
JavaStrike: A Java Programming Engine
Embedded in Virtual Worlds

Dominic Kao
Purdue University

West Lafayette, IN, USA
kaod@purdue.edu

ABSTRACT
In this paper, we describe JavaStrike1. JavaStrike is a Java develop-
ment and execution environment that was developed from scratch
inside Unity. The engine currently supports classes, functions, inher-
itance, polymorphism, interfaces, key-value stores, and much more.
JavaStrike allows code to be displayed, executed, and debugged in
the virtual world. We then create a third-person shooter game called
CodeBreakers, which leverages the JavaStrike engine. CodeBreakers
covers basic programming concepts such as variable types, interme-
diate programming concepts such as stacks, queues, and hashmaps,
and advanced programming concepts such as inheritance, interfaces,
and method overriding. JavaStrike is a first step towards general
purpose programming engines embedded in virtual worlds.

CCS CONCEPTS
• Applied computing → Computer games; • Social and profes-
sional topics → Computer science education; Software engineer-
ing education; Computing education; Computational thinking;

KEYWORDS
JavaStrike; CodeBreakers; Programming Engine; Virtual Worlds;
Java Programming; Games

ACM Reference format:
Dominic Kao. 2019. JavaStrike: A Java Programming Engine Embedded in
Virtual Worlds. In Proceedings of The Fourteenth International Conference
on the Foundations of Digital Games, San Luis Obispo, CA, USA, August
26–30, 2019 (FDG ’19), 5 pages.
https://doi.org/10.1145/3337722.3341828

1 INTRODUCTION
Programming is more than coding, it is the foundational practice
that underlies computational thinking [5, 16]. There is strong con-
sensus that computational thinking is broadly important in virtu-
ally all subject areas: biology, astronomy, archaeology, chemistry,
economics, journalism, law, medicine and healthcare, meteorology,
neuroscience, sports, and more [41]. As such, there has been un-
precedented interest in developing programming environments for

1JavaStrike Video: https://youtu.be/0z-qf6miLro.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7217-6/19/08. . . $15.00
https://doi.org/10.1145/3337722.3341828

the purpose of teaching programming [27]. However, one major lim-
itation of these programming environments is that they are limited
to specific implementations on specific platforms. Creating a new
implementation requires extensive effort, the result of which is a
limited subset of programming functionality designed for specific
use cases. For this reason, we created JavaStrike.

JavaStrike is a Java programming engine we created from the
ground up. Developed in Unity, JavaStrike can be utilized on any of
the platforms supported by Unity: desktop devices, mobile devices,
virtual reality devices, augmented reality devices, console devices,
and web browsers. JavaStrike supports many of the functionalities
in the Java programming language, including polymorphism, inheri-
tance, interfaces, and data structures. In this paper, we provide an
overview of the JavaStrike engine. We then discuss a Java game
called CodeBreakers that covers the same breadth of material as the
Java course on CodeAcademy, a popular course for learning pro-
gramming. Finally, we performed a study with Java programming
experts, of which the results indicate that CodeBreakers has promise
as a game for learning Java. The JavaStrike engine makes it possible
to incorporate a run-time Java programming environment into an
arbitrary game on an arbitrary device.

2 RELATED WORK
General purpose programming environments for virtual worlds cur-
rently do not exist. One can argue that game-specific programming
environments (e.g., Colobot [15]) might be generalizable, but these
programming environments are often limited to specific applications.
Closely related to JavaStrike are programming environments that al-
low construction of a wide range of types of programs (e.g., Scratch
[32], Greenfoot [23]). However, integrating a full programming lan-
guage (e.g., Java) into a new game takes significant effort.

Games and systems that incorporate programming and computer
science include Logo [26], Alice [11] and Storytelling Alice [20],
NetLogo [40], MIT App Inventor [42], Gidget [24], LightBot [1],
CodeCombat [2], BOTS [17], RoboBuilder [38], AgentSheets and
AgentCubes [31], Code.org [10], the Arduino [6], Kodu Game Lab
[37], Game Maker [9, 30], Gogo Boards [36], the STELLA program-
ming language [22], Bots & (Main)Frames [28], CMX [27], Mazzy
& MazeStar [18, 19], Pyrus [35], and more [3, 7, 21, 25, 29].

