mechanism for our virtual character to solve the jigsaw puzzle, as jigsaw
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Fig. 5. An example of the self-correction behavior. The virtual character picks the last interacted puzzle piece
and places it in the right spot. The red circle (left) shows the wrong puzzle piece, and the blue circle (right)
shows the corrected one.

puzzles are not considered turn-based games like chess or backgammon. Thus, the virtual character
did not wait for the participant to place puzzle pieces.

The brain system has eight inputs: ', * , % , � , �, �, + , +; , and ( . ' is a list of puzzle targets not
yet solved,* is a list of puzzle pieces that can be picked up, % is a list of pairs of puzzle pieces and
their answers, � is the virtual character’s Intelligence with a range from 0% to 100%, � is a Boolean
value to indicate the availability of self-correction, � is Accuracy of Self-correction with a range
from 0% to 100%, + is the current puzzle piece interacted with by the virtual character, +; is the
last puzzle piece interacted with by the virtual character, and ( is the virtual character’s current
state. Specifically, the brain system has a set of pre-defined S: %82:*? (see Algorithm 2), %;024 (see
Algorithm 3), (4; 5 �>AA42C8>=%82:*? (see Algorithm 4), (4; 5 �>AA42C8>=%;024 (see Algorithm 5),
and,08C .

Behavior Functions. Each state, except the,08C , includes an assigned function that decides how
the virtual character behaves with the puzzle piece with which it currently interacts and updates the
virtual character’s state and that puzzle piece.The brain system has four behavior functions: PickUp,
Place, SelfCorrPickUp, and SelfCorrPlace. The PickUp function belongs to the %82:*? state,
chooses a puzzle piece from* , and makes the virtual character pick it up. However, if there is no
available puzzle piece, the state goes to the,08C state, and the virtual character waits until there is
at least one available puzzle piece. The Place function belongs to the %;024 state and lets the virtual
character place the puzzle piece in a specific spot. Specifically, if the brain system does not allow the
virtual character to perform its self-correction, the target spot is decided by � . Otherwise, the virtual
character will place the puzzle piece incorrectly. Moreover, the Place function decides the following
states according to �. If � is true, the next state will be the (4; 5 �>AA42C8>=%82:*? state. Otherwise,
it will be the %82:*? state. The SelfCorrPickUp function belongs to the (4; 5 �>AA42C8>=%82:*?

state. It has a fixed input, namely, the last puzzle piece interacted with, to allow the virtual character
to pick up the last puzzle piece interacted with for the self-correction behavior. It also has a fixed
update of the state, the (4; 5 �>AA42C8>=%;024 state, to complete the self-correction behavior. Finally,
the SelfCorrPlace function belongs to the (4; 5 �>AA42C8>=%;024 state. It chooses the spot where
the puzzle price should be placed by � instead of � , and the virtual character places the puzzle piece
to fix its previous mistake. It updates the state to the %82:*? state to let the virtual character solve
the puzzle continuously. Note that the local variable ) is the target spot where the puzzle piece
should be placed, � is a random variable between 0% and 100% to determine the behavior based on
Intelligence or Accuracy of Self-correction, and + 0 is the correct spot of + mapped by % .
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Algorithm 1: Brain System State Decision Algorithm

Input:

' ∈ {'1, · · · , '; } ⊲ ' is a list of puzzle targets not yet solved
* ∈ {*1, · · · ,*<} ⊲ * is a list of puzzle pieces that can be picked up
% ∈ {

(
G1, G

0
1

)
, · · · ,

(
G=, G

0
=

)
} ⊲ % is a list of pairs of puzzle pieces and their answers

� ⊲ � is the virtual character Intelligence (0% - 100%)
�, ⊲ � is a Boolean value to indicate the availability of self-correction
�, ⊲ � is Accuracy of Self-correction (0% - 100%)
+ , ⊲ + is the current puzzle piece interacted with by the virtual character
+; , ⊲ +; is the last puzzle piece interacted with by the virtual character
( , ⊲ ( is the virtual character’s current state

Output:

+D ⊲ +D is the updated current puzzle piece interacted with by the virtual character
+;D ⊲ +;D is the updated last puzzle piece interacted with by the virtual character
(D ⊲ (D is the virtual character’s updated state
1: function BrainSystem(',* , % , � , �, �, + , +; , ()
2: switch ( do
3: case %82:*?

4: +D , (D ← PickUp(* )
5: case %;024
6: +D , +;D , (D ← Place(', % , � , + , �)
7: case (4; 5 �>AA42C8>=%82:*?

8: +D , (D ← SelfCorrPickUp(+; )
9: case (4; 5 �>AA42C8>=%;024

10: +D , (D ← SelfCorrPlace(', % , �, + )
11: case,08C

12: if* > 0 then
13: (D ← %82:*?

14: end if
15: return +D , (D
16: end function

Animation System. As the brain system decides the state of the virtual character, the animation
system controls the latter’s movement. We implemented the full-body forward and backward
inverse kinematic solver [3] to allow the virtual character to perform picking and placing tasks.
During the puzzle-solving process, the system is given the chosen puzzle piece or target spot as
input, which drives the end-effector (the virtual character’s right arm) to reach the target spot.
Because the end-effector is connected with the upper body of the virtual character, the inverse
kinematics solver controls and animates the virtual character’s upper body parts (i.e., shoulders
and spine).

We also implemented gaze targets. Specifically, we scripted the virtual character to coordinate its
gaze with its right hand while trying to pick up and place the chosen puzzle piece (it moves its head
to gaze at its right hand when performing the pick-it-up animation). In addition, we implemented
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Algorithm 2: Virtual Character Pick Up Puzzle Algorithm

Input:

* ∈ {*1, · · · ,*<} ⊲ * is a list of puzzle pieces that can be picked up

Output:

+D ⊲ +D is the updated current puzzle piece interacted with by the virtual character
(D ⊲ (D is the virtual character’s updated state
1: function PickUp(* )
2: if* > 0 then
3: Choose ) from* Randomly
4: Pick up )
5: +D ← )

6: (D ← %;024

7: else
8: (D ←,08C

9: end if
10: return +D , (D
11: end function

eye-blink animation and assigned an idle motion with a sitting pose to make our virtual character’s
movements look more realistic.

3.2.3 Dialog Manager. We implemented a conversational virtual character [93] controlled by
a dialog manager to provide pre-defined dialogs in our VR jigsaw puzzle application. It provides
dialogs in three phases: the beginning, middle, and end of the VR experience. Each dialog included
a set of pre-defined answers. The dialog manager detects the progress of solving the puzzle by
detecting the number of unsolved puzzle pieces. More specifically, the first dialog phase is generated
when all puzzle pieces are unsolved, the second dialog phase is generated when half are unsolved,
and the last phase is generated when there are no unsolved puzzle pieces. We used Microsoft’s
Azure3 text-to-speech service to generate the dialogs and the SALSA LipSync Suite4 from Unity
Asset Store to synthesize the lip-sync animation. Additionally, we assigned humming to the virtual
character in randomly chosen timesteps to make participants think that the virtual character was
thinking about its decisions. We did so because prior studies have shown that dialogs provided
more engaged experiences [28], trust, and rapport [8, 42].

3.2.4 User Interaction Tool. We used the Oculus Integration Toolkit to support user interaction
in the VR jigsaw puzzle experience. It provided simulated hand models based on the input signals
from controllers, and the simulated hands helped the user grab the puzzle piece and place it on
the puzzle board or table through natural gestures. The toolkit also supported user interface (UI)
interaction based on ray casting, so users could point to UI components directly and interact with
them, such as clicking the button or moving the slide. In our VR puzzle co-solving experience, we
used the UI to let participants choose and answer from the implemented dialogues.

