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Fig. 1. Our method synthesizes a game level in which participants collaborate in a shared virtual environment to play a
game.

We developed a method to synthesize game levels that accounts for the degree of collaboration required by two players to

inish a given game level. We irst asked a game level designer to create playable game level chunks. Then, two artiicial

intelligence (AI) virtual agents driven by behavior trees played each game level chunk. We recorded the degree of collaboration

required to accomplish each game level chunk by the AI virtual agents and used it to characterize each game level chunk. To

synthesize a game level, we assigned to the total cost function cost terms that encode both the degree of collaboration and

game level design decisions. Then, we used a Markov-chain Monte Carlo optimization method, called simulated annealing,

to solve the total cost function and proposed a design for a game level. We synthesized three game levels (low, medium,

and high degrees of collaboration game levels) to evaluate our implementation. We then recruited groups of participants to
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play the game levels to explore whether they would experience a certain degree of collaboration and validate whether the

AI virtual agents provided suicient data that described the collaborative behavior of players in each game level chunk. By

collecting both in-game objective measurements and self-reported subjective ratings, we found that the three game levels

indeed impacted the collaboration gameplay behavior of our participants. Moreover, by analyzing our collected data, we

found moderate and strong correlations between the participants and the AI virtual agents. These results show that game

developers can consider AI virtual agents as an alternative method for evaluating the degree of collaboration required to

inish a game level.

CCS Concepts: · Human-centered computing → Collaborative interaction; · Applied computing → Computer

games; · Computing methodologies→ Intelligent agents.

Additional Key Words and Phrases: game level, chunks, collaboration, AI agents, behavior trees, optimization

1 INTRODUCTION

In our daily lives, we collaborate with others on various tasks in various ways. According to Webster’s Dictionary,
łcollaborationž1 refers to łthe work and activity of a number of persons who individually contribute

toward the eiciency of the whole.ž In addition to real-world collaborative tasks that people perform in their
everyday lives (e.g., two people collaborate to rearrange a couch), people also perform tasks in virtual worlds and
video games (e.g., two people collaborate to catch an enemy). Although collaborative experiences in humans’
daily lives are relatively common, the evolutionary foundations of humans’ collaborative skills remain unclear
[44].

In games and VR applications, the tasks requiring users to collaborate and the degree of collaboration required
to accomplish a given task are manually built or programmed by the game’s designers. However, a game designer
can design hundreds of game levels that share similar game level chunks. For example, a game level designer can
synthesize platform games (e.g., games similar to Super Mario Land2) by repeating various predesigned game
level chunks. In addition, the designer is responsible for ine-tuning the degree of collaboration required for each
game level, which is a tedious and time-consuming process. To overcome these issues, we propose a pipeline that
automatically characterizes the degree of collaboration of game level chunks and synthesizes game levels with
designer-deined degrees of collaboration targets (Fig. 1). As a result, a game level designer can request game
levels with diferent degrees of collaboration. The designer can later edit the synthesized game level if needed,
automating the whole process and minimizing the time required to design the game levels.
In this project, we targeted the łshared goalž [1, 70] and łmutual beneitž [65] aspects of collaboration. In

particular, we thought that providing a shared goal to the players (inishing the game level) would work as a
force that holds players together and allows them to coordinate their eforts and work together toward a mutual
beneit. According to Uhlaner et al. [72], when there are strong shared goals, players are more likely to prioritize
group needs over personal needs. In addition, there tends to be more cooperation and collaboration when there
are strong shared goals, and players are more likely to defer personal beneits for collective beneits. Shared
goals focus and coordinate strategic action toward the mutual beneit, increasing the likelihood that players can
simultaneously fulill individual and group goals.
The proposed method is divided into three parts. First, a game level designer is responsible for designing

playable game level chunks. Second, artiicial intelligence (AI) virtual agents are implemented to play the game
level chunks. We collect data from these agents and use them to characterize the degree of collaboration of each
game level chunk. Third, by developing cost terms that encode various design decisions, our method automatically
synthesizes a game level that fulills all designer-speciied design decisions. Such a formulation allows our system
to synthesize several variations of game levels that satisfy the designer-deined parameters in a few seconds,

1https://www.merriam-webster.com/thesaurus/collaboration
2https://www.mariowiki.com/Super_Mario_Land

ACM Trans. Interact. Intell. Syst.

https://www.merriam-webster.com/thesaurus/collaboration
https://www.mariowiki.com/Super_Mario_Land


Synthesizing Game Levels for Collaborative Gameplay in a Shared Virtual Environment • 3

ofering variability across game levels. According to the literature [40, 41, 80], such variability is important for
keeping players engaged during gameplay.