3 JAVASTRIKE
Before detailing the low-level components that make up the JavaS-
trike engine, we start with a high-level example of how one can
use JavaStrike in Unity. For an overview video, see the following:
https://youtu.be/0z-qf6miLro.

FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA D. Kao

Figure 1: An example scenario utilizing JavaStrike. Code snip-
pets can be thrown at the blanks (. . .).

3.1 Unity Example Using JavaStrike
To better illustrate how JavaStrike works, consider the following
example scenario. (See Figure 1). In this example, there are several
code snippets which can be picked up and thrown by the player.
For example, the snippet i is represented internally in the JavaS-
trike engine by the class Variable. Variable contains a Vari-
ableReference. Objects of type VariableReference specify a
ToString method (for visual display) and an Execute method,
which permits the run-time to resolve this variable. The Vari-
ableReference class inherits from the class Value, which then in-
herits from Executable, which then inherits from Spell. Both Ex-
ecutable and Spell are abstract base classes which other JavaS-
trike components inherit from. These abstract classes define basic
code for a component to be displayed and executed. This design
maximizes code re-use across the many components in JavaStrike.

In this example scenario, there are several code snippets on the
ground. One snippet is the sum assignment statement: . . . = . . . +
This is created using the following code:

return new Assignment(null, new BinaryOperation(null,
BinaryOperationType.Addition, null));

Assignment is a JavaStrike object that is constructed using a
variable, and the value to assign that variable. In this specific exam-
ple, we set the first argument to null to indicate that this variable
can be changed by the player in the example (i.e., it will appear
as . . .). The second argument is an object of type BinaryOpera-
tion, with a type Addition, and two replaceable values on either
side. This generates the . . . + . . . portion of the snippet. This type
of syntax is used to create arbitrary snippets, functions, and classes.

3.2 Engine Overview
The engine contains 3 main sets of components: 1) Components for
representing Java code; 2) Components that handle Java execution;
and 3) Components for displaying code. See Tables 1, 2, and 3.

ArgumentDeclaration.cs ForeachLoop.cs
ArrayClass.cs ForLoop.cs
ArrayConstructor.cs Function.cs
Assignment.cs FunctionCall.cs
AssignmentOperationType.cs GenericClass.cs
BinaryOperation.cs Increment.cs
BinaryOperationType.cs Literal.cs
BlankStatement.cs ObjectConstructor.cs
Block.cs ObjectFunctionCall.cs
Class.cs ObjectIndex.cs
ClassFunctionCall.cs ObjectProcedureCall.cs
ClassProcedureCall.cs ObjectVariableReference.cs
ClassReference.cs OperationAssignment.cs
Condition.cs ProcedureCall.cs
Constructor.cs Return.cs
Declaration.cs Spell.cs
DeclarationAssignment.cs Statement.cs
Decrement.cs StringConstructor.cs
Discard.cs This.cs
Executable.cs Type.cs
ExternalArrayConstructor.cs UnaryOperation.cs
ExternalFunction.cs UnaryOperationType.cs
ExternalFunctionDeclaration.cs Value.cs
ExternalReturn.cs VariableReference.cs
ExternalValue.cs WhileLoop.cs

Table 1: Components handling representation.

Magician.cs Scope.cs
Object.cs Thread.cs
PayloadObject.cs Variable.cs

Table 2: Components handling execution.

Clock.cs PointerView.cs
CodeView.cs Snippet.cs
Entity.cs TextSelection.cs
GenericEntity.cs Trigger.cs
PlaceholderView.cs WatchView.cs

Table 3: Components handling display.

Components handling representation. These components deal
with how Java code is represented in the system, e.g., Class is
an arbitrary Java class, Block is an arbitrary Java code block, and
VariableReference is an arbitrary Java variable.

Components handling execution. These components handle Java
code execution. Scope handles which variables, functions, and
classes are within the current execution scope. Thread handles a sin-
gle execution thread including call stack, access control (e.g., pri-
vate, public), exception handling, and so on. Magician handles
the overall execution of the program. Magician handles high-level
management of threads, including adding new threads, terminating
threads, and determining whether a thread is run at program speed,
slowed down, or step-wise based on user input.