3https://azure.microsoft.com/en-us/products/cognitive-services/text-to-speech
4https://assetstore.unity.com/packages/tools/animation/salsa-lipsync-suite-148442
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Algorithm 3: Virtual Character Place Puzzle Algorithm

Input:

' ∈ {'1, · · · , '; } ⊲ ' is a list of puzzle targets not yet solved
% ∈ {

(
G1, G

0
1

)
, · · · ,

(
G=, G

0
=

)
} ⊲ % is a list of pairs of puzzle pieces and their answers

� ⊲ � is the virtual character Intelligence (0% - 100%)
+ ⊲ + is the current puzzle piece interacted with by the virtual character
� ⊲ � is a Boolean value to indicate the availability of self-correction

Output:

+D ⊲ +D is the updated current puzzle piece interacted with by the virtual character
+;D ⊲ +;D is the updated last puzzle piece interacted with by the virtual character
(D ⊲ (D is the virtual character’s updated state
1: function Place(', % , � , + , �)
2: if � then
3: while ) = + 0 do
4: Choose ) from ' Randomly
5: end while
6: (D ← (4; 5 �>AA42C8>=%82:*?

7: else
8: Choose � from 0% to 100% Randomly
9: if � ≤ � then

10: Choose ) as + 0 from % by using +
11: else
12: while ) = + 0 do
13: Choose ) from ' Randomly
14: end while
15: end if
16: (D ← %82:*?

17: end if
18: Place + on the )
19: +;D ← +D
20: +D ← #*!!

21: return +D , +;D , (D
22: end function

3.3 Experimental Conditions
We designed five experimental conditions to explore how self-correction behaviors controlled by
Intelligence and Accuracy of Self-correction parameters affect users’ perceptions and experiences.
For our study, we used a within-group design to let participants make direct comparisons across
the five experimental conditions. We examined the following conditions:

—0% Intelligence without Self-correction (LI). In this condition, we assigned a 0% probability
of solving the puzzle and disabled self-correction behavior. The virtual character always places
a puzzle piece in the wrong spot on the puzzle board and does not correct it later, thus not
contributing to solving the puzzle.
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Algorithm 4: Virtual Character Self Correction Pick Up Puzzle Algorithm

Input:

+; ⊲ +; is the last puzzle piece interacted with by the virtual character

Output:

+D ⊲ +D is the updated current puzzle piece interacted with by the virtual character
(D ⊲ (D is the virtual character’s updated state
1: function SelfCorrPickUp(+; )
2: Choose ) from +;
3: Pick up )
4: +D ← )

5: (D ← (4; 5 �>AA42C8>=%;024

6: return +D , (D
7: end function

Algorithm 5: Virtual Character Self Correction Place Puzzle Algorithm

Input:

' ∈ {'1, · · · , '; } ⊲ ' is a list of puzzle targets not yet solved
% ∈ {

(
G1, G

0
1

)
, · · · ,

(
G=, G

0
=

)
} ⊲ % is a list of pairs of puzzle pieces and their answers

� ⊲ � is Accuracy of Self-correction (0% - 100%)
+ ⊲ + is the current puzzle piece interacted with by the virtual character

Output:

+D ⊲ +D is the updated current puzzle piece interacted with by the virtual character
(D ⊲ (D is the virtual character’s updated state
1: function SelfCorrPlace(', % , �, + )
2: Choose � from 0% to 100% Randomly
3: if � ≤ � then
4: Choose ) as + 0 from % by using +
5: else
6: while ) = + 0 do
7: Choose ) from ' Randomly
8: end while
9: end if

10: Place + on the )
11: +D ← #*!!

12: (D ← %82:*?

13: return +D , (D
14: end function

—0% Intelligence with 0% Accurate Self-correction (LSC). In this condition, we assigned a 0%
probability of solving the puzzle and a 0% probability of fixing the previous error. Hence, the
virtual character always places a puzzle piece in the wrong spot on the puzzle board; then, the
virtual character tries to correct the previous mistake by picking it up from the puzzle board,
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but it again places it in the wrong spot. As before, the virtual character does not contribute to
solving the puzzle at all.

—0% Intelligence with 50% Accurate Self-correction (MSC). In this condition, we assigned a
0% probability of solving the puzzle and a 50% probability of fixing the previous error. Hence,
the virtual character always places a puzzle piece in the wrong spot on the puzzle board; then,
the virtual character tries to correct its previous mistake, but half of the time, it places the
puzzle piece in the wrong spot (the other half of the fixes are correct). In this condition, the
virtual character can contribute up to 50% to solving the puzzle.

—0% Intelligence with 100% Accurate Self-correction (HSC). In this condition, we assigned
a 0% probability of solving the puzzle and a 100% probability of fixing the previous mistake.
Hence, the virtual character always places a puzzle piece in the wrong spot on the puzzle
board; then, the virtual character tries to correct its previous mistake and always places the
puzzle piece in the right spot. In this condition, the virtual character can contribute up to
100% to solving the puzzle.

—100% Intelligence without Self-correction (HI). In this condition, we assigned a 100%
probability of solving the puzzle and disabled self-correction behavior. Hence, the virtual
character always places a puzzle piece on the right spot of the puzzle board, and it does not
self-correct. In this condition, the virtual character can contribute up to 100% to solving the
puzzle.

Although we could have had other conditions with different combinations of Intelligence and
Accuracy of Self-correction, we limited the number of conditions in case the participants lost interest
and thought the VR experience was tedious. We want to note that our conditions were inspired
by Sarkar et al. [81], who implemented and explored interaction with three conditions of a faulty
robot and one condition of a non-faulty robot. However, we extended the schema by Sarkar et al
by implementing conditions that cover the continuum between a faulty (0% Intelligence without
Self-correction) and non-faulty (100% Intelligence without Self-correction) virtual character while
also encountering self-correction behavior. Finally, we would like to mention that we used Latin
squares [95] to balance the conditions and eliminate first-order carry-over (residual) effects.

3.4 Ratings and Measurement
We collected questionnaire responses as subjective data and application logs as objective data
to understand how a virtual character’s self-correction behavior affects users’ perceptions and
experiences.

3.4.1 Survey. We developed a survey to understand how the self-correction behavior of a
virtual character affects users’ perceptions and experiences. The survey comprised 21 items that
examined 10 variables: perceived intelligence, intelligence comparison, virtual character’s awareness
(private awareness, public awareness, and surroundings awareness), trust, performance, enjoyment,
frustration, and desire for future interaction. The items for the perceived intelligence were taken
from Moussawi and Koufaris [66], and we used them to understand how our study participants
perceived the intelligence of the virtual character through the different conditions we implemented.
The awareness scales (private awareness, public awareness, and surroundings awareness) were
taken from Govern and Marsch [33] and were used to understand if the virtual character is aware
of the mistakes, it would make our participants rate the virtual character’s awareness higher. We
adopted the items of the trust scale from the System Trust Scale developed by Jian et al. [43].
We developed all the other items (intelligence comparison, performance, enjoyment, frustration,
and desire for future interaction) ourselves. We used a 7-point Likert scale for the questionnaire
responses. We provided the questionnaire after each condition and asked participants to give
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feedback about their experience when the experiment was finished. We distributed the survey and
feedback form using the Qualtrics online survey tool. We provide the survey we developed for our
study in Table A1 in Appendix A.

3.4.2 Application Logs. We collected data from our VR jigsaw puzzle application to understand
how participants interact with the virtual character. Specifically, we collected:

—Virtual Character Dwell Gazing. We measured (normalized time) how long a participant gazed
at the virtual character’s upper body (including face, arms, and torso) while solving the puzzle.

