
2

Synthesizing Game Levels for Collaborative Gameplay in a

Shared Virtual Environment
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We developed a method to synthesize game levels that accounts for the degree of collaboration required by
two players to finish a given game level. We first asked a game level designer to create playable game level
chunks. Then, two artificial intelligence (AI) virtual agents driven by behavior trees played each game level
chunk. We recorded the degree of collaboration required to accomplish each game level chunk by the AI vir-
tual agents and used it to characterize each game level chunk. To synthesize a game level, we assigned to the
total cost function cost terms that encode both the degree of collaboration and game level design decisions.
Then, we used a Markov-chain Monte Carlo optimization method, called simulated annealing, to solve the to-
tal cost function and proposed a design for a game level. We synthesized three game levels (low, medium, and
high degrees of collaboration game levels) to evaluate our implementation. We then recruited groups of par-
ticipants to play the game levels to explore whether they would experience a certain degree of collaboration
and validate whether the AI virtual agents provided sufficient data that described the collaborative behavior
of players in each game level chunk. By collecting both in-game objective measurements and self-reported
subjective ratings, we found that the three game levels indeed impacted the collaboration gameplay behavior
of our participants. Moreover, by analyzing our collected data, we found moderate and strong correlations be-
tween the participants and the AI virtual agents. These results show that game developers can consider AI vir-
tual agents as an alternative method for evaluating the degree of collaboration required to finish a game level.
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Computer games; • Computing methodologies→ Intelligent agents;
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1 INTRODUCTION

In our daily lives, we collaborate with others on various tasks in various ways. According to Web-
ster’s Dictionary, “collaboration”1 refers to “the work and activity of a number of persons who

1https://www.merriam-webster.com/thesaurus/collaboration.
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Fig. 1. Our method synthesizes a game level in which participants collaborate in a shared virtual environ-

ment to play a game.

individually contribute toward the efficiency of the whole.” In addition to real-world collab-
orative tasks that people perform in their everyday lives (e.g., two people collaborate to rearrange
a couch), people also perform tasks in virtual worlds and video games (e.g., two people collabo-
rate to catch an enemy). Although collaborative experiences in humans’ daily lives are relatively
common, the evolutionary foundations of humans’ collaborative skills remain unclear [44].

In games and VR applications, the tasks requiring users to collaborate and the degree of col-
laboration required to accomplish a given task are manually built or programmed by the game’s
designers. However, a game designer can design hundreds of game levels that share similar game
level chunks. For example, a game level designer can synthesize platform games (e.g., games sim-
ilar to Super Mario Land2) by repeating various predesigned game level chunks. In addition, the
designer is responsible for fine-tuning the degree of collaboration required for each game level,
which is a tedious and time-consuming process. To overcome these issues, we propose a pipeline
that automatically characterizes the degree of collaboration of game level chunks and synthesizes
game levels with designer-defined degrees of collaboration targets (Figure 1). As a result, a game
level designer can request game levels with different degrees of collaboration. The designer can
later edit the synthesized game level if needed, automating the whole process and minimizing the
time required to design the game levels.

In this project, we targeted the “shared goal” [1, 70] and “mutual benefit” [65] aspects of collab-
oration. In particular, we thought that providing a shared goal to the players (finishing the game
level) would work as a force that holds players together and allows them to coordinate their ef-
forts and work together toward a mutual benefit. According to Uhlaner et al. [72], when there are
strong shared goals, players are more likely to prioritize group needs over personal needs. In ad-
dition, there tends to be more cooperation and collaboration when there are strong shared goals,
and players are more likely to defer personal benefits for collective benefits. Shared goals focus
and coordinate strategic action toward the mutual benefit, increasing the likelihood that players
can simultaneously fulfill individual and group goals.

The proposed method is divided into three parts. First, a game level designer is responsible
for designing playable game level chunks. Second, artificial intelligence (AI) virtual agents are

2https://www.mariowiki.com/Super_Mario_Land.
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implemented to play the game level chunks. We collect data from these agents and use them to
characterize the degree of collaboration of each game level chunk. Third, by developing cost terms
that encode various design decisions, our method automatically synthesizes a game level that
fulfills all designer-specified design decisions. Such a formulation allows our system to synthesize
several variations of game levels that satisfy the designer-defined parameters in a few seconds,
offering variability across game levels. According to the literature [40, 41, 80], such variability is
important for keeping players engaged during gameplay.

The scope of this project was twofold. First, we aimed to validate whether the proposed method
automatically synthesized game levels with different degrees of collaboration assigned to them
and understand how players changed their gameplay behavior and perceived these different de-
grees of collaboration in the game levels. Second, we aimed to explore whether AI virtual agents
can be used to characterize the collaborative behavior of game level chunks and, thereby, provide
sufficient data that describes the collaborative behavior of players in each game level chunk. To
accomplish these aims, we conducted a user study to collect data from participants. For our user
study, we requested that our optimizer synthesize game levels requiring a low, medium, and high
degree of collaboration. We collected various in-game measurements during the gameplay. More-
over, we asked the participants to respond according to the scale we developed for this project.
The obtained results indicated that our method could synthesize the game levels in which the par-
ticipants collaborated differently across the three examined conditions (low, medium, and high
degrees of collaboration). In addition, we evaluated the ability of the AI virtual agents to provide
data that reflected the degree of collaboration required by the participants. The analysis results
showed that the participants followed a parallel collaboration pattern with the AI virtual agents,
indicating that game designers can use such agents as an alternative method for evaluating the
degree of collaboration needed to complete a given game level. In addition to the positive findings
of our study, we also discuss some limitations to guide future research in automatic game level
design for collaborative gameplay.

The rest of the paper is organized as follows. In Section 2, we present related work on collabo-
rative games and virtual reality experiences. In Section 3, we describe the preliminary remarks of
our project. In Section 4, we explain the formulation of the game level synthesis and the optimiza-
tion process. In Section 5, we outline the conducted user study and discuss our findings. In Section
6, we review the limitations of our method. Finally, in Section 7, we present our conclusions and
potential future research directions.

2 RELATED WORK

Computer games encode problem-solving activities in which players build a strategy to overcome
the difficulties they face [57], drawing on prior problem-solving knowledge as they explore the
solution space for a given problem [33]. According to Sedano et al. [58], collaborative games en-
code activities in which the players must work together toward a common outcome. This means
that the players should work collectively to identify the dominant strategy for a given in-game
problem. Most multiplayer games incorporate both collaborative and competitive mechanics. Ex-
amples of games that require collaboration between players are Portal 2,3 Trine,4 and Keep Talking

and Nobody Explodes.5 In Keep Talking and Nobody Explodes, the players need to diffuse a bomb.
One player is responsible for explaining how to defuse the bomb by using the provided manual,
and the other player is responsible for performing the necessary operation. Providing the option

3https://www.thinkwithportals.com/.
4https://www.frozenbyte.com/games/.
5https://keeptalkinggame.com/.
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for two or more players to collaborate toward achieving a common goal defines the subgenre of
collaborative gameplay.

One of the immensely popular and largest emerging multiplayer game genres that also encode
collaboration is the Multiplayer Online Battle Arena (MOBA) [47], e.g., the League of Legends6

game. In such games, two teams of players compete to destroy each other’s base. The individ-
ual players act collectively, while the teams coordinate to meet shared goals [71]. Additionally,
Massively Multiplayer Online Role-Playing Games (MMORPGs), such as the World of War-

craft,7 allow many players to collaborate in various tasks, such as fighting a dragon. According to
Wikipedia’s list of cooperative video games,8 some MMORPGs can be played by players ranging
from two, such as Space Duel9 and Sky Force,10 to 128, such as Freelancer11 and The Forest.12

Zagal et al. [81] explored how players who work together influence a game’s design by analyzing
collaborative board games. They found that some tension between collaboration and selfish play
is required to create an interesting collaborative game even though the players ultimately share
the same goal and always win or lose as a group. This tension can facilitate discussions about how
to reach the shared goal. Zea et al. [82] explored how game level designers can use collaborative
learning requirements as game design guidelines. They proposed guidelines to help developers cre-
ate more efficient collaborative games, such as “give players a common goal and shared rewards,”
“require a minimal score of each player before the group can progress, but also give the players
enough information to enable helping,” “make players accountable for their actions, for example by
showing their individual results to the group,” “guide group members towards social interactions,
for example require consensus to foster discussions,” and “establish a rotating leader role.”

Rocha et al. [53] proposed various methods to force collaboration among the game players.
Among them, we can distinguish between the “shared goals” method, in which cooperating players
have similar (or identical) objectives that they must complete, putting them on the same pathway
toward their goals, and the “complementary” and “synergies between abilities” methods, both of
which involve asymmetry between the two (or more) players and their abilities. Seif El-Nasr et al.
[59] found additional patterns that define collaboration in commercial games. Specifically, by an-
alyzing 14 games, they found patterns such as “players interacting with the same object,” “shared
puzzles or characters,” “enemies specifically targeting separated players,” “automatic vocalization,”
and “limited (shared) resources.” Moreover, through an evaluation process, they validated the im-
portance of such patterns in forming collaborative gameplay. In a similar vein, Reuter et al. [3] in-
troduced game design patterns for collaborative player interactions. They analyzed 15 well-known
games from different genres and extracted the patterns used to guide collaborative game designs
to foster interaction between players. Later, they classified the interactions into several dimen-
sions (e.g., spatial and temporal). Lastly, to address the issue of authoring collaborative multiplayer
games, Reuter [51] conceptualized an authoring environment that consisted of four modules:
(1) game design patterns as player interaction templates, (2) a formal analysis concerning structural
errors, (3) collaborative balancing, and (4) a rapid prototyping environment.