Components handling display. These components handle display
of Java code. CodeView renders Java code to an arbitrary Unity
game object. CodeView also facilitates automatic highlighting of

JavaStrike: A Java Programming Engine
Embedded in Virtual Worlds FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA

code during execution. Snippet handles 3D physics related to code
snippets. WatchView renders the values of variables in scope.

Not included in the 3 main sets of components in the JavaStrike
engine are 120 other C# classes (which excludes other libraries and
classes that were imported for use). These additional classes include
helper classes (12), interfaces (3), higher-level components (17), and
classes to support CodeBreakers (88).

4 CODEBREAKERS
Next, we developed a Java programming game called CodeBreakers.
See Figures 2, 3, 4, and 5. CodeBreakers utilizes the JavaStrike
engine, and is based on the same breadth of material covered in
the Java course on CodeAcademy. CodeBreakers covers data types,
conditionals and control flow, classes and objects, interfaces and
inheritance, loops and recursion, polymorphism, method overriding,
and data structures.

4.1 Game Overview
CodeBreakers is a fantasy third-person shooter game. The player
has just discovered the world of CodeBreakers, and is figuring out
how the world works. The world of CodeBreakers, however, is under
siege by powerful bugs. Everything in the CodeBreakers world,
including the player him/herself, is represented as an object:

class Player extends Character {
String name = . . .;

}

This is a persistent class that evolves throughout the game with
the addition of methods (e.g., attack) and variables (e.g., hit points).
Programming in CodeBreakers is done by throwing code snippets.
Levels progress from replacing single keywords and values, to build-
ing single lines of code, to constructing entire code blocks. There
are six levels in CodeBreakers:

1. Variable Canyon (data types)
2. Conditional Crossing (conditionals, boolean operations)
3. Loop of Life (loops)
4. Encapsulation. Inheritance. Polymorphism. (inheritance)
5. Stepping Up (recursion)
6. One by One, Please (data structures)

Each CodeBreakers level builds upon previous ones by introduc-
ing new concepts.

5 USER STUDY
We ran a study with Java programming experts to ascertain initial
thoughts about the CodeBreakers game.

5.1 Methods
5.1.1 Quantitative Measures. We use a standardized program-

ming experience questionnaire [14], and the Player Experience
of Need Satisfaction (PENS) scale [34]. PENS is based on self-
determination theory (SDT) [12]. PENS contends that the psycho-
logical “pull” of games are largely due to their ability to engender
three needs—competence (seek to control outcomes and develop
mastery [39]), relatedness (seek connections with others [4]), and

Figure 2: In Level 1, the player must throw the correct data
types matching the bug variables to neutralize them.

Figure 3: In the second half of Level 1, the player must find a
code snippet to cure a wounded knight.

Figure 4: In Level 2, the player must cross a chasm by travers-
ing a series of bridges.

FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA D. Kao

Figure 5: In Level 2, the first bridge requires the player to find a
code snippet matching the number of characters in their name.

autonomy (seek to be causal agents [8] while maintaining congru-
ence with the self) [34]. PENS is considered a robust framework for
assessing player experience [13, 33].

5.1.2 Participants. 27 Java programming experts were recruited
through Amazon Mechanical Turk (AMT) to assess CodeBreakers.
The data set consisted of 21 male, and 6 female participants. Partici-
pants were between the ages of 19 and 48 (M = 29.4, SD = 7.9), and
were all from the United States. In order to recruit participants with
Java programming experience, we used the Employment Industry
- Software & IT Services qualification on AMT. Participants were
reimbursed $15.00 for their participation.

5.1.3 Protocol. Participants played the entire CodeBreakers
(in browser using WebGL) game. In case they were unable to get
past a particular level, they were provided with video walkthroughs.
After completing each level, participants were asked to describe
their thoughts on it. After completing the game, participants were
asked to describe what they felt were some of the things that the
game did well, and some areas for improvement. Participants then
completed the programming experience questionnaire, the PENS,
and demographics.