—Puzzle Goal Dwell Gazing. We measured (normalized time) how long a participant gazed at
the puzzle goal while solving the jigsaw puzzle.

—Puzzle Pieces Dwell Gazing. We measured (normalized time) how long a participant gazed at
the puzzle pieces while solving the jigsaw puzzle.

—Completion Time. We measured (in seconds) how much time our participants needed to
co-solve the jigsaw puzzle with the virtual character.

—Number of Puzzle Pieces. We counted the number of puzzle pieces our participants placed on
the puzzle board to co-solve the jigsaw puzzle with the virtual character.

We assessed participants’ visual attention by projecting a ray from the position of the HMD
in the direction of their view into the virtual environment. If the projected ray intersected with
a geometry model in the environment, this information was recorded for subsequent analysis.
This approach to determining visual attention underwent scrutiny before the main experiment.
We conducted a preliminary study with two laboratory members, during which they consistently
focused on objects. Our method was able to detect their gazes accurately. Additionally, we want
to note that researchers have documented the successful implementation of categorizing visual
interest through analysis of HMD position and viewpoint in peer-reviewed publications [12, 40, 92].
In the study, the duration (in milliseconds) of this collision was returned when the ray collided with
an object or the virtual character. After the participant had solved the puzzle, the visual attention
method returned measured time with a name tag so we could track participants’ perspectives and
how they interacted.

3.5 Procedure
When a participant arrived at our research laboratory for this study, the research team provided the
consent form with key information about the experiment procedure. After participants signed the
consent form, they proceeded to the next part of our study. Our university’s Institutional Review
Board approved our study and consent form. After completing the demographics questionnaire,
participants put on the VR HMD and started the tutorial scene. The tutorial aimed to familiarize
participants with grabbing and placing puzzle pieces in our VR puzzle game. We implemented this
tutorial as a prior study showed that VR tutorials improve study participants’ user experiences
and performances [44]. The tutorial scene took place in the same virtual environment, but there
was no virtual character, and the puzzle pieces were different than those used in the main study.
Instead, there were four puzzle pieces and an instruction window. The tutorial provided two tasks
through the instruction window: picking up and placing the puzzle pieces in the right spot and
fixing wrongly placed puzzle pieces.

When the participant had completed the tutorial, the research team ran the VR puzzle application
with a specified sequence based on the Latin squares [95] ordering method. While the participant
was solving the puzzle, the research team provided no information, such as whether the virtual
character would fix its mistake. We also did not provide specific guidelines to our participants
on how to complete the task (e.g., to complete it as soon as possible). Once the participants had
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completed the given condition, the research team asked them to take off the VR HMD and answer
the questionnaire on Qualtrics on a desktop computer. At the end of each condition, the research
team asked whether the participant wanted an additional break before starting the following
condition. This process was repeated for each condition.

After completing all conditions, the research team asked the participants to leave feedback about
their overall experience or other comments they thought might be useful. At that point, the research
team provided answers to the participants’ questions, such as details of the study, and asked the
participants about their user experiences. None of our participants dropped out and needed less
than 1 hour to complete the study.

4 Result
For our statistical analyses, we used the self-reported ratings, the completion time, and the number
of puzzle pieces of the logged data as dependent variables and the five experimental conditions as
independent variables (see Section 3.3 for the experimental conditions). We analyzed the previously
mentioned data with one-way repeated measures ANOVA with post hoc Bonferroni correction for
multiple comparisons. We analyzed the gaze data using a two-way repeated measures ANOVA
with post hoc Bonferroni correction following a 5 (Conditions: LI vs. LSC vs. MSC vs. HSC vs. HI) ×
3 (Gazes: virtual character [VC] vs. puzzle pieces [PP] vs. puzzle goal [PG]) factorial design. The
normality assumptions were validated with Q–Q plots of the residuals.

4.1 Self-Reported Ratings
We provide descriptive statistics of our self-reported ratings and the patterns of difference across
the examined conditions for each measurement in Table 1.

Perceived Intelligence. We found a significant effect of the self-correction behavior (Wilks’
Λ = .161, � [4, 19] = 24.807, [2? = .839, ? = .000) across the five conditions. The post hoc pair-
wise comparison indicated that in the LI condition (" = 2.16, (� = .30), our participants rated the
virtual character’s perceived intelligence lower than in the MSC condition (" = 3.70, (� = .30;
? = .000), HSC condition (" = 4.78, (� = .24; ? = .000), and HI condition (" = 5.76, (� = .17;
? = .000). Moreover, participants in the LSC condition (" = 2.64, (� = .29) rated the virtual
character’s perceived intelligence significantly lower than in the MSC condition (? = .011), HSC
condition (? = .000), and HI condition (? = .000). Participants in the MSC condition rated the virtual
character’s perceived intelligence significantly lower than in the HSC condition (? = .011) and HI
condition (? = .000). Additionally, participants in the HSC condition rated the virtual character’s
perceived intelligence lower than in the HI condition (? = .005). However, our participants did not
report a significant difference between the LI and LSC conditions (? = .150).

Intelligence Comparison. The statistical analysis revealed a significant effect of the self-correction
behavior (Wilks’ Λ = .290, � [4, 19] = 11.614, [2? = .710, ? = .000) across the five conditions. The
post hoc pairwise comparison indicated that participants in the LI condition (" = 1.35, (� = .18)
rated their intelligence comparison lower than in the HSC condition (" = 2.78, (� = .35; ? = .021)
and HI condition (" = 3.83, (� = .38; ? = .000). Moreover, participants in the LSC condition
(" = 1.17, (� = .10) rated their intelligence comparison significantly lower than in the MSC
condition (" = 1.96, (� = .23; ? = .022), HSC condition (? = .002), and HI condition (? = .000).
Participants in the MSC condition rated their intelligence comparison lower than in the HI condition
(? = .000). Additionally, participants in the HSC condition rated their intelligence comparison
lower than in the HI condition (? = .017). However, we did not find a significant difference between
the LI and LSC conditions (? = 1.000) and between the MSC and HSC conditions (? = .166).
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Table 1. Descriptive Statistics of Perceived Intelligence, Intelligence Comparison, Virtual Character’s
Awareness (Private, Public, and Surroundings), Trust, Performance, Enjoyment, Frustration, and Desire for

Future Interaction

Perceived Intelligence Intelligence Comparison

Condition M SD Min Max Pattern of Difference Condition M SD Min Max Pattern of Difference

LI 2.16 .30 1.00 7.00 (LI, LSC) < MSC < HSC < HI LI 1.35 .18 1.00 5.00 LI < (HSC, HI)

LSC 2.64 .29 1.00 6.00 LSC 1.17 .10 1.00 3.00 LSC < (MSC, HSC, HI)

MSC 3.70 .30 1.33 6.17 MSC 1.96 .23 1.00 5.00 (MSC,HSC) < HI

HSC 4.78 .24 2.00 7.00 HSC 2.78 .35 1.00 6.00

HI 5.76 .17 4.17 7.00 HI 3.83 .38 1.00 7.00

Private Awareness Public Awareness

Condition M SD Min Max Pattern of Difference Condition M SD Min Max Pattern of Difference

LI 2.02 .30 1.00 6.00 (LI, LSC) < (MSC, HSC) < HI LI 1.76 .26 1.00 5.50 LI < (MSC, HSC) < HI

LSC 2.24 .25 1.00 6.00 LSC 2.17 .26 1.00 5.00 LSC < (HSC, HI)