In addition to the previously mentioned work that presented findings on game design patterns
that enforce collaboration, industry experts have also discussed game mechanics and “dynamics”

6https://en.wikipedia.org/wiki/League_of_Legends.
7https://en.wikipedia.org/wiki/World_of_Warcraft.
8https://en.wikipedia.org/wiki/List_of_cooperative_video_games.
9https://en.wikipedia.org/wiki/Space_Duel.
10https://en.wikipedia.org/wiki/Sky_Force.
11https://en.wikipedia.org/wiki/Freelancer_(video_game).
12https://en.wikipedia.org/wiki/The_Forest_(video_game).
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used to force collaboration. Specifically, Luaret13 further defined four categories: gate, comfort,
class, and job. “Gate” refers to collaboration mechanics that require all players to be present to
complete a task (i.e., two players lifting a gate, hence the name). “Comfort” refers to players facing
a challenge that is so difficult that having more than one player is necessary. Compared to “gate”
mechanics, “comfort” mechanics indicate that it is theoretically possible but extremely difficult for
a solo player to perform the given task, thus strongly encouraging collaborative behavior rather
than rigidly enforcing it. Both “class” and “job” involve assigning different roles to each player, ei-
ther through their player avatar or character (similar to “class”) or simply through player actions
(similar to “job”). Finally, Redding14 defined several collaboration “dynamics,” which describe mech-
anisms used to create collaborative behavior between two players. Redding placed these dynamics
on a gradient from “prescriptive” (forced cooperation) to “voluntary” (encouraged but not required
collaboration), which included gating/tethering, exotic challenges, punitive systems, buffing sys-
tems, asymmetric abilities, combined abilities, and survival/attrition.

However, there are also cases where developers provided practical guidelines to force collab-
oration in games. The developers of the Jamestown: Legend of the Lost Colony15 game provided
practical guidelines on designing collaborative games based on player observations16 they made.
Specifically, they suggested that game developers should “prevent waiting times,” “avoid differen-
tiating statistics like individual scores” (which contradicts Zea et al. [82]), “take into account that
the players’ skill can vary and that negative contributions could result in blaming,” “make sure
that teams only fail as a collective and that each player is able to contribute something tangible,”
and “facilitate interactions among the players.” Likewise, the developers of the Together: Amna &

Saif 17 game followed similar rules to establish a relationship between the players.18 Specifically,
they included the “avoid levels that could be solved without all players contributing,” “add game
mechanics that allow helping and coordination,” “have no abilities unique to each player so that
each player knows exactly what the others can do” (contradicts Zagal et al. [81]), and “let players
choose their responsibilities at any given time, for example to help when a player has difficulties
using a certain ability.” However, we should note that these suggestions coming from research or
industry sometimes differ significantly and even contradict each other in some respects. These dif-
ferences highlight the fact that, in the game design process, there is no single right answer for most
questions. Instead, decisions have to be made for each game individually and must be based on the
intended target audience. This necessity was also pointed out by Corrigan et al. [17], who found
that collaboration has to be required by the game; otherwise, the players tend to play solitarily.

In addition to collaboration in video games, the virtual reality research community has proposed
various applications related to collaboration in a shared space. Zhou et al. [84] developed a collab-
orative asymmetrical mixed reality dance game called Astaire. The players of this game dance to-
gether while hitting the game targets shaped as musical notes spawning in the space. Ibayashi et al.
[34] developed a collaborative experience called Dollhouse VR, which facilitates an asymmetric col-
laboration among users in and out of virtual reality. In Dollhouse VR, one player uses a multitouch
device to interact with the virtual environment, while the other player observes and interacts with
the virtual environment through a head-mounted display. Piumsomboon et al. [49] developed a

13https://www.gamasutra.com/view/news/328756/The_four_atoms_of_cooperative_video_games.php.
14https://www.gdcvault.com/play/1014379/Keep-it-Together-Encouraging-Cooperative.
15https://en.wikipedia.org/wiki/Jamestown:_Legend_of_the_Lost_Colony.
16https://www.co-optimus.com/editorial/976/page/1/indie-ana-co-op-and-the-dev-stories-you-re-all-in-this-
together.html.
17https://togetherthegame.com/.
18https://www.co-optimus.com/editorial/1376/page/1/indie-ana-co-op-and-the-dev-stories-fostering-gaming-
relationships.html.
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remote collaborative extended reality system to create new types of collaborations across different
devices. Malik et al. [43] developed a unified training tool framework to integrate human-robot
interaction into a virtual reality environment. Greenwald et al. [31] developed a shared immersive
virtual reality environment in which users interact to create and manipulate virtual objects by
using a set of hand-based tools called CocoVerse. Donalek et al. [20] explored the potential of im-
mersive visualization and data expiration in a collaborative, shared virtual space. Finally, Men and
Bryan-Kinns [45] explored the potential of collaborative music-making in a shared virtual space.

Considering the abovementioned studies on collaborative games and virtual reality experiences,
it is obvious that the collaborative tasks are context-dependent and diverse. Various studies have
been conducted to explore how users collaborate in groups and proposed taxonomies to char-
acterize users’ collaborative activities. For example, Tang et al. [66] identified six styles of cou-
pling—“same problem same area,” “one working, another viewing in an engaging manner,” “same
problem, different area,” “one working, another viewing,” “one working, another disengaged,” and
“different problems”—where the participants were instructed to interact with a tabletop surface. Liu
et al. [39] discussed five collaboration styles—Divide&Conquer (a parallel-performed task in which
the users must neither communicate nor help each other), LooseComm (a parallel-performed task
where the users are allowed to communicate), LooseTech (a parallel-performed task where the
users can also help each other), CloseComm (only one user can perform the task in sequential
order), and CloseTech (only one user can perform the task in sequential order, but the second user
also has an input device)—by operationalizing two dimensions: task parallelization and shared in-
teraction support. The results of the Liu et al. [39] study also indicated that (1) participants value
collaboration even though it incurs a cost, (2) shared interaction increases collaboration, reduces
physical navigation, improves operation efficiency, and provides a more enjoyable experience, and
(3) distance increases the value of collaboration and shared interaction.

In the present research, we used methods such as those used in procedural content genera-
tion for virtual environments and games. Such methods, often called “constructive methods,” use
grammars [46, 74], noise-based algorithms [40, 75], search-based methods [42, 69], or solver-based
methods [64] to generate virtual environments or game levels to maximize the objectives of the de-
sign and/or to preserve the developer-defined constraints. For example, Arkel et al. [73] introduced
a platform game that utilizes a grammar-based procedural generation technique to synthesize the
layout of puzzle-related game levels. Since its first successful implementation in games such as
Rogue19 and Elite,20 procedural content generation has become a popular tool for reducing the
cost of developing computer games [68]. In addition to the cost-reduction benefits, game design-
ers can personalize games to fit players’ needs and gameplay behaviors with procedural content
generation techniques, leading to more personalized user experiences [49]. Procedural content
generation techniques also reduce storage footprint. This was especially important in the early
1980s when memory limitations of computers and storage devices did not allow the distribution
of large amounts of predesigned content, such as game levels [4, 68]. Aside from the examples
mentioned above, procedural content generation in games that encounter collaborative gameplay
is relatively uncommon. This is mainly because generating game levels for collaboration is more
challenging due to the need to ensure the mutual benefits of the cooperation, which puts added
constraints on the design spaces [73].

To the best of our knowledge, there are no available methods for evaluating the degree of collab-
oration at a game level. However, there are various previously published approaches to assessing
the quality of game levels. Examples include the player challenge method [38] or the use of rapidly

19https://en.wikipedia.org/wiki/Rogue_(video_game).
20https://en.wikipedia.org/wiki/Elite_(video_game).
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expanding random trees to sample a level’s state space, which later clusters the output tree of the
rapidly expanding random trees using Markov clustering to form a representative graph of the
game level [5]. Additionally, researchers have explored spatial principles in level design to indi-
cate the effects of altering parts of a game level [32]. Furthermore, Berseth et al. [8] used crowd
simulation algorithms to evaluate the scenario complexity of game levels. In the current project,
we considered the use of AI virtual agents in assessing the degree of collaboration of the designed
game level chunks and, consequently, the synthesized game level; therefore, we proposed and eval-
uated a method to automatically determine the degree of collaboration of a synthesized game level.

For this project, we considered previously conducted research on the procedural generation of
game levels and collaboration in shared virtual spaces to develop a method that automatically
synthesizes game levels based on designer-specified degrees of collaboration among players and
other design decisions. According to the discussed taxonomies, we mainly focused on the “same
problem same area” styles of coupling between game players, as mentioned by Tang et al. [66], and
in the LooseTech category of Liu et al. [39], since the players could perform a parallel task and help
each other to overcome the challenges of a game level. We demonstrated that our approach can
be applied to generate variations at a game level based on designer-defined objectives. Through a
user study, we also validated the effectiveness of our method in generating game levels that can
impact the collaborative gameplay behavior of participants.

