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ABSTRACT
In this paper, we describe JavaStrike1. JavaStrike is a Java develop-
ment and execution environment that was developed from scratch
inside Unity. The engine currently supports classes, functions, inher-
itance, polymorphism, interfaces, key-value stores, and much more.
JavaStrike allows code to be displayed, executed, and debugged in
the virtual world. We then create a third-person shooter game called
CodeBreakers, which leverages the JavaStrike engine. CodeBreakers
covers basic programming concepts such as variable types, interme-
diate programming concepts such as stacks, queues, and hashmaps,
and advanced programming concepts such as inheritance, interfaces,
and method overriding. JavaStrike is a first step towards general
purpose programming engines embedded in virtual worlds.
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• Applied computing → Computer games; • Social and profes-
sional topics → Computer science education; Software engineer-
ing education; Computing education; Computational thinking;
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1 INTRODUCTION
Programming is more than coding, it is the foundational practice
that underlies computational thinking [5, 16]. There is strong con-
sensus that computational thinking is broadly important in virtu-
ally all subject areas: biology, astronomy, archaeology, chemistry,
economics, journalism, law, medicine and healthcare, meteorology,
neuroscience, sports, and more [41]. As such, there has been un-
precedented interest in developing programming environments for

1JavaStrike Video: https://youtu.be/0z-qf6miLro.
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the purpose of teaching programming [27]. However, one major lim-
itation of these programming environments is that they are limited
to specific implementations on specific platforms. Creating a new
implementation requires extensive effort, the result of which is a
limited subset of programming functionality designed for specific
use cases. For this reason, we created JavaStrike.

JavaStrike is a Java programming engine we created from the
ground up. Developed in Unity, JavaStrike can be utilized on any of
the platforms supported by Unity: desktop devices, mobile devices,
virtual reality devices, augmented reality devices, console devices,
and web browsers. JavaStrike supports many of the functionalities
in the Java programming language, including polymorphism, inheri-
tance, interfaces, and data structures. In this paper, we provide an
overview of the JavaStrike engine. We then discuss a Java game
called CodeBreakers that covers the same breadth of material as the
Java course on CodeAcademy, a popular course for learning pro-
gramming. Finally, we performed a study with Java programming
experts, of which the results indicate that CodeBreakers has promise
as a game for learning Java. The JavaStrike engine makes it possible
to incorporate a run-time Java programming environment into an
arbitrary game on an arbitrary device.

2 RELATED WORK
General purpose programming environments for virtual worlds cur-
rently do not exist. One can argue that game-specific programming
environments (e.g., Colobot [15]) might be generalizable, but these
programming environments are often limited to specific applications.
Closely related to JavaStrike are programming environments that al-
low construction of a wide range of types of programs (e.g., Scratch
[32], Greenfoot [23]). However, integrating a full programming lan-
guage (e.g., Java) into a new game takes significant effort.

Games and systems that incorporate programming and computer
science include Logo [26], Alice [11] and Storytelling Alice [20],
NetLogo [40], MIT App Inventor [42], Gidget [24], LightBot [1],
CodeCombat [2], BOTS [17], RoboBuilder [38], AgentSheets and
AgentCubes [31], Code.org [10], the Arduino [6], Kodu Game Lab
[37], Game Maker [9, 30], Gogo Boards [36], the STELLA program-
ming language [22], Bots & (Main)Frames [28], CMX [27], Mazzy
& MazeStar [18, 19], Pyrus [35], and more [3, 7, 21, 25, 29].

3 JAVASTRIKE
Before detailing the low-level components that make up the JavaS-
trike engine, we start with a high-level example of how one can
use JavaStrike in Unity. For an overview video, see the following:
https://youtu.be/0z-qf6miLro.
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Figure 1: An example scenario utilizing JavaStrike. Code snip-
pets can be thrown at the blanks (. . .).

3.1 Unity Example Using JavaStrike
To better illustrate how JavaStrike works, consider the following
example scenario. (See Figure 1). In this example, there are several
code snippets which can be picked up and thrown by the player.
For example, the snippet i is represented internally in the JavaS-
trike engine by the class Variable. Variable contains a Vari-
ableReference. Objects of type VariableReference specify a
ToString method (for visual display) and an Execute method,
which permits the run-time to resolve this variable. The Vari-
ableReference class inherits from the class Value, which then in-
herits from Executable, which then inherits from Spell. Both Ex-
ecutable and Spell are abstract base classes which other JavaS-
trike components inherit from. These abstract classes define basic
code for a component to be displayed and executed. This design
maximizes code re-use across the many components in JavaStrike.

In this example scenario, there are several code snippets on the
ground. One snippet is the sum assignment statement: . . . = . . . + . . ..
This is created using the following code:

return new Assignment(null, new BinaryOperation(null,
BinaryOperationType.Addition, null));

Assignment is a JavaStrike object that is constructed using a
variable, and the value to assign that variable. In this specific exam-
ple, we set the first argument to null to indicate that this variable
can be changed by the player in the example (i.e., it will appear
as . . .). The second argument is an object of type BinaryOpera-
tion, with a type Addition, and two replaceable values on either
side. This generates the . . . + . . . portion of the snippet. This type
of syntax is used to create arbitrary snippets, functions, and classes.