MSC 3.37 .32 1.00 6.00 MSC 3.02 .32 1.00 6.00

HSC 3.70 .31 1.00 7.00 HSC 3.33 .32 1.00 6.50

HI 4.72 .32 1.50 7.00 HI 4.20 .35 1.00 7.00

Surrondings Awareness Trust

Condition M SD Min Max Pattern of Difference Condition M SD Min Max Pattern of Difference

LI 2.13 .32 1.00 7.00 (LI, LSC) < (MSC, HSC, HI) LI 2.17 .23 1.00 5.50 LI < (MSC, HSC) < HI

LSC 2.35 .32 1.00 7.00 LSC 2.48 .22 1.00 5.00 LSC < HSC < HI

MSC 3.46 .36 1.00 6.00 MSC 3.21 .21 1.00 4.75

HSC 3.74 .41 1.00 7.00 HSC 3.49 .24 1.00 5.50

HI 4.33 .37 1.00 7.00 HI 4.33 .28 1.50 7.00

Performance Enjoyment

Condition M SD Min Max Pattern of Difference Condition M SD Min Max Pattern of Difference

LI 1.52 .20 1.00 5.00 (LI, LSC) < MSC < HSC < HI LI 2.39 .41 1.00 7.00 (LI, LSC) < (MSC, HSC, HI)

LSC 1.83 .22 1.00 5.00 LSC 2.48 .36 1.00 7.00 MSC < HI

MSC 3.22 .30 1.00 6.00 MSC 4.09 .42 1.00 7.00

HSC 4.57 .26 2.00 7.00 HSC 5.04 .35 1.00 7.00

HI 6.00 .19 4.00 7.00 HI 5.30 .28 3.00 7.00

Frustration Desire for Future Interaction

Condition M SD Min Max Pattern of Difference Condition M SD Min Max Pattern of Difference

LI 5.22 .42 1.00 7.00 (HSC, HI) < LI LI 2.48 .41 1.00 7.00 (LI, LSC) < (MSC, HSC) < HI

LSC 5.39 .35 1.00 7.00 (MSC, HSC, HI) < LSC LSC 2.35 .36 1.00 7.00

MSC 3.70 .42 1.00 7.00 HI < MSC MSC 4.00 .40 1.00 7.00

HSC 3.09 .38 1.00 7.00 HSC 4.65 .37 1.00 7.00

HI 1.87 .28 1.00 6.00 HI 5.70 .24 3.00 7.00

We report the " , (� , minimum ("8=), maximum ("0G ), and patterns of differences. LI, 0% Intelligence without Self-
correction; LSC, 0% Intelligence with 0% Accurate Self-correction; MSC, 0% Intelligence with 50% Accurate Self-correction;
HSC, 0% Intelligence with 100% Accurate Self-correction; HI, 100% Intelligence without Self-correction.

Virtual Character’s Private Awareness. Therewas a significant effect of the self-correction behavior
(Wilks’ Λ = .260, � [4, 19] = 13.492, [2? = .740, ? = .000) across the five conditions. The post hoc
pairwise comparison indicated that participants in the LI condition (" = 2.02, (� = .30) rated
their virtual character’s private awareness lower than in the MSC condition (" = 3.37, (� = .32;
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? = .017), HSC condition (" = 3.70, (� = .31; ? = .001), and HI condition (" = 4.72, (� = .32;
? = .000). Participants in the LSC condition (" = 2.24, (� = .25) rated their virtual character’s
private awareness lower than in the MSC condition (? = .010), HSC condition (? = .001), and HI
condition (? = .000). Moreover, participants in the MSC condition rated their virtual character’s
private awareness lower than in the HI condition (? = .019). Additionally, participants in the HSC
condition rated their virtual character’s private awareness lower than in the HI condition (? = .029).
However, we did not find a significant difference between the LI and LSC conditions (? = 1.000)
and between the MSC and HSC conditions (? = 1.000).

Virtual Character’s Public Awareness. We found a significant effect of the self-correction behavior
(Wilks’ Λ = .281, � [4, 19] = 12.166, [2? = .719, ? = .000) across the five conditions. The post hoc
pairwise comparison indicated that participants in the LI condition (" = 1.76, (� = .26) rated
their virtual character’s public awareness lower than in the MSC condition (" = 3.02, (� = .32;
? = .003), HSC condition (" = 3.33, (� = .32; ? = .000), and HI condition (" = 4.20, (� = .35;
? = .000). In the LSC condition (" = 2.17, (� = .26), our participants rated their virtual character’s
public awareness lower than in the HSC condition (? = .005) and HI condition (? = .000). Moreover,
participants in the MSC condition rated their virtual character’s public awareness lower than in
the HI condition (? = .008). Additionally, participants in the HSC condition rated their virtual
character’s public awareness lower than in the HI condition (? = .021). However, we did not find a
significant difference between the LI and LSC conditions (? = .184), between the LSC and MSC
conditions (? = .185) and between the MSC and HSC conditions (? = 1.000).

Virtual Character’s Surroundings Awareness. Our statistical analysis revealed a significant effect
of the self-correction behavior (Wilks’ Λ = .369, � [4, 19] = 8.107, [2? = .631, ? = .001) across the
five conditions. The post hoc pairwise comparison indicated that participants in the LI condition
(" = 2.13, (� = .32) rated their virtual character’s surroundings awareness lower than in the MSC
condition (" = 3.46, (� = .36; ? = .005), HSC condition (" = 3.74, (� = .41; ? = .001), and HI
condition (" = 4.33, (� = .37; ? = .000). Moreover, participants in the LSC condition (" = 2.35,
(� = .32) rated their virtual character’s surroundings awareness lower than in the MSC condition
(? = .037), HSC condition (? = .016), and HI condition (? = .000). However, we did not find a
significant difference between the LI and LSC conditions (? = 1.000), between the MSC and HSC
conditions (? = 1.000), between the MSC and HI conditions (? = .124), and between the HSC and
HI conditions (? = .394).

Trust. There was a significant effect of the self-correction behavior (Wilks’ Λ = .344, � [4, 19] =
9.044, [2? = .656, ? = .000) across the five conditions. The post hoc pairwise comparison indicated
that participants in the LI condition (" = 2.17, (� = .23) rated their trust lower than in the MSC
condition (" = 3.21, (� = .21; ? = .002), HSC condition (" = 3.49, (� = .24; ? = .003), and HI
condition (" = 4.33, (� = .28; ? = .000). Additionally, participants in the LSC condition (" = 2.48,
(� = .22) rated their trust lower than in the HSC condition (? = .013) and HI condition (? = .000).
Moreover, participants in the MSC condition rated their trust significantly lower than in the HI
condition (? = .001), and participants in the HSC condition rated their trust lower than in the
HI condition (? = .009). Finally, we did not find a significant difference between the LI and LSC
conditions (? = .884), between the LSC and MSC conditions (? = .053), and between the MSC and
HSC conditions (? = 1.000).

Performance. The statistical analysis revealed a significant effect of the self-correction behavior
(Wilks’ Λ = .059, � [4, 19] = 75.095, [2? = .941, ? = .000) across the five conditions. The post hoc
pairwise comparison indicated that participants in the LI condition (" = 1.52, (� = .20) rated the
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virtual character’s performance lower than in the MSC condition (" = 3.22, (� = .30; ? = .000),
the HSC condition (" = 4.57, (� = .26; ? = .000), and the HI condition (" = 6.00, (� = .19;
? = .000). Additionally, participants in the LSC condition (" = 1.83, (� = .22) rated the virtual
character’s performance lower than in the MSC condition (? = .001), HSC condition (? = .000), and
HI condition (? = .000). Moreover, participants in the MSC condition rated the virtual character’s
performance lower than in the HSC condition (? = .000) and the HI condition (? = .000). Finally,
participants in the HSC condition rated the virtual character’s performance lower than in the HI
condition (? = .000). However, we did not find a significant difference between the LI and LSC
conditions (? = .897).