3 PRELIMINARY REMARKS

In this section, we present the different game level chunks developed for our project and the meth-
ods we followed to characterize the degrees of collaboration for each game level chunk. We con-
sidered synthesizing game levels for this project’s obstacle course game. Our system composes a
game level by placing game level chunks next to each other in a 1D array structure. We chose a
simplified representation of a game level mainly to validate whether the presented methodology
can synthesize game levels that fulfill the degree of collaboration targets and other design deci-
sions. In addition, through our user study, we aimed to explore whether the participants could
play the synthesized game levels and experience a certain degree of collaboration for each other.
Thus, we leave more complex game level structures (e.g., dungeon crawlers and open-world game
levels) for future implementations.

3.1 Game Level Chunks

In a preliminary step, we asked an experienced game level designer to design playable game level
chunks, considering different collaboration activities and the different degrees of collaboration
players need to finish each game level chunk. The designer created 15 game level chunks. Figure 2
illustrates all game level chunks, where “playable game level chunks” denotes a part of the game
that has its own gameplay characteristics and objectives and is independent of the other game
level chunks.

Based on the theories of designing collaborative gameplay by Rocha et al. [53], Luaret,13 and
Redding,14 game level chunks can be divided into three categories: (1) chunks that a player can
complete on their own without the help of another player (C1, C2, C3, C4, and C5); (2) chunks that
a player can complete without the help of another player—however, if another player helps, the
players will complete the chunk faster (C6, C7, C8, C9, C10, C11, and C12); and (3) chunks that if
players do not collaborate to complete, they will become “stuck” and not be able to exit the chunk
(C13, C14, and C15). Each of these chunks are described as follows:

• C1: The exit door of this game level chunk opens when a player enters the room.
• C2: This is a simple maze where no collaboration is required. Once a player reaches the red

zone, the exit door of this game level chunk opens.
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Fig. 2. Playable game level chunks were developed by an experienced game level designer and used in this

project to synthesize game levels and account for the degrees of collaboration. We also characterized each

game level chunk based on Luaret’s taxonomy. The blue shapes indicate the collaboration zones of each

game level chunk.

ACM Transactions on Interactive Intelligent Systems, Vol. 13, No. 1, Article 2. Publication date: February 2023.



Synthesizing Game Levels for Collaborative Gameplay 2:9

• C3: The players cannot pass the narrow exit door simultaneously. Its exit door opens when
a player enters the room.
• C4: A player should touch the pumpkin to open the exit door of this game level chunk.
• C5: There is a large button on the floor in this game level chunk. Its exit door opens once a

player jumps on the button.
• C6: The player(s) should push the chest to move it to a specific place (red zone). The speed of

the chest increases proportionally to the number of players pushing it. The exit door opens
only when the player(s) places the chest on the red zone.
• C7: One player should attract the enemy’s attention while the other player reaches the red

zone to open the exit door of this game level chunk. In the case of a single player, that player
should feint the enemy to reach the red zone to open the exit door.
• C8: In this game level chunk, there are four bottles. The player(s) should grab the bottles

and put them in the basket. Once all bottles are in the basket, the exit door of this game level
chunk opens.
• C9: There is a scroll attached to the back of the enemy. The players should collaborate to

“steal” the scroll. In particular, one player should attract the enemy’s attention, while the
other player “steals” the scroll. When a player places the scroll in the basket, the exit door
of this game level chunk opens. In the case of a single player, that player should feint the
enemy to “steal” the scroll.
• C10: One player should collect the bottles and place them in a designated position, while

the other player should attract the enemies. When the players have placed all bottles in
the designated position (wooden baskets), the exit door of this game level chunk opens.
In the case of a single player, that player should run fast to prevent the enemy from col-
lecting the bottles and placing them in a designated position.
• C11: The player(s) need to touch the pumpkins according to a particular color sequence

shown on a board to open the exit door of this game level chunk. If the players collaborate,
they will be able to exit this room faster.
• C12: A player must carry the board and place it in a suitable place to form a bridge. When

a player reaches the red zone, the exit door of this game level chunk opens.
• C13: In this game level chunk, players can open and close a cage by touching a button. One

player is responsible for controlling the cage, while the other is responsible for directing the
enemies to the cage. Only once the players trap all enemies in the cage does the exit door of
this game level chunk open.
• C14: The players should grab the chest together and move it to the designated place (red

zone) to open the exit door of this game level chunk.
• C15: Once a player reaches the top of the wall using the black ladder, the ladder breaks. The

player should then push the white ladder down to allow the other player to climb the wall.
When a player reaches the red zone, the exit door of this game level chunk opens. If the
first player that reaches the top does not push down the white ladder, the second player will
become “stuck” and not be able to exit this chunk.

Figure 3 illustrates different game level chunks from a first-person perspective. Moreover, we
provide gameplay examples of the synthesized game levels in the accompanying video. All game
levels and our implementations can be found on our project’s website and downloaded from there.

3.2 Game Level Chunk Characterization

Our characterization process begins by specifying the collaboration zones at each game level
chunk. We adopted the idea of using collaboration zones from Reuter et al. [52], who described
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Fig. 3. Example scenes of the developed game level chunks from a first-person perspective.

various patterns that enforce collaboration between players. In the current project, the collabo-
ration zones are designer-specified areas inside the game level chunks in which we expect both
players to be present simultaneously; this means that the players collaborate to accomplish each
given task. Figure 2 illustrates the collaboration zones of different game level chunks.

For example, in the case of the C6 game level chunk (Figure 2(f)), the players should push the
chest to move it to the designated position to open the exit door. The collaboration zone of this
chunk covers the path that the players should follow when pushing the chest to the designated
red zone. Thus, if both players are present in this collaboration zone and try to push the chest
together, a high degree of collaboration will characterize that game level chunk. Therefore, the
players can push the chest faster and consequently exit that game level chunk more quickly. In
this paper, we define the degree of collaboration as the time ratio for which the virtual avatars are
inside the collaboration zone of a game level chunk over the total time spent in that game level
chunk, which, in practice, can be translated as the “same problem same area,” as defined by Tang
et al. [66].

According to the literature [41, 80], the designer who created the game level chunks could have
characterized the degree of collaboration of game level chunks, or we could have recruited partic-
ipants to play each game level chunk and capture the necessary data to characterize each of them.
However, building on these approaches and adopting the ideas of Berseth et al. [6], we used AI
virtual agents to play each game level chunk. We did so because, first, the AI virtual agents could
provide more accurate data on the exact degree of collaboration required to complete each game
level chunk. Second, we aimed to explore the potential of using AI virtual agents as an alternative
method for evaluating the degree of collaboration of a game level chunk and, consequently, of a
game level. We also decided to use AI virtual agents, as several previous studies have proved that
the use of AI (virtual) agents for playtesting can provide reasonable playtesting data [19, 27, 29]. In
our pipeline, we integrated AI virtual agents that repeated the gameplay of each game level chunk
at super-speed in a headless mode. In addition, we introduced some variations in the simulation
(e.g., changing the starting position of each AI virtual agent) to capture variations in how the AI
virtual agents could play each game level chunk. Thus, although we considered that each trial of
the AI virtual agents might prove less useful than human data within a fixed budget or time, the
proposed automatic method could create more data.
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Table 1. Classification of the Game Level Chunks Based on Luaret’s Taxonomy, the Degree of

Collaboration of Each Game Level Chunk Based on the Data Obtained from the AI Virtual

Agents, the Percentage of the Collaboration Zone Over the Total Area of the Game Level Chunk,

and the Category to which Each Chunk Belongs

Chunk ID Luaret’s Taxonomy D (ci ) Collaboration Zone (%) Chunk Category

C1 N/A .21659 25.00 *
C2 N/A .21131 25.00 *
C3 N/A .21744 25.00 *
C4 N/A .32782 14.00 *
C5 Job .27382 6.25 *
C6 Comfort .51531 13.43 **
C7 Job .49580 62.50 **
C8 Comfort .52015 34.51 **
C9 Job .45949 62.50 **

C10 Job .70475 68.75 **
C11 Comfort .40382 12.50 **
C12 Job .43350 12.58 **
C13 Job .77391 56.25 ***
C14 Gate .71462 37.50 ***
C15 Gate .76937 65.63 ***

*Chunks that a Player Can Complete on their own without the Help of Another Player; **Chunks that a
Player Can Complete without the Help of Another Player—However, if Another Player Helps, the Players
Will Complete the Chunk Faster; and ***Chunks that if Players do Not Collaborate to Complete, they Will
Become “Stuck” and Will Not be Able to Exit the Chunk.

For our AI virtual agents, we first developed behavior trees (see Appendix; Figures 7–21) similar
to those developed by Shoulson et al. [61] with a set of tasks in a modular fashion that our system
could use to allow the AI virtual agents to play and exit each game level chunk successfully. Given
the behavior tree that corresponds to a given game level chunk, the AI virtual agents selected
and executed the most appropriate interaction and collaboration pattern during the runtime of
the gameplay. In the Appendix of this paper, we present the behavior trees we developed for
the different game level chunks and, consequently, for the different behaviors assigned to the
developed AI virtual agents.

To obtain the degree of collaboration of each game level chunk, we assigned a random position
to each AI virtual agent at the entrance of each game level chunk and captured the degree of
collaboration that characterized a given game level chunk. For each game level chunk, we repeated
this process 10 times by randomizing the initial position of each AI virtual agent at the beginning
of their gameplay. Then, at each game level chunk, we assigned the average degree of collaboration
of the 10 trials as the value that characterizes that particular game level chunk. As mentioned, we
denote the ratio between the time the AI virtual agents spent inside the collaboration zone of a
game level chunk to the total time spent in that game level chunk as the degree of collaboration.
Table 1 lists the obtained values characterizing the degree of collaboration of each game level
chunk.