5.2 Results
5.2.1 Prior Java Programming Experience. On a scale of

1:Very Inexperienced to 10:Very Experienced, participants rated
their own Java programming experience as M=8.2, SD=1.4. For
the question How many additional [programming] languages do you
know (medium experience or better)?; participants had an average
of M=4.3, SD=2.9. Participants averaged M=8.1, SD=4.9 years of
programming experience, and M=4.4, SD=4.8 years of program-
ming experience on large software projects (e.g., in a company).
21 participants were involved in professional projects that involved
programming. Of those participants, 9 said those projects typically
involved <900 lines of code, 7 said 900-40000, and 5 said >40000.

5.2.2 Player Experience of Need Satisfaction. On a scale from
1:Do Not Agree to 7:Strongly Agree, participants’ average scores
on the PENS were M=5.4, SD=1.4 (competence), M=5.2, SD=1.1
(autonomy), M=3.5, SD=1.5 (relatedness), M=4.1, SD=1.4 (pres-
ence/immersion), M=4.7, SD=1.7 (intuitive controls).

5.2.3 Level Feedback. Players felt that Level 1 was a good
introduction to Java concepts. Participants also enjoyed the puzzles
in Level 2 and liked how the concepts were introduced. Towards the
end of Level 3, participants had to combine a previously acquired
sword (deal damage) and staff (loop over enemies in current level) to
create a new weapon (deal damage to all enemies). However, some
participants got stuck and did not know they had to do this. Partici-
pants felt that Level 4 was an interesting application of inheritance
and interfaces (one part of Level 4 requires players to use inheri-
tance to access the health field of an enemy). Participants felt Level
5 was a creative method of teaching loops and recursion (players
were required to re-build a damaged stairwell, first using loops, then
using recursion). They liked that the recursive puzzle built upon the
iterative version of the puzzle, making the original iterative solution
inaccessible for the purposes of having the player consider the recur-
sive solution for the same identical problem. Participants felt Level
6 (which involved enemies sieging the top of a castle in various
“formations” which depended on the data structure they were stored
in) was a climactic ending and a good introduction to data structures.

5.2.4 Overall Feedback. Qualitatively, participants spoke highly
of the main ideas behind CodeBreakers (19x), and felt that the level
design in CodeBreakers was a strong point (16x). However, par-
ticipants felt that more instructions were needed for beginner Java
programmers (12x).

5.3 Discussion
27 Java programming experts rated the game positively on the need
satisfaction measures of competence, autonomy, immersion, and
controls. Overall, participants commended the main concept of the
game and the level designs. However, participants felt that more
instructional scaffolding for beginners would be beneficial.

With respect to Java programming experts, the game was moder-
ately effective at engendering need satisfaction. We feel that these
scores can be significantly improved in future versions of Code-
Breakers once the aesthetics and gameplay are more polished, music
and sounds are added, and once we have added in sufficient tutorials
so that players are less likely to get stuck on the more difficult por-
tions of the game. Future studies will seek to study less experienced
Java programmers and their learning of Java concepts.

6 CONCLUSION
In this paper, we have described the JavaStrike engine. The JavaS-
trike engine is a Java programming engine for virtual worlds. JavaS-
trike was developed from scratch in Unity, and is supported on over
25 platforms. The JavaStrike engine supports polymorphism, inheri-
tance, interfaces, data structures, and more. We have also described a
game that utilizes the JavaStrike engine called CodeBreakers. Code-
Breakers is a third-person Java programming game based on the
same breadth of material covered in the Java course on CodeA-
cademy. To the best of our knowledge, JavaStrike is the first attempt
at building a general purpose programming engine for virtual worlds.
The JavaStrike engine makes it possible for designers, developers,
and researchers to integrate Java programming into arbitrary virtual
worlds on arbitrary platforms.

JavaStrike: A Java Programming Engine
Embedded in Virtual Worlds FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA

7 ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their valuable
feedback.

REFERENCES
[1] 2008. LightBot (http://lightbot.com/). (2008).
[2] 2016. CodeCombat. (2016). https://codecombat.com/
[3] Tiffany Barnes, Eve Powell, Amanda Chaffin, and Heather Lipford. 2008.

Game2Learn. Proceedings of the 3rd international conference on Game de-
velopment in computer science education - GDCSE ’08 January (2008), 1–5.
https://doi.org/10.1145/1463673.1463674

[4] Roy F Baumeister and Mark R Leary. 1995. The need to belong: desire for
interpersonal attachments as a fundamental human motivation. Psychological
Bulletin 117, 3 (1995), 497.