Enjoyment. There was a significant effect of the self-correction behavior (Wilks’ Λ = .239,
� [4, 19] = 15.135, [2? = .761, ? = .000) across the five conditions. The post hoc pairwise compar-
ison indicated that participants in the LI condition (" = 2.39, (� = .41) rated their enjoyment
lower than in the MSC condition (" = 4.09, (� = .42; ? = .004), HSC condition (" = 5.04,
(� = .35; ? = .000), and HI condition (" = 5.30, (� = .28; ? = .000). Moreover, participants in
the LSC condition (" = 2.48, (� = .36) rated their enjoyment lower than in the MSC condition
(? = .011), HSC condition (? = .000), and HI condition (? = .000). Additionally, participants
in the MSC condition rated their enjoyment lower than in the HI condition (? = .039). How-
ever, we did not find a significant difference between the LI and LSC conditions (? = 1.000),
between the MSC and HSC conditions (? = .055), and between the HSC and HI conditions
(? = 1.000).

Frustration. We found a significant effect of the self-correction behavior (Wilks’ Λ = .281,
� [4, 19] = 12.140, [2? = .719, ? = .000) across the five conditions. The post hoc pairwise comparison
indicated that participants in the LI condition (" = 5.22, (� = .42) rated their frustration higher
than in the HSC condition (" = 3.09, (� = .38; ? = .011) and HI condition (" = 1.87, (� = .28;
? = .000). Participants in the LSC condition (" = 5.39, (� = .35) rated their frustration higher than
in the MSC condition (" = 3.70, (� = .42; ? = .020), HSC condition (? = .002), and HI condition
(? = .000). Moreover, participants in the MSC condition rated their frustration higher than in the
HI condition (? = .007). However, we did not find significant differences between the LI and LSC
conditions (? = 1.000), between the LI and MSC conditions (? = .096), between the MSC and HSC
conditions (? = 1.000), and between the HSC and HI conditions (? = .079).

Desire for Future Interaction. There was a significant effect of the self-correction behavior (Wilks’
Λ = .241, � [4, 19] = 14.992, [2? = .759, ? = .000) across the five conditions. The post hoc pairwise
comparison indicated that participants rated the LI condition (" = 2.48, (� = .41) lower than the
MSC condition (" = 4.00, (� = .40; ? = .010), HSC condition (" = 4.65, (� = .37; ? = .000), and
HI condition (" = 5.70, (� = .24; ? = .000). Participants in the LSC condition (" = 2.35, (� = .36)
rated their desire for future interaction lower than in the MSC condition (? = .003), HSC condition
(? = .000), and HI condition (? = .000). Moreover, participants in the MSC condition rated their
desire for future interaction lower than in the HI condition (? = .009). Additionally, participants in
the HSC condition rated their desire for future interaction lower than in the HI condition (? = .034).
However, we did not find a significant difference between the LI and LSC conditions (? = 1.000)
and between the MSC and HSC conditions (? = .610).

4.2 Logged Data
We provide descriptive statistics and the patterns of difference across the examined conditions of
the dwell gazing data in Table 2, and completion time and number of pieces in Table 3.
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Table 2. Detailed Results of Our Study for the Gazing Data

Virtual Character Puzzle Pieces Puzzle Goal

" (� "8= "0G " (� "8= "0G " (� "8= "0G Pattern of Difference

LI .14 .10 .01 .40 .10 .12 .00 .49 .02 .08 .00 .25
LSC .14 .11 .00 .36 .09 .11 .01 .39 .04 .10 .00 .12
MSC .15 .10 .00 .37 .07 .08 .00 .30 .03 .08 .02 .33
HSC .18 .09 .01 .45 .08 .07 .00 .28 .01 .03 .00 .27
HI .15 .08 .00 .35 .07 .08 .02 .36 .03 .08 .00 .40

Main Effect (Conditions)

� .450
? .771
[2? .087

Main Effect (Gazes)

� 11.840 (PP, PG) < VC
? .000
[2? .530

Interaction Effect (Conditions×Gazes)

� 1.285
? .321
[2? .407

Conditions 35 = 4 (Error 35 = 19), Gazes 35 = 2 (Error 35 = 21), and Interaction 35 = 8 (Error 35 = 15).

We report the " , (� , minimum ("8=), maximum ("0G ), and patterns of differences. We present significant
results with bold font. HI, 100% Intelligence without Self-correction; HSC, 0% Intelligence with 100% Accurate
Selfcorrection; LI, 0% Intelligence without Self-correction; LSC, 0% Intelligence with 0% Accurate Self-correction;
MSC, 0% Intelligence with 50% Accurate Self-correction; P G, puzzle goal; P P, puzzle pieces; VC, virtual character.

Table 3. Descriptive Statistics of Completion Time and Number of Puzzle Pieces Placed
by Participants

Completion Time Number of Puzzle Pieces

Condition M SD Min Max Pattern of Difference Condition M SD Min Max Pattern of Difference

LI 193.50 15.62 64.597 347.278 (LI, LSC, MSC) < (HSC, HI) LI 25.00 .00 25.00 25.00 HI < HSC < MSC < (LI = LSC)

LSC 227.37 33.30 71.361 827.542 LSC 25.00 .00 25.00 25.00

MSC 148.63 10.95 78.750 268.917 MSC 19.78 2.29 16.00 23.00

HSC 105.08 5.81 69.889 174.556 HSC 16.21 3.14 9.00 21.00

HI 93.41 4.64 54.556 156.944 HI 13.26 3.22 5.00 19.00

We report the " , (� , minimum ("8=), maximum ("0G ), and patterns of differences. HI, 100% Intelligence without
Self-correction; HSC, 0% Intelligence with 100% Accurate Self-correction; LI, 0% Intelligence without Self-correction; LSC,
0% Intelligence with 0% Accurate Self-correction; MSC, 0% Intelligence with 50% Accurate Self-correction.

Dwell Gazing. We did not find a statistically significant result on dwell gazing data for the
Conditions factor (Wilk’s Λ = .913, � [4, 19] = .450, ? = .771, [2? = .087). However, the simple
main effect analysis on the Gazes factor indicated a statistically significant result (Wilk’s Λ = .470,
� [2, 21] = 11.840, ? = .000, [2? = .530). The post hoc pairwise comparison indicated that participants
gazed at the virtual character more time (" = .15, (� = .02) than the puzzle goal (" = .03, (� = .01;
? = .000) and puzzle pieces (" = .08, (� = .02; ? = .009). However, we did not find a statistically
significant result for the Conditions × Gazes interaction (Wilk’s Λ = .593, � [8, 15] = 1.285, ? = .321,
[2? = .407).
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Completion Time. The statistical analysis revealed a significant effect of the self-correction
behavior (Wilks’ Λ = .229, � [4, 19] = 16.032, [2? = .771, ? = .000) across the five conditions.
The post hoc pairwise comparison indicated that participants in the LI condition (" = 193.50,
(� = 15.62) spent more time than in the HSC condition (" = 105.08, (� = 5.81; ? = .000) and
HI condition (" = 93.41, (� = 4.64; ? = .000). Additionally, participants in the LSC condition
(" = 227.37, (� = 33.30) spent more time than when we exposed them to the HSC condition
(? = .011) and HI condition (? = .002). Moreover, participants in the MSC condition (" = 148.63,
(� = 10.95) spent more time than in the HSC condition (? = .001) and HI condition (? = .000).
However, we did not find significant differences between the LI and LSC conditions (? = 1.000),
between the LI and MSC conditions (? = .100), between the LSC and MSC conditions (? = .127),
and between the HSC and HI conditions (? = .690).