4 PROBLEM FORMULATION AND OPTIMIZATION

Our approach synthesizes game levels with respect to the degree of collaboration and other design
decisions. We outline a detailed description of the problem formulation and optimization in the
following subsections.
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4.1 Formulation

We begin by denoting a game level (L) composed of a designer-defined number of game level
chunks (ci ) assembled in a sequential order. We represent the synthesis of the game level (L) with
a total cost function (CTotal) that encodes our game level design considerations:

CTotal (L) = w
T
CollabCCollab +w

T
PriorCPrior. (1)

Here, CCollab = [CM
Collab,C

V
Collab,C

P
Collab] is a vector of collaboration-related costs, and wCollab =

[wM
Collab,w

V
Collab,w

P
Collab] is a vector of the corresponding weights, where each weight ∈ [0, 1].

CM
Collab, CV

Collab, and CP
Collab encode the collaboration-related design decisions: the mean degree

of collaboration required to complete the synthesized game level, the variation in the degree
of collaboration, and the progress of the degree of collaboration across the game level chunks.
CPrior = [CS

Prior,C
R
Prior] is a vector of game level prior costs that encodes design decisions, such

as the size of the game level (number of game level chunks) and repetition among adjacent game
level chunks. As mentioned before, wPrior = [wS

Prior,w
R
Prior] is a vector of the corresponding weights,

where each weight ∈ [0, 1]. Based on the above formulation, we provide the game developers with
the ability to control the design decisions related to the game level by changing the target of each
cost term. In addition, we provide them with the ability to control the output synthesized game
levels by allowing them to change the priority (weight) of each cost term. This means that even if
the game level designer sets a target value for a specific cost term, if the assigned weight of that
cost term is a low value, such a design decision might not appear in the synthesized game level
due to its low priority. In contrast, if a designer assigns a high weight value to a cost term, such a
design decision would appear at the synthesized game level.

4.2 Collaboration Costs

We developed three cost terms to encode the design decisions regarding the degree of collaboration
at a game level (L). The collaboration costs include the mean degree of collaboration, variation in
the degree of collaboration, and progress in the degree of collaboration.

Mean Degree of Collaboration Cost: We define a cost term to control the mean degree of
collaboration the game players require to accomplish the game level (L). We define this cost as
follows:

CM
Collab (L) = �

�
1

|L|
∑
ci

D (ci ) − ρM
�
�

2

, (2)

where ρ
M
∈ [0, 1] is the target mean degree of collaboration, andD (ci ) is the degree of collabora-

tion of the (ci ) game level chunk. By assigning a low ρ
M

value to the above equation, our system
will synthesize a game level in which the users will expect low collaboration to finish that game
level, while by assigning a high ρ

M
target value, the system will most likely synthesize a game

level that the users will not be able to finish without collaboration. Figure 4 illustrates the game
levels synthesized by varying the value of ρ

M
.

Variation in the Degree of Collaboration Cost: We define a variation in the degree of col-
laboration cost to consider the range of the collaboration required among the selected game level
chunks, as follows:

CV
Collab (L) =

����
1

|L|
∑
ci

(
D (ci ) − D̄

)2
− ρV

����, (3)

where ρ
V
∈ [0, 1] is the target variation in the degree of collaboration, and D̄ is the mean of the

degree of collaboration of the game level chunks. By changing the ρ
V

target value, the developer
can specify the variation in the degree of collaboration at the synthesized game level. In particular,
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Fig. 4. Different game levels synthesized by our system by varying the targets of our cost terms. For all

examples, we set the weights of the collaboration-related cost terms at wM
Collab = 1.00, wV

Collab
= .30, and

wP
Collab = .50, and those of the prior cost terms atwS

Prior = 1.00 andwR
Prior = .50. The same game level chunk

can appear more than once at a synthesized level (e.g., C1, C3, and C5 in Figure 4(a)); however, due to the

adjacent repetition cost term, the system does not repeat the same chunk one after the other.

by assigning a low ρ
V

, the synthesized game level will comprise game level chunks whose degree
of collaboration is close to the mean degree of collaboration target (ρ

M
), while when the ρ

V
target

value is high, we will observe in the synthesized game level, game level chunks from the whole
spectrum of the degree of collaboration we have in our dataset.

Degree of Collaboration Progress Cost: This cost controls the progression of the degree
of collaboration along the synthesized game level. For this purpose, we allow the developer to
define a line graph (G) with a number (|L|; equal to the size of the level) of elements (дi ; each дi

corresponding to a target degree of collaboration value). This line graph is used as a reference to
synthesize a game level with a degree of collaboration across the game level chunks comprising L
and aligning with the designer-defined line graph (G) while following the designer-defined mean
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collaboration cost. We define the degree of collaboration progress cost as follows:

CP
Collab (L) =

1

|L|
∑
ci

(
N
(
D (ci )

)
− N
(
D (дi )

))2
, (4)

where дi is the target degree of collaboration for the i − th game level chunk from the pre-defined
line graph. N denotes the normalized values of the degree of collaboration, D (ci ), of the game
level chunk (ci ) of the game level (L) and the target degree of collaboration, D (дi ), of the element
(дi ) of the input line graph (G). A designer can easily control the progress of the degree of col-
laboration by choosing from a list of predefined curves and lines (we illustrate line graphs and
the corresponding game levels in Figure 5) or by defining and importing a new progression line
graph (G). Based on this functionality, the game level designer can specify the targets of the mean
degree of collaboration (ρ

M
) and variance of the degree of collaboration (ρ

V
). Then, the line graph

specifies the progression of the game level chunks across the systemized game level. This function-
ality provides the game level designer with additional control over the synthesis process of a game
level.

4.3 Prior Costs

We define the prior cost terms to encode specific game level design decisions. Among other vari-
ables, we choose the size (number of game level chunks) that constitutes a game level and the
repetition of adjacent game level chunks.

Size Cost: We define a level size cost for constraining the number of game level chunks that
compose a game level, as follows:

CS
Prior (L) = 1 − exp �

�
− 1

2σ 2
S

(
|L| − ρS

)2�
�
, (5)

where ρ
S

is the designer-defined number of game level chunks, and σS controls the spread of the
Gaussian penalty function, which is empirically set as σS = 1.00.

Adjacent Repetition Cost: We also define a cost to penalize the repartition of similar game
level chunks, therefore eliminating the synthesis of monotonic game levels in which similar game
level chunks are placed next to one another. We represent the adjacent repetition cost as follows:

CR
Prior (L) =

1

|L| − 1

∑
ci ,ci+1

Γ(ci , ci+1), (6)

where ci and ci+1 are adjacent game level chunks in L, and Γ(ci , ci+1) returns a high value if ci and
ci+1 are identical and a low value otherwise, under following the condition:

Γ(ci , ci+1) =
⎧⎪⎨⎪⎩

1 if (ci ≡ ci+1)

0 otherwise
.

In conclusion, game developers can consider various other prior costs depending on the game’s
objectives and design decisions.

4.4 Optimization

Given the game level designer-defined decisions, our system optimizes the total cost function by
applying a Markov-chain Monte Carlo (MCMC) [30] method, known as “simulated annealing,”
with a Metropolis-Hastings [13] state-searching step. Given that any number of game level chunks
can synthesize a game level, a trans-dimensional solution space encodes all possible design out-
comes of a game level. Thus, to successfully sample the solution spaces of game levels assembled
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Fig. 5. Example game levels (ρ
S
= 9) using different degrees of collaboration progress line graphs while

maintaining the mean degree of collaboration target constant. For all examples, we use ρ
M
= .50 and ρ

V
=

.50 as the targets.

by several game level chunks, we use the reversible-jump [21] variation in the MCMC technique.
For our optimization process, we start by defining a Boltzmann-like objective function:

f (L) = exp �
�
− 1

t
CTotal (L)�

�
, (7)

where t encodes the temperature parameter of simulated annealing. Given the current game level
(L) during the optimization process, the optimizer proposes a change to that game level, creating a
proposed game level (L′). In particular, to obtain the proposed game level (L′), our system updates
the current game level (L) by choosing one of the following moves:
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• Add a Game Level Chunk: When this move is selected, the system randomly selects a
game level chunk from our game level chunk set and places it in a randomly chosen location
within the game level.
• Remove a Game Level Chunk: In this move, the system randomly selects a game level

chunk from the current layout (L) and removes it.
• Replace a Game Level Chunk: In this move, from the current game level, the system ran-

domly selects a game level chunk from the current layout (L) and replaces it with a randomly
selected game level chunk from our game level chunk set.

In our method, we set the probabilities of “add a game level chunk” as padd = .40, “remove
a game level chunk” as premove = .20, and “replace a game level chunk” as preplace = .40. This

approach selects the “add a game level chunk” and “replace a game level chunk” moves with higher
probability.