[5] Karen Brennan and Mitchel Resnick. 2012. New frameworks for studying and as-
sessing the development of computational thinking. Annual American Educational
Research Association meeting, Vancouver, BC, Canada (2012), 1–25.

[6] Leah Buechley, Mike Eisenberg, and Jaime Catchen. 2008. The LilyPad Arduino:
Using computational textiles to investigate engagement, aesthetics, and diversity
in computer science education. CHI ’08 Proceedings of the twenty-sixth annual
SIGCHI conference on Human factors in computing systems (2008), 423–432.

[7] Amanda Chaffin, Katelyn Doran, Drew Hicks, and Tiffany Barnes. 2009. Experi-
mental evaluation of teaching recursion in a video game. Proceedings of the 2009
ACM SIGGRAPH Symposium on Video Games - Sandbox ’09 1, 212 (2009), 79.
https://doi.org/10.1145/1581073.1581086

[8] Valery Chirkov, Richard M Ryan, Youngmee Kim, and Ulas Kaplan. 2003. Differ-
entiating autonomy from individualism and independence: A self-determination
theory perspective on internalization of cultural orientations and well-being. Jour-
nal of Personality and Social Psychology 84, 1 (2003), 97.

[9] Kajal Claypool and Mark Claypool. 2005. Teaching software engineering through
game design. In ACM SIGCSE Bulletin, Vol. 37. ACM, 123–127.

[10] Code.org. 2014. Code.org. (2014). http://code.org
[11] Stephen Cooper, Wanda Dann, and Randy Pausch. 2000. Alice : a 3-D Tool for

Introductory Programming Concepts. Journal of Computing Sciences in Colleges
15, 5 (2000), 107–116.

[12] Edward L Deci and Richard M Ryan. 2012. Motivation, personality, and develop-
ment within embedded social contexts: An overview of self-determination theory.
The Oxford Handbook of Human Motivation (2012), 85–107.

[13] Sebastian Deterding. 2015. The Lens of Intrinsic Skill Atoms: A Method for
Gameful Design. Human-Computer Interaction 30, 3-4 (2015), 294–335. https:
//doi.org/10.1080/07370024.2014.993471

[14] Janet Feigenspan, Christian Kastner, Jorg Liebig, Sven Apel, and Stefan Ha-
nenberg. 2012. Measuring programming experience. 2012 20th IEEE Inter-
national Conference on Program Comprehension (ICPC) 2005 (2012), 73–82.
https://doi.org/10.1109/ICPC.2012.6240511

[15] Epsitec Games. 2017. CoLoBoT. (2017).
[16] S. Grover and R. Pea. 2013. Computational Thinking in K-12: A Review of

the State of the Field. Educational Researcher 42, 1 (2013), 38–43. https:
//doi.org/10.3102/0013189X12463051

[17] Andrew Hicks, Barry Peddycord III, and Tiffany Barnes. 2014. Building games
to learn from their players: Generating hints in a serious game. In International
Conference on Intelligent Tutoring Systems. Springer, 312–317.

[18] Dominic Kao and D. Fox Harrell. 2015. Mazzy: A STEM Learning Game.
Foundations of Digital Games (2015).

[19] Dominic Kao and D. Fox Harrell. 2018. The Effects of Badges and Avatar
Identification on Play and Making in Educational Games. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems - CHI’18.

[20] Caitlin Kelleher, Randy Pausch, and Sara Kiesler. 2007. Storytelling alice mo-
tivates middle school girls to learn computer programming. Proceedings of the
SIGCHI conference on Human factors in computing systems - CHI ’07 (2007),
1455.

[21] Jackie O Kelly, N U I Maynooth, and J Paul Gibson. 2006. A non-prescriptive
approach to teaching programming. ACM SIGCSE Bulletin 38, 3 (2006), 217–221.

[22] Kyu Han Koh, Ashok Basawapatna, Vicki Bennett, and Alexander Repenning.
2010. Towards the Automatic Recognition of Computational Thinking for
Adaptive Visual Language Learning. Visual Languages . . . (2010), 59–66.
https://doi.org/10.1109/VLHCC.2010.17

[23] Michael Kölling. 2010. The greenfoot programming environment. ACM Transac-
tions on Computing Education (TOCE) 10, 4 (2010), 14.