Number of Puzzle Pieces. The statistical analysis showed a significant effect (Wilks’ Λ = .066,
� [4, 19] = 94.163, [2? = .934, ? = .000) across the five conditions. The post hoc pairwise comparison
indicated that participants in the LI condition (" = 25.00, (� = .00) placed more puzzle pieces
than in the MSC condition (" = 19.78, (� = 2.29; ? = .000), HSC condition (" = 16.21, (� = 3.14;
? = .000), and HI condition (" = 13.26, (� = 3.22; ? = .000). Additionally, participants in the LSC
condition (" = 25.00, (� = .00) placed more puzzle pieces than in the MSC condition (? = .000),
HSC condition (? = .000), and HI condition (? = .000). Moreover, participants in the MSC condition
placed more puzzle pieces than in the HSC condition (? = .00) and HI condition (? = .000). Finally,
participants in the HSC condition placed more puzzle pieces than in the HI condition (? = .000).

4.3 Qualitative Data
After our study participants had completed all conditions, we collected their impressions of our
VR application and interactions with the virtual character. We grouped the data into categories
concerning the intelligence of the virtual character and their interactions with the virtual character
and our VR application.

Participants commented that they noticed the different behaviors of the virtual character in
different conditions. Specifically, P7 wrote: “The first couple tries [LI and HSC] was kinda inter-
esting to see how the other individual would interact with the puzzle, the last one [HI] felt like
it was just cheating and knew where each piece would go in the beginning.” P8 stated: “There
was one experiment where it was actually doing very well, putting the edge pieces in first, and
was pretty accurate. But immediately after that, it looked like it was doing it randomly again…”
P11 mentioned: “From games 2 [HSC] and 3 [MSC], there was a shift in her being faster at in-
teracting with the puzzle and placing it in the correct spots.” Finally, P18 reported: “Some of the
individuals were intelligent enough to collaborate, but on the other hand, some of them were not
intelligent…”

Moreover, some participants reported their observations of the virtual character. Specifically, P4
reported: “The sounds of the virtual person make me think that she’s confident at what she’s doing,
but for some scenarios, she keeps placing the wrong puzzle.” Moreover, P11 mentioned: “The last
game [LSC], I noticed she was able to turn the puzzle piece, which surprised me.”

According to the collected comments, it can be said that most participants enjoyed the VR puzzle
co-solving experience with the virtual character, and some participants reported their preferred
condition. Specifically, P2 wrote: “Great study!,” Both P13 and P5 stated: “It was good,” and P7 wrote:
“It was a fun experience in general.” Moreover, P8 reported: “This was interesting, though. I did like
seeing how she was processing where to put the pieces.” P9 wrote: “This was a nice experience,”
and P16 reported: “It was a great experience, I enjoyed playing in the last condition [HSC].” For
P18, “It was interesting that we can play jigsaw puzzles with a virtual character… Overall, I enjoyed
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solving a jigsaw puzzle with the virtual character.” P19 said: “I prefer the first one [HI] and last
one [HSC]…,” while P20 stated: “It was very enjoyable, I am really fond of VR, and seeing this only
brings me hope for the future.” P22 similarly mentioned that “It was really fun playing jigsaw with
individuals that were intelligent…,” and P23 wrote: “This was my first time using a VR device, and
it was fantastic!”

However, some participants stated that it was frustrating when they solved the puzzle with an
unintelligent virtual character, such as in the conditions of 0% Intelligence without Self-correction or
0% Intelligence with 0% Self-correction. Specifically, P1 mentioned: “It’s frustrating that sometimes
the virtual character does not do their part.” For P12, “The experience of the last condition [LI] is
bad since the other individual keeps doing the wrong thing and didn’t notice she did the thing
wrong.” P18 reported: “Some of them were not intelligent, so I had to do it again, which was kind
of burdensome.” P19 mentioned that “The rest of them [LI, LSC, and MSC] are really boring and
tough,” while P22 said it was “…very frustrating when it came to those who would just put down
pieces randomly.”

5 Discussion
We asked our participants to provide self-reported ratings on co-solving a jigsaw puzzle with a
virtual character to understand how the self-correction behaviors assigned to the virtual character
affected their perceptions and experiences. We also collected gaze and completion time data to
understand how participants observed the virtual character, the tasks they had to work on, and
how fast they solved the puzzle. The statistical analysis revealed several interesting findings, which
we discuss in the following subsections.

5.1 RQ1: Intelligence
Perceived intelligence concerns how humans perceive the intelligence of a system [90]. Several
researchers have investigated the factors of perceived intelligence, such as anthropomorphism
[49], animacy [6], and understandability [24]. We conducted this study because we wanted to
extend current knowledge and explore how study participants perceived the intelligence of a virtual
character when we assigned different levels of intelligence and self-correction behavior to it.

We found significant differences in the results of perceived intelligence. When either the In-
telligence or the Accuracy of Self-correction increased, the perceived intelligence ratings of our
participants also increased. Based on the patterns of differences (see Table 1), we found significant
results between the LSC, MSC, and HSC conditions, indicating that the Accuracy of Self-correction
improved the perceived intelligence partially when the virtual character made mistakes. We think
that this finding indicates that the Accuracy of Self-correction can be another factor impacting the
perceived intelligence of virtual characters along with animacy [6], anthropomorphism [49], ap-
pearance [17], and understandability [24]. However, we should also consider task complexity, which
researchers defined by various components, such as the number of elements [96], relationships be-
tween tasks [97], time pressure [34], and cognitive demands [4]. For example, if the task is complex
and challenging for the participant, the self-correction and errors made by the virtual character
may not be perceived in the same way. In such scenarios, the ability of the virtual character to
self-correct could be seen as a more critical and valuable trait, as the perceived task complexity is
highly related to the cognitive workload [86]; thus, potentially enhancing its perceived intelligence
even more significantly.

We also found significant results—similar to those for perceived intelligence—when examining
the intelligence comparison ratings. We found that the Intelligence parameter was more affected
than the Accuracy of Self-correction from the comparison between the HSC and HI conditions. We
also found that, except for the HI condition, participants provided ratings below the scale’s mean
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(< 3.5). This finding agrees with Ullman et al. [91] and Bennet et al. [7], as both studies reported
lower ratings for robots when their participants compared intelligence between themselves and
robots. It should be noted that even if the rating in the HI condition was above the scale’s average
(participants provided an " = 3.83), we cannot really argue that they rated the virtual character
as more intelligent than themselves. This means that participants, even if they interacted with a
highly intelligent character that was able to solve the jigsaw puzzle efficiently, indicated that the
virtual character’s intelligence was not enough to make them rate it as a truly highly intelligent
creature.

One possible explanation is that the virtual character could be perceived as “smarter” than the
participants in the specific context of solving the puzzle but not “smarter” than them in general.
Our participants might have recognized the virtual character’s proficiency in the narrow task of
jigsaw puzzle co-solving without extending that recognition to a broader, more general intelligence.
Additionally, our participants may have inherently considered their own intelligence as more
comprehensive, involving emotional understanding, creativity, and adaptability across different
interaction scenarios, which a virtual character’s task-specific competence does not encapsulate.
This distinction highlights the multifaceted nature of intelligence. It suggests that task-specific
capabilities do not necessarily translate to a perception of overall higher intelligence [31, 85], as
human intelligence is not only about problem-solving skills but also includes creative, practical,
and emotional aspects, which are often absent in virtual characters [23].