The optimizer accepts a proposed game level configuration (L′) by comparing its total cost value,
CTotal (L

′), with the total cost value,CTotal (L), of the current layout (L). To ensure a detailed balanced
condition in trans-dimensional optimization, the optimizer accepts a proposed layout (L′) based
on the acceptance probabilities for the “add a game level chunk,” “remove a game level chunk,”
and “replace a game level chunk” moves. We define the probability of the “add a game level chunk”
move as:

padd (L′|L) = min �
�
1,
premove

padd

U − |L|
|L′ |

f (L′)

f (L)
�
�
; (8)

the probability for the “remove a game level chunk” move as:

premove (L′|L) = min �
�
1,

padd

premove

|L|
U − |L′ |

f (L′)

f (L)
�
�
; (9)

and the probability for the “replace a game level chunk” move as:

preplace (L′|L) = min �
�
1,

f (L′)

f (L)
�
�
. (10)

The acceptance probabilities during the optimization process consider the variable U , which
denotes the upper limit of the number of game level chunks. For formulation simplicity, we assume
that each game level chunk (ci ) can only be selected (Ui ) times rather than an infinite number
of times. Thus, our system synthesizes a level of up to U =

∑
i Ui game level chunks. In our

implementation, we set U = 20 for all game level chunks.
We implement simulated annealing to effectively explore the solution space. Regarding the tem-

perature parameter (t ) of the optimizer, at the beginning of the optimization, we set t to a high
value such that the optimizer aggressively explores the whole solution space, decreasing gradually
until reaching a value near zero. We initialize the temperature as t = 1.00 at the beginning of the
optimization and multiply it by t∗ = .998 after each iteration. The optimizer becomes “greedier”
when refining the optimal solution as the iteration evolves. The optimization terminates when the
change in CTotal (L) is less than 2.5% over the last 50 iterations.

Unless we specify otherwise, for all collaboration-related cost terms presented in this paper, we
set the weights at wM

Collab = 1.00, wV
Collab = .30, and wP

Collab = .50. For the prior cost terms, we set
the weights at wS

Prior = 1.00 and wR
Prior = .50. We assign a high weight value to wM

Collab as we want
the optimizer to prioritize the corresponding cost term and synthesize a game level whose mean
degree of collaboration is as close as possible to the designer-specified target value ρ

M
. In addition,

we assign a high value to wS
Prior as we want our system to synthesize a game level whose size is
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the requested one. If, for example, we assign a lower value to wS
Prior, our system might compose a

game level with either less or more game level chunks since the system would have first tried to
fulfill the design decisions having higher weight values and, consequently, higher priorities than
those with lower weight values. Finally, we assign low and medium values to wV

Collab, wP
Collab, and

wR
Prior as such design decisions should not be prioritized by the optimizer. The designer can also

control the priority of each design goal at a given game level by changing these weights. Figure 4
illustrates the examples of the synthesized game levels with different targets for the collaboration
cost terms. Figure 5 shows the game levels synthesized using various degrees of collaboration
progress line graphs while keeping the mean degree of collaboration target and variation in the
degree of collaboration constant.

5 USER STUDY

In this study, we explored whether our developed method can synthesize game levels with dif-
ferent targeted degrees of collaboration, thereby impacting the participants’ gameplay behavior.
Moreover, we attempted to evaluate whether the AI virtual agents can characterize the degree of
collaboration in the game level chunks. We provide more details about the study and our results
in the following sections.

5.1 Participants

We conducted an a priori power analysis [15] to determine the sample size for our study, using the
G*Power version 3.10 software [23]. The calculation was based on one group with three repeated
measures, 90% power, medium-to-large effect size of f = .35 [22], non-sphericity correction ϵ =
.70, correlation among repeated measures of r = .50, and α = .05. The analysis resulted in a
recommended sample size of 25 groups of participants (for clarification, each group was composed
of two students).

We recruited the participants through e-mails sent to our department’s undergraduate and grad-
uate students. As we conducted this study to explore the collaborative behavior of our participants
during gameplay, they were scheduled to attend the sessions in groups of two. In total, 50 students
participated in our study (25 groups of students). The age range of our participants was 18–29
years (age: M = 19.28, SD = 1.79). All participants had previously experienced virtual reality, and
all of them played video games regularly. The participants in each group were randomly assigned
to minimize the chances that the groups were composed of students who knew each other. The
research team also asked a designated question before the beginning of the study. Our results in-
dicated that no group was composed of students who had played games together in the past. We
did not provide monetary compensation to our participants for their participation; however, we
provided snacks and water to them throughout the study session to compensate them for their
time and effort.

5.2 Setup and Implementation Details

This study was conducted in a laboratory in our department. We used the Unity game engine
version 2019.4.12 to develop our application and ran the application on two (one computer per
participant) Dell Alienware Aurora R7 desktop computers (Intel Core i7, NVIDIA GeForce RTX
2080, 32GB RAM). The optimization of the game level with ρ

S
= 10 game level chunks did not

exceed five seconds. We used Oculus Quest and its Unity SDKs (Oculus Integration). Finally, we
used the Photon Unity Networking21 asset to enable the networking functionality between the two
computers and, consequently, to allow the participants to collaborate in a shared virtual space.

21https://www.photonengine.com/pun.
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5.3 Experimental Conditions

We developed three experimental conditions (game levels) to determine whether optimizing the
game levels with different targeted degrees of collaboration would impact the collaboration game-
play behavior of our participants. We followed a within-group study design, which meant that all
participant groups played the three developed game levels. To balance the conditions across the
participant groups and minimize the carryover effect of gameplay knowledge across game levels
with different degrees of collaboration targets, we used the Latin squares [36] ordering method.
We used ρ

S
= 10 as the target size of the game levels for all three conditions. The conditions were

as follows:

• Low Collaboration (LC): We requested that our system create an LC game level expecting
that our participants could finish it with minimal to no collaboration necessary. We set the
target value of the degree of collaboration cost term at ρ

M
= .30. Under this condition, we

expected the synthesized game level to be composed mainly of the game level chunks that
require low to medium degree of collaboration activity (C1-C12).
• Medium Collaboration (MC): Under this condition, we requested that our system synthe-

size a game level in which our participants would moderately collaborate to finish it. This
meant that if the participants collaborated on some parts of the game level, they would com-
plete the game faster. We set ρ

M
= .50. Under this condition, we expected the synthesized

game level to be composed of game level chunks from the whole spectrum of the degree of
collaboration (C1-C15).
• High Collaboration (HC): Under the last condition, we requested our system to synthesize

a game level in which the participants should collaborate even more to finish the level. We set
ρ

M
= .70. In HC, it is highly likely that if the participants do not collaborate, they will not be

able to finish the game. Under this condition, we expected the synthesized game level to be
composed of game level chunks that require medium to high collaboration activity (C6-C15).

We did not change the weights assigned to collaboration and prior costs across the experimental
conditions. However, we set a different target value to the mean degree of collaboration cost term;
therefore, we requested our method to synthesize a game level with a certain goal (i.e., a different
degree of collaboration target). Additionally, for the degree of collaboration progress term, we
used a Gaussian-like line graph as a reference (similar to Figure 5(b)). This meant that the system
should synthesize the game level for which at the start and end of a level, we would be able to
observe game level chunks of low degree of collaboration. In contrast, we would observe game
level chunks of a higher degree of collaboration in the middle of the game level. We synthesized
our game levels in such a way for three reasons. First, we did not want to synthesize monotonic
game levels with a near-equal degree of collaboration across the game level chunks. Second, we
wanted to synthesize game levels that included game level chunks of low and medium degree of
collaboration activity, similar to most commercial games (i.e., most games have designated areas
at each game level that require more collaboration than other areas at the same level). Third,
during a preliminary study, we realized that when we placed higher collaboration game level
chunks toward the end of the synthesized game level, the participants tended to collaborage
more than they had previously collaborated in the game. This indicated that the participants’
collaborative gameplay experiences at the end of game levels tended to override those at the
beginning of the same game levels. Figure 6 shows the three synthesized game levels we used in
our study. The LC game level (Figure 6(a)) indicated that such a game level is mainly composed
of low collaboration activity game level chunks, the MC game level (Figure 6(b)) is primarily
formed by medium collaboration activity game level chunks, and the HC game level (Figure 6(c))
is mainly composed of medium and high collaboration activity game level chunks.
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Fig. 6. Three different synthesized game levels used in our study. From top to bottom: (a) low degree of

collaboration, (b) medium degree of collaboration, and (c) high degree of collaboration.

5.4 Measurements

For our study, we collected both objective and subjective data. We collected the degree of

collaboration regarding objective data mainly to understand how the three different conditions
impacted the two participants when playing at the synthesized game levels. However, we also
performed several other in-game measurements to evaluate the potential use of AI virtual agents
as a method for assessing the degree of collaboration at the game level. In particular, we collected
the following data:

• Degree of Collaboration: The ratio of time for which the virtual avatars were inside the
collaboration zone to the total time spent at the game level.
• Player Distance: The average distance between two virtual avatars during gameplay.
• Travel Distance: The average length of the trajectory that the two virtual avatars traveled

in the game.
• Completion Time: The total time players spent finishing the game (the timer stopped when

the second player finished the game).
• Collaboration Time: The total time for which the virtual avatars were inside the defined

collaboration zones.
• Close Proximity Time: The total time for which the two virtual avatars were in close

proximity to each other (inside one another’s personal space).

In addition to the objective data, we collected subjective data based on a scale we developed.
Inspired by Thomson et al.’s [67] empirically validated theory of collaboration, we created a per-

ceived collaboration scale comprising six items (Table 2) to capture how the participants per-
ceived the degrees of collaboration at the synthesized game levels. We collected the responses
from our participants using a seven-point Likert scale, where 1 = “not at all” and 7 = “totally.”