[24] Michael J. Lee, Andrew J. Ko, and Irwin Kwan. 2013. In-game assessments in-
crease novice programmers’ engagement and level completion speed. Proceedings
of the ninth annual international ACM conference on International computing edu-
cation research - ICER ’13 (2013), 153. https://doi.org/10.1145/2493394.2493410

[25] Renny S.N. Lindberg, Teemu H. Laine, and Lassi Haaranen. 2018. Gamifying
programming education in K-12: A review of programming curricula in seven

countries and programming games. British Journal of Educational Technology
(2018). https://doi.org/10.1111/bjet.12685

[26] Logo Foundation. 2017. Logo (http://el.media.mit.edu/logo-foundation/). (2017).
[27] Christos Malliarakis, Maya Satratzemi, and Stelios Xinogalos. 2017. CMX:

The Effects of an Educational MMORPG on Learning and Teaching Computer
Programming. IEEE Transactions on Learning Technologies 10, 2 (2017), 219–
235. https://doi.org/10.1109/TLT.2016.2556666

[28] Edward F Melcer and Katherine Isbister. 2018. Bots & (Main)Frames: Exploring
the Impact of Tangible Blocks and Collaborative Play in an Educational Program-
ming Game. Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems (2018), 1–14. https://doi.org/10.1145/3173574.3173840

[29] Mathieu Muratet, Patrice Torguet, Fabienne Viallet, Jean-pierre Jessel, Mathieu
Muratet, Patrice Torguet, Fabienne Viallet, and Jean-pierre Jessel Experimental
Feed. 2016. Experimental Feedback on Prog & Play , a Serious Game for Pro-
gramming Practice To cite this version : Experimental feedback on Prog & Play ,
a serious game for programming practice. (2016).

[30] Mark Overmars. 2004. Teaching computer science through game design. Com-
puter 37, 4 (2004), 81–83.

[31] Alex Repenning. 1993. Agentsheets: a tool for building domain-oriented visual
programming environments. In Proceedings of the INTERACT’93 and CHI’93
conference on Human factors in computing systems. ACM, 142–143.

[32] M Resnick and John Maloney. 2009. Scratch: programming for all. Communica-
tions of the . . . (2009). http://dl.acm.org/citation.cfm?id=1592779

[33] Scott Rigby and Richard M Ryan. 2011. Glued to games: How video games draw
us in and hold us spellbound: How video games draw us in and hold us spellbound.
ABC-CLIO.

[34] Richard M. Ryan, C. Scott Rigby, and Andrew Przybylski. 2006. The Motivational
Pull of Video Games: A Self-Determination Theory Approach. Motivation and
Emotion 30, 4 (2006), 344–360. https://doi.org/10.1007/s11031-006-9051-8

[35] Joshua Shi, Armaan Sha, Garrett Hedman, and Eleanor O Rourke. 2019. Pyrus:
Designing A Collaborative Programming Game to Support Problem-Solving
Behaviors. Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems (2019), 1–12.

[36] Arnan Sipitakiat, Paulo Blikstein, and David P Cavallo. 2004. GoGo board:
augmenting programmable bricks for economically challenged audiences. In Pro-
ceedings of the 6th international conference on Learning sciences. International
Society of the Learning Sciences, 481–488.

[37] Kathryn T Stolee and Teale Fristoe. 2011. Expressing computer science concepts
through Kodu game lab. In Proceedings of the 42nd ACM technical symposium on
Computer science education. ACM, 99–104.

[38] David Weintrop and Uri Wilensky. 2014. Program-to-play video games: Develop-
ing computational literacy through gameplay . (2014), 1–7. http://ccl.northwestern.
edu/papers/2014/GLS-2014final.pdf

[39] Robert W White. 1959. Motivation reconsidered: The concept of competence.
Psychological Review 66, 5 (1959), 297.

[40] Uri Wilensky. 1999. NetLogo. (1999).
[41] Jeanette M. Wing. 2006. Computational Thinking. (2006), 33–35. https://doi.org/

10.1007/s11277-016-3679-9
[42] David Wolber. 2011. App inventor and real-world motivation. In Proceedings

of the 42nd ACM technical symposium on Computer science education. ACM,
601–606.