5.2 RQ2: Awareness
Following the definition of awareness given in Govern’s and Marsch’s [33] study, we defined a
virtual character’s awareness as how much they understand the virtual environment. In our study,
we focused on the virtual character’s awareness of its inner feelings (private awareness), awareness
of the participant (public awareness), and awareness of how the puzzle-solving progressed (sur-
roundings awareness). We observed that in all the examined awareness ratings, the means of the
LI, LSC, and MSC conditions were below the scale’s mean (< 3.5). Such low ratings indicated that
the virtual character did not convince our participants it was aware of them, aware of the jigsaw
puzzle co-solving process, or even aware of itself since it could not solve the puzzle independently.

Our intention behind examining the virtual character’s self-correction behavior was to make the
virtual character behave less like a robot and more like a human, as humans tend to make mistakes,
recognize them, and subsequently adjust their actions accordingly [71]. Becoming aware of the task
requirements and dynamically correcting its actions would allow the virtual character to perform
more intuitively and fluidly, closely mimicking human behavior. From the virtual character’s private
awareness result, we found that the rating of the HI condition was significantly higher than the
other conditions. We can argue that such a result was because our participants thought the virtual
character should not make mistakes if it were aware of itself. We interpret this finding according to
Nirenburg et al. [70], who mentioned that imitating human behavior could improve self-awareness.
Thus, we think the HI condition had a higher rating than the HSC condition because the virtual
character solved the puzzle efficiently and in an error-free way, like the participants. There was also
a significant result between the MSC and HSC groups of conditions and the LI and LSC groups of
conditions. We found that the participants provided higher ratings on the MSC and HSC groups of
conditions. This result extends the findings of a previous study of the self-awareness of a humanoid
robot [73], indicating that focusing on the inner state and self-modifying the representation makes
a robot self-aware. We think self-correction improved the participants’ perception of the virtual
character’s private awareness.

In the result concerning the virtual character’s public awareness, we found that the rating of the
HI condition was significantly higher than the other conditions. Our finding agrees with Hayes
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et al. [37], who indicated that their study participants thought the robot understood the dance
movements they taught it well until it made the first mistake. Our study participants felt the virtual
character was not conscious of our participants when it made its first mistake, although it could
fix it. We also found the rating of the LSC condition was significantly lower than that of the HSC
conditions. Again, this finding extends Hayes et al.’s study, which reported that repeated mistakes
by a robot could invoke negative feedback. We thus argue that our study participants felt the
virtual character was not conscious of our participants when it tried to correct its mistake but still
repeatedly placed the puzzle piece in the wrong spot.

Finally, the virtual character’s surroundings awareness showed different results than the other
types of awareness. We found the LI and LSC groups of conditions had lower ratings than the MSC,
HSC, and HI groups of conditions. This finding extends Drury et al.’s [25] study, which defined
a human’s awareness of the overall goals of a task with robots as one of the components of the
perception of the environment in human–robot interaction. We think that our study participants
felt the virtual character was aware of the goal of the jigsaw puzzle co-solving process when it
could solve the puzzle like themselves, and our virtual character invoked higher ratings of the
surroundings awareness during the MSC, HSC, and HI conditions.

5.3 RQ3: User Experience
To explore how Intelligence and Accuracy of Self-correction affect user experiences, we included
items in our questionnaire to measure trust, performance, enjoyment, frustration, and desire for
future interaction. We discuss our findings in the following paragraphs.

The result for trust showed that our participants rated the HI condition highest while also
indicating that there were differences from the other conditions to which we exposed them. Based
on this finding, we can argue that the mistakes of the virtual character negatively affected study
participants’ trust ratings, even if the virtual character was able to correct its mistakes. We base this
interpretation of our results on previous studies that explored trust in human–robot interaction.
Specifically, Hald et al. [36] reported that although their robot could fix its mistakes, the trust of
their study participants was already broken. Similarly, Roesler et al. [79] indicated that their study
participants’ trust in the robot decreased after it made errors. Furthermore, Salem et al. [80] found
that study participants reported higher ratings on trust when the robot followed user input correctly
than when it behaved incorrectly. However, we also found a significant difference between the LSC
and HSC conditions. Our finding extends Hald et al.’s [36] study. Such a significant result indicates
that self-correction accuracy could partially recover trust. This finding aligns with another previous
study on the correlation between verbal communication mistakes and trustworthiness [87], in
which the authors stated that the mistakes of virtual humans decrease their trustworthiness but
temporarily. Additionally, we should note that we observed a ?-value at the border of significance
between the LSC and MSC conditions (? = .053). While this borderline statistical significance may
be a consequence of multiple comparisons, it does raise the possibility that trust could be further
enhanced under conditions of increased levels of Accuracy of Self-correction. Overall, we can argue
that because the reduced trustworthiness is temporary, the virtual character can only recover the
trust partially by fixing its mistake.

Regarding performance rating, our participants rated the HI condition higher. At the same time,
our participants were also able to identify and report differences with other conditions. Our finding
agrees with Hald et al.’s [36] study, which reported that people rated the performance of a robot that
made a mistake lower than one that did not. This finding also extends the study of Esterwood et al.
[26], which reported that any verbal repair strategies from the robots for their multiple mistakes
did not positively impact study participants’ perceptions of their performances. We think our study
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participants provided higher scores on the HI condition than on other conditions because error-free
decisions are more important than self-corrections.

The enjoyment results showed significant differences between the two groups of conditions; one
group comprises the LI and LSC conditions, and the other comprises the MSC, HSC, and HI condi-
tions. We found that when the virtual character was able to solve the puzzle independently, such
behavior improved the enjoyment of our participants. We interpret this finding based on a previous
study concerning enjoyment in games [9], which reported that a user’s enjoyment decreased when
the user felt a high responsibility to the virtual character. Moreover, we observed a ?-value at the
border of significance between the MSC and HSC conditions (? = .055). Such a borderline result
should be interpreted with caution, as it does not denote a statistical significance. However, we
think it suggests that even small improvements in the levels of Accuracy of Self-correction could
potentially influence participants’ enjoyment levels. All in all, we argue the participants felt high
responsibility and less enjoyment when fixing the virtual character’s mistakes.

The frustration results showed that participants rated the LSC condition higher than the LI
condition. This finding confirms Cho’s [15] study, which indicated people felt frustrated when a
virtual assistant misunderstood a question and gave a wrong answer. The virtual character in the
LSC condition made mistakes repeatedly and caused more frustration than the virtual character
that did not try to self-correct its mistakes.

Finally, we asked our participants to report their desire for future interactions and whether they
are willing to interact in the future with the different behaviors assigned to the virtual character.
Our participants rated the HI condition the highest. We also found significant results between
the HI and the other conditions. Our finding agrees with and extends the study of Cuadra et al.
[19], which reported that participants preferred a perfect voice assistant to a voice assistant that
carried out irrelevant tasks according to users’ commands and then corrected them. We think the
participants preferred an error-free virtual character to a virtual character that makes mistakes,
even if the virtual character can correct itself.

5.4 RQ4: Behavioral Responses
Unfortunately, we could not find significant results in any of the collected dwell gazing measure-
ments across the five experimental conditions. Thus, we cannot argue that the Intelligence or the
Accuracy of Self-correction of the virtual character impacted the gaze of our participants. Perhaps
this could be due to the pseudo-gazing methodology not providing precise tracked-gaze data.
However, as we discuss later, visual attention needs to be reexamined to provide clearer conclusions.
Nevertheless, the gaze factor revealed that participants gazed at the virtual character more than the
puzzle goal and puzzle pieces. This finding suggests that the virtual character was the leading actor
in the interaction scenario we developed. Therefore, our participants’ visual attention was primarily
drawn to the virtual character’s actions and behaviors rather than the specific task conditions.
Thus, we attribute this finding to the engaging nature of the virtual character, which likely drew
participants’ attention regardless of the examined conditions.