3.2 Engine Overview
The engine contains 3 main sets of components: 1) Components for
representing Java code; 2) Components that handle Java execution;
and 3) Components for displaying code. See Tables 1, 2, and 3.

ArgumentDeclaration.cs ForeachLoop.cs
ArrayClass.cs ForLoop.cs
ArrayConstructor.cs Function.cs
Assignment.cs FunctionCall.cs
AssignmentOperationType.cs GenericClass.cs
BinaryOperation.cs Increment.cs
BinaryOperationType.cs Literal.cs
BlankStatement.cs ObjectConstructor.cs
Block.cs ObjectFunctionCall.cs
Class.cs ObjectIndex.cs
ClassFunctionCall.cs ObjectProcedureCall.cs
ClassProcedureCall.cs ObjectVariableReference.cs
ClassReference.cs OperationAssignment.cs
Condition.cs ProcedureCall.cs
Constructor.cs Return.cs
Declaration.cs Spell.cs
DeclarationAssignment.cs Statement.cs
Decrement.cs StringConstructor.cs
Discard.cs This.cs
Executable.cs Type.cs
ExternalArrayConstructor.cs UnaryOperation.cs
ExternalFunction.cs UnaryOperationType.cs
ExternalFunctionDeclaration.cs Value.cs
ExternalReturn.cs VariableReference.cs
ExternalValue.cs WhileLoop.cs

Table 1: Components handling representation.

Magician.cs Scope.cs
Object.cs Thread.cs
PayloadObject.cs Variable.cs

Table 2: Components handling execution.

Clock.cs PointerView.cs
CodeView.cs Snippet.cs
Entity.cs TextSelection.cs
GenericEntity.cs Trigger.cs
PlaceholderView.cs WatchView.cs

Table 3: Components handling display.

Components handling representation. These components deal
with how Java code is represented in the system, e.g., Class is
an arbitrary Java class, Block is an arbitrary Java code block, and
VariableReference is an arbitrary Java variable.

Components handling execution. These components handle Java
code execution. Scope handles which variables, functions, and
classes are within the current execution scope. Thread handles a sin-
gle execution thread including call stack, access control (e.g., pri-
vate, public), exception handling, and so on. Magician handles
the overall execution of the program. Magician handles high-level
management of threads, including adding new threads, terminating
threads, and determining whether a thread is run at program speed,
slowed down, or step-wise based on user input.

Components handling display. These components handle display
of Java code. CodeView renders Java code to an arbitrary Unity
game object. CodeView also facilitates automatic highlighting of
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code during execution. Snippet handles 3D physics related to code
snippets. WatchView renders the values of variables in scope.

Not included in the 3 main sets of components in the JavaStrike
engine are 120 other C# classes (which excludes other libraries and
classes that were imported for use). These additional classes include
helper classes (12), interfaces (3), higher-level components (17), and
classes to support CodeBreakers (88).

4 CODEBREAKERS
Next, we developed a Java programming game called CodeBreakers.
See Figures 2, 3, 4, and 5. CodeBreakers utilizes the JavaStrike
engine, and is based on the same breadth of material covered in
the Java course on CodeAcademy. CodeBreakers covers data types,
conditionals and control flow, classes and objects, interfaces and
inheritance, loops and recursion, polymorphism, method overriding,
and data structures.

4.1 Game Overview
CodeBreakers is a fantasy third-person shooter game. The player
has just discovered the world of CodeBreakers, and is figuring out
how the world works. The world of CodeBreakers, however, is under
siege by powerful bugs. Everything in the CodeBreakers world,
including the player him/herself, is represented as an object:

class Player extends Character {
String name = . . .;

}

This is a persistent class that evolves throughout the game with
the addition of methods (e.g., attack) and variables (e.g., hit points).
Programming in CodeBreakers is done by throwing code snippets.
Levels progress from replacing single keywords and values, to build-
ing single lines of code, to constructing entire code blocks. There
are six levels in CodeBreakers:

1. Variable Canyon (data types)
2. Conditional Crossing (conditionals, boolean operations)
3. Loop of Life (loops)
4. Encapsulation. Inheritance. Polymorphism. (inheritance)
5. Stepping Up (recursion)
6. One by One, Please (data structures)

Each CodeBreakers level builds upon previous ones by introduc-
ing new concepts.

5 USER STUDY
We ran a study with Java programming experts to ascertain initial
thoughts about the CodeBreakers game.

5.1 Methods
5.1.1 Quantitative Measures. We use a standardized program-

ming experience questionnaire [14], and the Player Experience
of Need Satisfaction (PENS) scale [34]. PENS is based on self-
determination theory (SDT) [12]. PENS contends that the psycho-
logical “pull” of games are largely due to their ability to engender
three needs—competence (seek to control outcomes and develop
mastery [39]), relatedness (seek connections with others [4]), and

Figure 2: In Level 1, the player must throw the correct data
types matching the bug variables to neutralize them.