5.5 Procedure

After scheduling a date and time with the research team, the participants arrived at the laboratory
in our department. Upon arrival, the researchers provided the participants with informed consent
forms approved by the university’s Institutional Review Board. The participants were required to
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Table 2. Perceived Collaboration Scale Used in This Study

Label Statement

Q1 During the gameplay, I felt I belonged to the group.
Q2 During the gameplay, I felt I helped the group.
Q3 During the gameplay, I felt I helped my partner.
Q4 During the gameplay, I felt my partner was helping me.
Q5 During the gameplay, a collaborative atmosphere was created.
Q6 During the gameplay, I collaborated with my partner to finish the game.

sign up for inclusion in the study. Next, the research team instructed the participants to provide
their demographic information by filling out the questionnaire. Once both participants from each
group were in the laboratory, the research team helped them with the virtual reality equipment.

The research team was responsible for starting the game using the desktop computer. The re-
search team instructed the participants to play a game composed of different game level chunks.
Before the game started, we provided a short tutorial to all participants to familiarize them with the
controllers. A previous study showed that such tutorials can improve participants’ performance
and player experience [35]. When the research team clicked the play button in Unity, the partici-
pants first saw the game level. Both participants were in the same shared real environment (our
laboratory space) and virtual space (Figure 1). Once the game began, the research team instructed
the participants to play the synthesized game level, with the goal of finishing the game level. The
research team did not provide further information to the participants about the game and gameplay.
They also did not tell the participants whether they would need to collaborate with their partner
during gameplay. They were left to explore on their own whether such collaboration would be
necessary. The research team informed the participants that an on-screen indicator would notify
them when they finished the game level.

The researchers were responsible for setting up each subsequent game level. After the end of
each game level (see Figure 6 for the LC, MC, and HC game levels), the participants were instructed
to self-report their perceived collaboration (Table 2) through Qualtrics, which is a web-based sur-
vey tool provided by our university. We allowed the participants to take a short break between
the experimental conditions. No participant group spent more than 60 min completing the study.
We also told the participants that they could quit the study at any time; however, no team quit the
study.

5.6 Results

We used a one-way repeated measures analysis of variance to explore potential differences across
the examined conditions. We evaluated the normality of the collected data using Shapiro-Wilk
tests to the 5% level and the residuals’ graphic Q-Q plots. The Shapiro-Wilk tests and Q-Q plots
indicated that our data were normal. Moreover, we screened the internal validity of the perceived
collaboration scale using Cronbach’s alpha coefficient. With sufficient scores (α = .81 for the
LC game level, α = .89 for the MC game level, and α = .77 for the HC game level), we used a
cumulative score for the six items. The removal of items would not have enhanced these reliability
measures. We used ap-value of < .05 to denote statistical significance. Finally, we used Bonferroni-
corrected estimates for our post-hoc comparisons.

5.6.1 In-game Measurements. Table 3 shows the descriptive statistics for the in-game measure-
ments. The analysis of the player distance data did not reveal any significant results (Λ = .770,
F [2, 23] = 3.442, p = .526, η2

p = .019). Similarly, the close proximity time measurement data did

ACM Transactions on Interactive Intelligent Systems, Vol. 13, No. 1, Article 2. Publication date: February 2023.



Synthesizing Game Levels for Collaborative Gameplay 2:21

Table 3. Descriptive Statistics of the In-game Measurements Across the

Three Experimental Conditions (LC: Low Collaboration, MC: Medium

Collaboration, and HC: High Collaboration), and the Obtained Results

Condition M SD Min Max Results

Degree of Collaboration

LC .17 .06 .05 .39 LC<MC (p = .001)
MC .40 .03 .32 .47 MC<HC (p = .001)
HC .45 .04 .38 .55 LC<HC (p = .0001)

Player Distance (in cm)

LC 111.21 67.54 55.87 384.46 no significant result
MC 102.11 16.73 75.04 140.92
HC 111.45 12.75 79.93 133.96

Travel Distance (in cm)

LC 642.69 36.90 585.54 770.46 LC<MC (p = .001)
MC 717.40 58.20 638.04 832.21 MC<HC (p = .007)
HC 799.19 93.41 611.40 969.68 LC<HC (p = .0001)

Completion Time (in sec)

LC 110.73 16.54 85.34 143.86 LC<MC (p = .001)
MC 146.15 24.61 90.46 191.09 MC<HC (p = .002)
HC 178.91 31.70 112.67 236.13 LC<HC (p = .001)

Collaboration Time (in sec)

LC 22.72 5.86 11.40 35.64 LC<MC (p = .001)
MC 59.16 9.28 41.24 77.64 MC<HC (p = .001)
HC 84.97 17.81 58.77 140.89 LC<HC (p = .001)

Close Proximity Time (in sec)

LC 4.30 4.11 .29 15.14 no significant result
MC 3.53 1.61 .41 8.22
HC 4.30 1.45 .94 6.93

not reveal any statistically significant differences (Λ = .762, F [2, 23] = 3.589, p = .349, η2
p = .039)

across the examined conditions.
The analysis of the degree of collaboration measurement revealed significant differences

across the examined conditions (Λ = .065, F [2, 23] = 166.730, p = .0001, η2
p = .935). The results

of post-hoc analysis revealed that the degree of collaboration during the LC condition (M = .17,
SD = .06) was significantly lower than that during the MC condition (M = .40, SD = .03), at
p = .001, and the HC condition (M = .45, SD = .04), at p = .0001. Moreover, the degree of col-
laboration during the MC condition was significantly lower than that during the HC condition, at
p = .001.

We identified significant results for the travel distance measurement (Λ = .095, F [2, 23] =
109.548, p = .0001, η2

p = .905). The results of the post-hoc analysis revealed that the participants in
the LC condition (M = 642.69, SD = 36.90) traveled less than that in the MC condition (M = 717.40,
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Table 4. Descriptive Statistics of the Perceived Collaboration

Ratings Across the Three Experimental Conditions

(LC: Low Collaboration, MC: Medium Collaboration,

and HC: High Collaboration) and the Obtained Results

Condition M SD Min Max Results

Perceived Collaboration

LC 4.93 1.80 1.17 7.00 LC < MC (p = .001)
MC 6.31 .91 3.34 7.00 LC < HC (p = .001)
HC 6.54 .72 4.00 7.00

SD = 58.20), at p = .001, and the HC condition (M = 799.19, SD = 93.41), at p = .0001. Moreover,
the participants in the MC condition traveled less than they did in the HC condition, at p = .007.

The completion time measurement was also statistically significant [Λ = .091, F (2, 23) =
115.385, p = .0001, η2

p = .909]. The results of the post-hoc analysis revealed that the participants
in the LC condition (M = 110.73, SD = 16.54) spent less time finishing the game than that in
the MC condition (M = 146.15, SD = 24.61), at p = .001, and the HC condition (M = 178.91,
SD = 31.70), at p = .001. Moreover, the time that the participants spent finishing the MC condition
was significantly lower than that in the HC condition, at p = .002.

Finally, the collaboration time measurement was also statistically significant [Λ = .048,
F (2, 23) = 229.117, p = .0001, η2

p = .952]. The results of the post-hoc analysis revealed that the
participants in the LC condition (M = 22.72, SD = 5.86) spent less time inside the collaboration
zone than that during the MC condition (M = 59.16, SD = 9.28), at p = .001, and the HC condition
(M = 84.97, SD = 17.81), at p = .001. Moreover, the participants in the MC condition spent less
time inside the collaboration zones compared to that in the HC condition, at p = .001.

5.6.2 Subjective Ratings. The perceived collaboration was also statistically significant across
the examined conditions [Λ = .469, F (2, 48) = 27.145, p = .0001, η2

p = .231]. The results of the
post-hoc analysis revealed that the participants rated the LC condition (M = 4.93, SD = 1.80)
lower than the MC condition (M = 6.31, SD = .91), at p = .001, and the HC condition (M = 6.54,
SD = .72), at p = .001. However, no statistically significant result was found between the MC and
HC conditions (p = .102). Table 4 shows the descriptive statistics for the perceived collaborations.

5.6.3 Participant-Agent Correlation. We also explored how the participants collaborated during
the gameplay compared to the AI virtual agents used to characterize the degree of collaboration of
the developed game level chunk. For this part of the study, we isolated the per-game level chunk
data collected from our participants. For the Pearson product-moment correlation analyses, we
used the data obtained from the AI virtual agents for each game level chunk and the averages
obtained from the participants for each given game level chunk for all (15) game level chunks.
Table 5 summarizes the raw numerical values used to compare the results obtained with the AI
virtual agents and those obtained from our participants.