We found significant results in the completion time measurement between the group composed
of the LI, LSC, and MSC conditions and the group composed of the HSC and HI conditions. We also
found that the more intelligent the virtual character became, or the more accurate its self-correction
was, the fewer puzzle pieces our participants needed to place to complete the puzzle. Based on
these findings, we can argue that a more intelligent virtual character could indeed help participants
co-solve a problem faster and significantly reduce their workload.
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5.5 Limitations
When implementing virtual characters, it is necessary to consider their functionalities and user
experiences. Although all participants experienced our VR jigsaw puzzle co-solving experience
without any issues, we would like to report several limitations. It should be noted that these
limitations do not invalidate our implementation and study; instead, they provide guides for and
improve subsequent research.

First, the participants selected answers from a UI menu using the VR controller instead of verbal
communication. Although we did not collect data related to participants’ level of immersion, we
think that such an interaction mechanism might have impacted our participants’ immersion. Thus,
we argue that further development of and experimentation with speech-based communication will
help us improve our participants’ levels of immersion.

Second, our virtual character exhibited fixed loop-based behavior with limited variations, im-
pacting the realism of its actions. Although self-correction behaviors were integrated, certain
conditions required the virtual character to deliberately place puzzle pieces incorrectly on the
first attempt to demonstrate self-correction. This repetitive error reduced the virtual character’s
realism. Furthermore, the virtual character’s finger animations were not active, leading to less
natural and believable interactions. To enhance realism, future implementations should incorporate
a more sophisticated control over the frequency and nature of self-correction behaviors and activate
detailed finger animations to create more lifelike interactions.

Third, we consider the inability of our virtual character to convince our study participants that it
is aware of the virtual environment, the task, and itself as an additional limitation. Unfortunately,
we did not implement events such as a phone ring or a fly that buzzes and the corresponding
reactions/animations that could make the virtual character behave as if it were more aware of the
environment in which the co-solving process is situated. Moreover, our dialogs were short and
not highly related to the performance of our virtual character. Thus, such short dialogs made our
participants think the virtual character was unaware of the task. We thus argue that such additions
could enhance study participants’ perception of a virtual character’s awareness.

Fourth, we think including haptic feedback might have improved the overall user experience
and interaction realism [46]. However, we did not implement haptic feedback in our study. While it
could potentially enhance the experience by mimicking the tactile feedback humans rely on when
solving a real jigsaw puzzle, the current limitations of VR controllers in providing realistic haptic
sensations made its effectiveness uncertain [21]. Additionally, to our knowledge, there is no prior
research on representing correct and incorrect puzzle piece placement using haptic feedback. Thus,
we argue that additional research in this direction is needed.

Fifth, we acknowledge that our study participants were young, which may have influenced the
results. Consequently, our findings might not apply to older adults or other age groups. We consider
it an important area for future research to investigate whether similar results would be observed in
experiments involving older adults.

Finally, we used a point-of-view method to check what the user gazed at while solving the puzzle.
Although this method provided some data about where our study participants were gazing (i.e.,
what was in the center of their fields of view), such data did not reflect our participants’ actual gaze
or fixations. We think an eye-tracker would enable us to collect more reliable data that we can use
to understand how participants co-solved the puzzle and interacted with the virtual character.

6 Conclusions and Future Work
Several researchers have explored how the behavior assigned to virtual characters can impact
human perception. Although several studies have investigated interaction with virtual characters,
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we have limited knowledge of the impact of the self-correction behavior of a virtual character
on humans’ perceptions and user experiences. Therefore, in this article, we explored how the
self-correction behavior of a virtual character impacted our study participants. We implemented a
virtual character that could co-solve a jigsaw puzzle and self-correct its mistakes. Then, we asked
participants to report how they perceived the virtual character and their user experience, and
we collected application logs to understand how they interacted with the virtual character. The
statistical analysis showed that the self-correction behavior impacted our participants’ perception
of the virtual character and their user experiences. Also, we found our participants gazed at the
virtual character more than the puzzle pieces and puzzle goal in all experimental conditions.

Although this study provides noteworthy results, it also has limitations, such as the absence of
verbal communication with the virtual character. We think addressing the mentioned limitations
will help us expand the findings we report in this article. Therefore, in future work, we would
like to integrate text-to-speech and speech-to-text into the virtual character to enable verbal
communication and a chatbot based on language models to generate a dialog to enhance the
virtual character’s communication abilities and potential awareness. Moreover, we would like to
explore how different behaviors (e.g., selfish or competitive behavior) could impact how participants
perceive and interact with the virtual character.

Appendix
A Survey
We developed a survey to understand how the self-correction behavior of a virtual character affects
human perception and user experiences. The survey comprises 21 items examining ten variables:
perceived intelligence, intelligence comparison, virtual character’s awareness (private awareness,
public awareness, and surroundings awareness), trust, performance, enjoyment, frustration, and
desire for future interaction. We provide our survey along with the anchors of the scales in Table A1.

Table A1. The Survey We Used in Our Study

# Item Anchors of the Scale

Perceived Intelligence (Moussawi and Koufaris [66])

Q1 The other individual was able to operate without my intervention. 1 = Never, 7 = Always

Q2 The other individual was aware of the virtual environment. 1 = Never, 7 = Always

Q3 The other individual was able to set and pursue tasks by herself in anticipation of future needs. 1 = Never, 7 = Always

Q4 The other individual was able to complete tasks quickly. 1 = Never, 7 = Always

Q5 The other individual was able to find and process the necessary information for completing the task. 1 = Never, 7 = Always

Q6 The other individual was able to adapt/adjust its behavior based on prior events. 1 = Never, 7 = Always

Intelligence Comparison

Q7 Do you think the other individual was smarter than you? 1 = Not at all, 7 = Totally

Virtual Character’s Private Awareness (Govern and Marsch [33])

Q8 The other individual was conscious of her actions. 1 = Not at all, 7 = Totally

Q9 The other individual was aware of her innermost actions. 1 = Not at all, 7 = Totally

Virtual Character’s Public Awareness (Govern and Marsch [33])

Q10 The other individual was concerned about the way we played the jigsaw puzzle. 1 = Not at all, 7 = Totally

Q11 The other individual was self-conscious about the way we played the jigsaw puzzle. 1 = Not at all, 7 = Totally

(Continued)

ACM Transactions on Interactive Intelligent Systems, Vol. 14, No. 3, Article 23. Publication date: September 2024.



Effects of Self-Correction Behavior of an Intelligent Virtual Character 23:29

Table A1. Continued

# Item Anchors of the Scale

Virtual Character’s Surroundings Awareness (Govern and Marsch [33])

Q12 The other individual was aware of everything in the virtual environment. 1 = Not at all, 7 = Totally

Q13 The other individual was conscious of what was going on around it. 1 = Not at all, 7 = Totally

Trust (Jian et al. [43])

Q14 I am suspicious of the other individual’s intention. 1 = Not at all, 7 = Totally

Q15 I am confident in the other individual. 1 = Not at all, 7 = Totally

Q16 The other individual is dependable. 1 = Not at all, 7 = Totally

Q17 The other individual is reliable. 1 = Not at all, 7 = Totally

Performance

Q18 Rate the performance of the other individual. 1 = Not good, 7 = Very good

Enjoyment

Q19 Did you enjoy solving the jigsaw puzzle with the other individual? 1 = Not at all, 7 = Totally

Frustration

Q20 I felt frustrated when interacting with the other individual. 1 = Not at all, 7 = Totally

Desire for Future Interaction

Q21 Are you willing to interact with the other the other individual again? 1 = Not at all, 7 = Totally
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