Figure 3: In the second half of Level 1, the player must find a
code snippet to cure a wounded knight.

Figure 4: In Level 2, the player must cross a chasm by travers-
ing a series of bridges.
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Figure 5: In Level 2, the first bridge requires the player to find a
code snippet matching the number of characters in their name.

autonomy (seek to be causal agents [8] while maintaining congru-
ence with the self) [34]. PENS is considered a robust framework for
assessing player experience [13, 33].

5.1.2 Participants. 27 Java programming experts were recruited
through Amazon Mechanical Turk (AMT) to assess CodeBreakers.
The data set consisted of 21 male, and 6 female participants. Partici-
pants were between the ages of 19 and 48 (M = 29.4, SD = 7.9), and
were all from the United States. In order to recruit participants with
Java programming experience, we used the Employment Industry
- Software & IT Services qualification on AMT. Participants were
reimbursed $15.00 for their participation.

5.1.3 Protocol. Participants played the entire CodeBreakers
(in browser using WebGL) game. In case they were unable to get
past a particular level, they were provided with video walkthroughs.
After completing each level, participants were asked to describe
their thoughts on it. After completing the game, participants were
asked to describe what they felt were some of the things that the
game did well, and some areas for improvement. Participants then
completed the programming experience questionnaire, the PENS,
and demographics.

5.2 Results
5.2.1 Prior Java Programming Experience. On a scale of

1:Very Inexperienced to 10:Very Experienced, participants rated
their own Java programming experience as M=8.2, SD=1.4. For
the question How many additional [programming] languages do you
know (medium experience or better)?; participants had an average
of M=4.3, SD=2.9. Participants averaged M=8.1, SD=4.9 years of
programming experience, and M=4.4, SD=4.8 years of program-
ming experience on large software projects (e.g., in a company).
21 participants were involved in professional projects that involved
programming. Of those participants, 9 said those projects typically
involved <900 lines of code, 7 said 900-40000, and 5 said >40000.

5.2.2 Player Experience of Need Satisfaction. On a scale from
1:Do Not Agree to 7:Strongly Agree, participants’ average scores
on the PENS were M=5.4, SD=1.4 (competence), M=5.2, SD=1.1
(autonomy), M=3.5, SD=1.5 (relatedness), M=4.1, SD=1.4 (pres-
ence/immersion), M=4.7, SD=1.7 (intuitive controls).

5.2.3 Level Feedback. Players felt that Level 1 was a good
introduction to Java concepts. Participants also enjoyed the puzzles
in Level 2 and liked how the concepts were introduced. Towards the
end of Level 3, participants had to combine a previously acquired
sword (deal damage) and staff (loop over enemies in current level) to
create a new weapon (deal damage to all enemies). However, some
participants got stuck and did not know they had to do this. Partici-
pants felt that Level 4 was an interesting application of inheritance
and interfaces (one part of Level 4 requires players to use inheri-
tance to access the health field of an enemy). Participants felt Level
5 was a creative method of teaching loops and recursion (players
were required to re-build a damaged stairwell, first using loops, then
using recursion). They liked that the recursive puzzle built upon the
iterative version of the puzzle, making the original iterative solution
inaccessible for the purposes of having the player consider the recur-
sive solution for the same identical problem. Participants felt Level
6 (which involved enemies sieging the top of a castle in various
“formations” which depended on the data structure they were stored
in) was a climactic ending and a good introduction to data structures.

5.2.4 Overall Feedback. Qualitatively, participants spoke highly
of the main ideas behind CodeBreakers (19x), and felt that the level
design in CodeBreakers was a strong point (16x). However, par-
ticipants felt that more instructions were needed for beginner Java
programmers (12x).

5.3 Discussion
27 Java programming experts rated the game positively on the need
satisfaction measures of competence, autonomy, immersion, and
controls. Overall, participants commended the main concept of the
game and the level designs. However, participants felt that more
instructional scaffolding for beginners would be beneficial.

With respect to Java programming experts, the game was moder-
ately effective at engendering need satisfaction. We feel that these
scores can be significantly improved in future versions of Code-
Breakers once the aesthetics and gameplay are more polished, music
and sounds are added, and once we have added in sufficient tutorials
so that players are less likely to get stuck on the more difficult por-
tions of the game. Future studies will seek to study less experienced
Java programmers and their learning of Java concepts.

6 CONCLUSION
In this paper, we have described the JavaStrike engine. The JavaS-
trike engine is a Java programming engine for virtual worlds. JavaS-
trike was developed from scratch in Unity, and is supported on over
25 platforms. The JavaStrike engine supports polymorphism, inheri-
tance, interfaces, data structures, and more. We have also described a
game that utilizes the JavaStrike engine called CodeBreakers. Code-
Breakers is a third-person Java programming game based on the
same breadth of material covered in the Java course on CodeA-
cademy. To the best of our knowledge, JavaStrike is the first attempt
at building a general purpose programming engine for virtual worlds.
The JavaStrike engine makes it possible for designers, developers,
and researchers to integrate Java programming into arbitrary virtual
worlds on arbitrary platforms.
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