The results of our analyses revealed a moderate positive correlation for the degree of

collaboration variables (AI virtual agents and participants; r = .604,n = 15,p = .004), a moderate
positive correlation for the player distance variables (r = .613, n = 15, p = .012), a strong posi-
tive correlation for the travel distance variables (r = .811, n = 15, p = .0001), a strong positive
correlation for the completion time variables (r = .896, n = 15, p = .0001), and a strong positive
correlation for the collaboration time variables (r = .835, n = 15, p = .0001). No significant
correlation was observed for the close proximity time variables (r = −.033, n = 15, p = .902).
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Table 5. Raw Numerical Values Used to Compare the Results Obtained with AI Virtual Agents (AI) and

Those Obtained from Our Participants (P)

Degree of
Collaboration

Player Distance Travel Distance Completion Time Collaboration Time
Close Proximity

Time

Chunk ID P AI P AI P AI P AI P AI P AI

C1 .02168 .21659 11.53515 3.84015 41.84316 37.36840 5.86087 10.05723 .00000 1.05340 .02168 .03501
C2 .07466 .21131 8.18353 5.13270 95.31888 109.64185 15.44542 31.55432 2.50024 5.65169 .07239 .00461
C3 .29778 .21744 12.42533 .58894 41.68053 40.08104 5.68682 10.00639 1.56606 2.25398 .02089 .08487
C4 .24246 .32782 9.58411 5.49595 46.83138 43.56703 7.31520 11.35065 1.78127 4.44627 .03168 .07620
C5 .30332 .27382 10.32784 2.27646 48.70996 36.08767 8.45367 9.45878 2.52987 2.78206 .03438 .04000
C6 .59434 .51531 4.60391 .62813 53.81859 40.15609 14.56040 10.04309 8.43210 5.45890 .02910 .06998
C7 .52461 .49580 11.64476 1.94619 54.15456 43.55383 10.66392 11.60944 5.55907 6.67865 .04141 .06698
C8 .69114 .52015 12.45848 12.33019 89.22649 81.91881 16.36952 26.34777 11.36309 12.64062 .03146 .00431
C9 .63797 .45949 9.62962 3.21142 68.36594 45.38921 14.48255 15.63601 9.25626 7.16166 .04872 .01937
C10 .65318 .70475 17.79996 14.54406 208.75490 106.59528 44.00969 77.62875 28.12076 46.55848 .05104 .04315
C11 .12335 .40382 11.88042 14.28864 82.99025 93.58184 21.11941 29.03274 2.56256 9.43818 .05524 .00000
C12 .09761 .43350 8.61864 10.38947 65.35683 68.06172 13.91274 25.77981 1.15355 8.10278 .03064 .01729
C13 .13913 .77391 16.44345 12.89808 93.89479 67.26303 26.08352 25.73684 3.65488 13.28221 .02949 .01305
C14 .78093 .71462 11.23880 12.58725 66.39209 41.04868 19.88709 10.83099 15.90273 5.63966 .02114 .00474
C15 .78348 .76937 12.34321 4.75234 68.78322 66.57927 15.00534 17.69756 11.71757 16.40833 .01260 .00399

5.7 Discussion

We collected both objective data related to how the participants interacted in the synthesized game
levels and subjective self-reported ratings to understand whether we could use our method to syn-
thesize game levels that enforce a different collaboration gameplay behavior for our participants.
The first glance at our results indicated that, although we used the degree of collaboration as the
most important cost term of our total cost function (the assigned weight for the mean degree of
collaboration cost was wM

Collab = 1.00, while most other costs had weights < 1.00), four (degree

of collaboration, travel distance, completion time, and collaboration time) out of the six
measurements revealed a similar pattern: the measurements under the LC condition were lower
than those under the MC and HC conditions, and the measurements under the MC condition were
lower than those under the HC condition. Based on these findings, we argue that an optimization-
based method can synthesize game levels that impact the collaboration gameplay behavior of our
participants.

In terms of the degree of collaboration measurement, we observed an offset between the
requested degree of collaboration targets (ρ

M
= .30 for the LC, ρ

M
= .50 for the MC, and ρ

M
= .70

for the HC condition) and the actual collected data (.17 for the LC, .40 for the MC, and .45 for the
HC condition) from our participants. The mean degree of collaboration of our participants was
closer to the target degree of collaboration under the MC (.10 offset) and LC (.13 offset) conditions
compared to the HC (.25 offset) condition. According to the literature [37, 41, 48], such an offset
exists between the requested and actual values. In our method, the initial characterizations of the
game level chunks from AI virtual agents were the main cause of such differences. We scripted the
AI virtual agents to complete the task as efficiently as possible without being influenced by other
parameters that might have impacted the participants (e.g., time of day, mood, and prior virtual
reality and gameplay experiences). In addition, the participant groups were randomly composed,
which meant that each participant also had to quickly understand the gameplay behavior of their
partner during the study and build their gameplay strategy based upon that. Therefore, the main
cause of the mentioned offsets could be the optimality of the AI virtual agents to execute and solve
the given tasks.

Two of the examined measurements (player distance and close proximity time) were not sig-
nificant. These findings indicate that the participants did not try to be in close proximity of each
other; instead, each participant tried to build their own strategy during the gameplay. By combin-
ing both the significant and non-significant results, we realized that although the participants were
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planning their gameplay strategy independently, they planned it in such a way that would benefit
the team and not only themselves, which is a typical behavior found in games [3, 18, 78]. Our
findings indicated that our participants collaborated to progress the game by building their own
strategies; therefore, a collaborative culture was maintained and built between the participants
who worked together toward finishing the game.

Although we noted the offset between the requested degree of collaboration and the actual col-
lected data, the correlation findings were also notable; they showed that the participants could
perform their tasks in parallel with the AI virtual agents. According to the literature, AI virtual
agents can be used to evaluate the difficulty of game levels [7, 54, 76, 85]. Our study extends such
knowledge by revealing that AI virtual agents can also be used to evaluate the degree of collabora-
tion that characterizes a game level; therefore, it extends the potential usage of AI virtual agents for
evaluating not only the difficulty of a game level (as in [28, 55]) but also the degree of collaboration
of game levels. However, as mentioned above, when game developers use AI virtual agents, they
should always consider that such a method will return the optimal collaborative gameplay behav-
ior and not the actual gameplay collaborative behavior that external or non-predefined parameters
might influence.

Regarding the self-reported perceived collaboration, our participants perceived LC and HC
as expected; however, they rated MC closer to HC. This result implies that the participants could
not differentiate among the three conditions; however, the performed in-game measurements did
not support this assumption. Either the targets for the degree of collaboration assigned to the
mean degree of collaboration cost term were too close, or after a certain degree of collaboration,
it was difficult for our participants to subjectively distinguish the degree of collaboration between
the game levels (MC and HC conditions in our case). Another potential explanation for this find-
ing could be how our participants interpreted each game level’s “mean” collaboration target and
how they reflected such interpretation on their understanding of the provided questions and their
responses. For example, the participants might have thought more in terms of “max” degrees of
collaboration for a given game level instead of the “mean” degree of that game level. Thus, instead
of interpreting how much they collaborated by averaging their collaborative behavior across a
whole level, they might have interpreted how much they collaborated in the game level chunk
where they had to collaborate the most. According to the literature, individual cognitive styles
impact collaborative gameplay [2, 85]. Moreover, by considering that increased self-esteem [83],
self-efficacy [14], and self-motivation [25] can affect the perceived performance [11, 24] of par-
ticipants, we should conduct further experimentation to properly understand and interpret how
participants perceive different degrees of collaboration during gameplay.

Another cause that could have limited the results is that our method may not have linearly
mapped spatial collaboration with the perceived collaboration of our participants. This could have
been the case for two reasons. First, a spatial approach for defining collaboration between two en-
tities could be considered somewhat limited, or its applicability could be restricted to only a small
number of collaborative tasks. According to the Tang et al. [75] styles of coupling, it is obvious
that people can be in the same area and work on different problems (the “different problems” style
of coupling); therefore, a spatial measurement would not necessarily describe the collaboration
between people. Second, another potential explanation is participants’ potential overestimation
of their relative contributions to collaborative endeavors [56], which means that capturing the
perceived collaboration through self-reported data could also limit our understanding of how par-
ticipants perceived their collaboration.

Furthermore, we collected comments from our participants to better understand their gam-
ing experience regarding the three examined game levels (LC, MC, and HC game levels). Most
participants indicated that they considerably enjoyed the collaborative experience in the gaming
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environment, and many said that they liked the game they played. One participant wrote, “This

was a great experience and a really enjoyable game. I definitely felt the collaborative atmosphere

and felt that we worked well together.” Another commented, “I think that the easier the level, the

less the players are inclined to collaborate with each other.” One other participant wrote, “The more

complex puzzles made it much more necessary to interact with the other participant and made fin-

ishing them a lot more satisfying.” Thus, according to the collected comments, the participants not
only enjoyed the developed game levels but also understood that they had to build collaborative
gameplay behavior with their partners.

Additionally, some participants noted the importance of communication in facilitating their col-
laboration. In particular, one wrote, “I feel like my partner and I were always communicating about

what we needed and were able to work well together.” Another elaborated, “During the simulation,

my partner and I were able to communicate and collaborate to reach our end goal, which was to fin-

ish all the levels. We were able to develop plans to finish the levels successfully and within a decent

amount of time. We were also able to finish the levels correctly.” Note that, although we did not ask
the participants to communicate during the gameplay, we observed that they were communicat-
ing. Based on our observations, as the target degree of collaboration of the game level increased,
the communication between the participants also increased. This finding aligns with those of the
previous studies conducted in the field [10, 12, 50, 77] that explored and analyzed the collaboration
behavior of the participants during gameplay.

6 LIMITATIONS

Synthesizing game levels for collaborative gameplay is a complex process that requires numerous
components to work harmoniously. Although the proposed pipeline can synthesize game levels for
collaborative gameplay, we should also report the limitations. Note that these limitations do not
invalidate our pipeline toward developing an automatic method for synthesizing game levels that
satisfy the degrees of collaboration targets and other design decisions. Instead, they can help future
research toward further advancement of the design of game levels for collaborative gameplay.

In this project, we demonstrated a simple approach to synthesize a game level, which we charac-
terized as highly structured and linear. We think that conducting additional experiments in which
we distribute collaboration-related tasks in an open-space virtual environment or form a non-
linear method (e.g., similar to the work of Ma et al. [42]) of synthesizing game levels (e.g., having
a game level chunk that may offer two branches to get through to a common destination) would
help us further understand the collaborative gameplay behavior of the participants. In addition, we
considered only two players collaborating to finish the game. However, in multiplayer games, we
often find more than two players collaborating; therefore, it is unclear how an increased number
of players can affect our results.

The developed game level chunks that we used in our project impacted our project. In partic-
ular, the developed game level chunks were context-dependent and, thus, highly reliant on the
designer’s decisions. Given that game level and gameplay designers can use different approaches
to enforce collaboration, it would be useful to develop guidelines to help researchers and develop-
ers more easily develop collaborative tasks for games. Furthermore, it remains unclear how our
results would be affected when we use a larger number of game level chunks to compose a game
level; this is something that we should certainly explore. Finally, you might have noticed, espe-
cially in Figure 5, that some chunks (e.g., C15 in Figure 5(f)) were repeated twice toward the end of
the chunk sequence, but the line graph was strictly increasing. We think that developing a dataset
with more than 15 game level chunks can introduce more variations in the degree of collaboration
of the game level chunks so that our method can more closely match the targets requested by the
game designer.
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Many collaborative games (such as Portal 22) and soccer games (such as FIFA22) require players
to position themselves strategically across a sizable area rather than in close proximity, and other
types of collaborations do not depend on any spatial relationship at all (similar to collaborations
that occur in Keep Talking and Nobody Explodes5). Our method addresses only one particular aspect
of player collaboration—a collaboration that requires physical proximity and task completion by
two players—which we consider a limitation, given the potential variety of collaborative gameplay
that game designers can develop.

In addition, we developed behavior trees to force our AI virtual agents to collaborate to finish
each designed game level chunk to characterize the degree of collaboration of each game level
chunk. The developed behavior trees were considered highly structured and did not allow the
AI agents to explore potential alternatives. Moreover, the behavior trees did not contain actions
such as “do nothing” or “do something not related to the given game level chunk.” Such additional
behaviors can help introduce even more variations in our trials during the automatic annotation
process; however, it can also make the simulation run longer and might not capture the optimal
collaborative behavior required to finish each game level chunk. In addition, instead of manually
defining the collaboration zones, we can predict them using AI virtual agents; this is an additional
direction we should further explore. Moreover, asking a few people playing the game level chunks
can provide additional data that we can use besides the data provided by the AI virtual agents to
augment the annotation of each game level chunk, thus complementing the automatic annotation
pipelines. The abovementioned approach can lead to generalized and improved methods for char-
acterizing the degree of collaboration at any game level. All these limitations should be further
explored in future studies.

It will be interesting to collect data on the collaboration “in the real world,” such as chatting.
In our study, the participants were co-located in the same room; thus, collecting the data on the
time they spent discussing their strategy could have provided additional measurements to eval-
uate their collaborative behavior. Moreover, we should have collected measurements to capture
the interactions that each player contributed to finishing the provided game level, such as each
player’s actions toward task completion (e.g., button clicks and gestures). Finally, including addi-
tional questionnaires, such as a questionnaire on presence [63] and questions related to mutual
awareness and dependent actions [9], could have helped us to understand the overall experiences
of our participants.

Lastly, our current study does not encompass real-world collaboration or how virtual reality
collaboration could be translated into real-world collaboration, which we consider an additional
limitation. However, we think that such a method could be used for automatically synthesizing
serious games, such as virtual reality skill training applications (e.g., fire evacuation training) [79],
which benefit skills acquisition and retention [62]. In such a case, trainees could experience varia-
tions in training scenarios with different degrees of collaboration, which could potentially benefit
their real-world collaboration.

7 CONCLUSIONS AND FUTURE WORK

We developed a method that considers the degree of collaboration the players are exposed to when
playing a game. Our method provides game developers with the freedom to control various param-
eters of cost terms, allowing them to design game levels with specified objectives. To understand
the potential of our method to synthesize game levels with different degrees of collaboration objec-
tives, we conducted a user study and collected both in-game measurements and subjective ratings.

22https://en.wikipedia.org/wiki/FIFA_(video_game_series).
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We found that the degree of collaboration targets of the synthesized game level of our method
impacted the way the participants collaborated in the gaming application.

In the future, we will work to synthesize collaboration-aware game levels for multiple play-
ers. We would also like to extend and evaluate our method to analyze less structured game levels.
Moreover, we wish to explore the potential of using collaboration-aware games as a training tool
to improve the collaborative behavior required by game players when playing games of various
genres. Given that defining gameplay collaboration is an under-explored domain and that collabo-
ration is task- and objective-dependent, we should conduct additional research toward developing
a more generalized method for controlling the degree of collaboration required for different game
levels and game genres. Finally, to further understand the collaborative gameplay behavior of the
participants, we will conduct additional studies to compare collaboration behaviors in which peo-
ple perform tasks such as those presented in this paper while being co-located in the same room
with instructions to communicate and those not to communicate and being in separate rooms with
chat functionality enabled. Such study conditions would help us further understand how the play-
ers perform the various tasks encoded in the game level chunks and how they communicate to
coordinate in such tasks.

APPENDIX

A THE BEHAVIOR TREES

In this section, we present the developed behavior trees, which summarize the major events used
in our game level chunks. Behavior trees describe switchings between a finite set of tasks in a
modular fashion and control the execution flow of the tasks. Events can invoke other events during
their execution. Please refer to previously published work on behavior trees [16, 26, 60] for a
detailed description of the implementation process. Here, we provide a brief description of the
main components of the behavior trees:

• Composite: A composite node is a node that can have one or more children. Such a node
processes one or more of these children in either a first to last sequence or random order
depending on the particular composite node in question. In addition, at some stage, it con-
siders their processing complete and passes either success or failure to the parent, which is
often determined by the success or failure of the child nodes. During the time a composite
node is processing children, it continues to return “Running” to the parent.
• Decorator (or Decor): A decorator node, like a composite node, can have a child node.

Unlike a composite node, a decorator node can only have a single child. The decorator node’s
function is either to transform the result it received from its child node’s status to terminate
the child, or to repeat processing of the child, depending on the type of decorator node.
• Leaf: Leafs are the most powerful node type, as they are defined and implemented to com-

mand the game-specific actions. An example of this, as used in the behavior trees imple-
mented in this project, is “Go to the target.” A “Go to the target” leaf node makes the AI
virtual agent walk to a specific position in the game level chunk and return success or fail-
ure, depending on the result. Because we can define what leaf nodes are, they can be very
expressive when layered on top of composite and decor nodes and allow the developer to
make powerful behavior trees capable of quite complicated layered and intelligently priori-
tized behaviors.
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Fig. 7. Behavior tree for the C1 game level chunk (Nodes: 2; Depth: 1).

Fig. 8. Behavior tree for the C2 game level chunk (Nodes: 3; Depth: 1).

Fig. 9. Behavior tree for the C3 game level chunk (Nodes: 2; Depth: 1).

Fig. 10. Behavior trees for the C4 game level chunk (Left: Player 1 [Nodes: 4; Depth: 2]; Right: Player 2

[Nodes: 4; Depth: 1];).

ACM Transactions on Interactive Intelligent Systems, Vol. 13, No. 1, Article 2. Publication date: February 2023.



Synthesizing Game Levels for Collaborative Gameplay 2:29

Fig. 11. Behavior tree for the C5 game level chunk (Nodes: 5; Depth: 2).

Fig. 12. Behavior tree for the C6 game level chunk (Nodes: 5; Depth: 2).

Fig. 13. Behavior trees for the C7 game level chunk (Left: Player 1 [Nodes: 4; Depth: 2]; Right: Player 2

[Nodes: 5; Depth: 2];).
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Fig. 14. Behavior tree for the C8 game level chunk (Nodes: 6; Depth: 2).

Fig. 15. Behavior trees for the C9 game level chunk (Left: Player 1 [Nodes: 5; Depth: 2]; Right: Player 2

[Nodes: 5; Depth: 2];).

Fig. 16. Behavior trees for the C10 game level chunk (Left: Player 1 [Nodes: 4; Depth: 2]; Right: Player 2

[Nodes: 6; Depth: 2];).
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Fig. 17. Behavior trees for the C11 game level chunk (Left: Player 1 [Nodes: 7; Depth: 2]; Right: Player 2

[Nodes: 6; Depth: 2];).

Fig. 18. Behavior trees for the C12 game level chunk (Left: Player 1 [Nodes: 5; Depth: 2]; Right: Player 2

[Nodes: 5; Depth: 1];).

Fig. 19. Behavior trees for the C13 game level chunk (Left: Player 1 [Nodes: 4; Depth: 2]; Right: Player 2

[Nodes: 5; Depth: 2];).
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Fig. 20. Behavior trees for the C14 game level chunk (Left: Player 1 [Nodes: 5; Depth: 2]; Right: Player 2

[Nodes: 5; Depth: 2];).

Fig. 21. Behavior trees for the C15 game level chunk (Left: Player 1 [Nodes: 5; Depth: 2]; Right: Player 2

[Nodes: 4; Depth: 1];).
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