The scope of this project was twofold. First, we aimed to validate whether the proposed method automatically
synthesized game levels with diferent degrees of collaboration assigned to them and understand how players
changed their gameplay behavior and perceived these diferent degrees of collaboration in the game levels.
Second, we aimed to explore whether AI virtual agents can be used to characterize the collaborative behavior of
game level chunks and, thereby, provide suicient data that describes the collaborative behavior of players in
each game level chunk. To accomplish these aims, we conducted a user study to collect data from participants.
For our user study, we requested that our optimizer synthesize game levels requiring low, medium, and high
degree of collaboration. We collected various in-game measurements during the gameplay. Moreover, we asked
the participants to respond according to the scale we developed for this project. The obtained results indicated
that our method could synthesize the game levels in which the participants collaborated diferently across the
three examined conditions (low, medium, and high degrees of collaboration). In addition, we evaluated the ability
of the AI virtual agents to provide data that relected the degree of collaboration required by the participants.
The analysis results showed that the participants followed a parallel collaboration pattern with the AI virtual
agents, indicating that game designers can use such agents as an alternative method for evaluating the degree of
collaboration needed to complete a given game level. In addition to the positive indings of our study, we also
discuss some limitations to guide future research in automatic game level design for collaborative gameplay.

The rest of the paper is organized as follows. In Section 2, we present related work on collaborative games and
virtual reality experiences. In Section 3, we describe the preliminary remarks of our project. In Section 4, we
explain the formulation of the game level synthesis and the optimization process. In Section 5, we outline the
conducted user study and discuss our indings. In Section 6, we review the limitations of our method. Finally, in
Section 7, we present our conclusions and potential future research directions.

2 RELATED WORK

Computer games encode problem-solving activities in which players build a strategy to overcome the diiculties
they face [57], drawing on prior problem-solving knowledge as they explore the solution space for a given
problem [33]. According to Sedano et al. [58], collaborative games encode activities in which the players must
work together toward a common outcome. This means that the players should work collectively to identify the
dominant strategy for a given in-game problem. Most multiplayer games incorporate both collaborative and
competitive mechanics. Examples of games that require collaboration between players are Portal 2,3 Trine,4 and
Keep Talking and Nobody Explodes.5 In Keep Talking and Nobody Explodes, the players need to difuse a bomb.
One player is responsible for explaining how to defuse the bomb by using the provided manual, and the other
player is responsible for performing the necessary operation. Providing the option for two or more players to
collaborate toward achieving a common goal deines the subgenre of collaborative gameplay.

One of the immensely popular and largest emerging multiplayer game genres that also encode collaboration is
the Multiplayer Online Battle Arena (MOBA) [47], e.g., the League of Legends6 game. In such games, two teams of
players compete to destroy each other’s base. The individual players act collectively, while the teams coordinate
to meet shared goals [71]. Additionally, Massively Multiplayer Online Role-Playing Games (MMORPGs), such as
the World of Warcraft,7 allow many players to collaborate in various tasks, such as ighting a dragon. According

3https://www.thinkwithportals.com/
4https://www.frozenbyte.com/games/
5https://keeptalkinggame.com/
6https://en.wikipedia.org/wiki/League_of_Legends
7https://en.wikipedia.org/wiki/World_of_Warcraft
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to Wikipedia’s list of cooperative video games,8 some MMORPGs can be played by players ranging from two,
such as Space Duel9 and Sky Force,10 to 128, such as Freelancer11 and The Forest.12

Zagal et al. [81] explored how players who work together inluence a game’s design by analyzing collaborative
board games. They found that some tension between collaboration and selish play is required to create an
interesting collaborative game even though the players ultimately share the same goal and always win or lose
as a group. This tension can facilitate discussions about how to reach the shared goal. Zea et al. [82] explored
how game level designers can use collaborative learning requirements as game design guidelines. They proposed
guidelines to help developers create more eicient collaborative games, such as łgive players a common goal and
shared rewards,ž łrequire a minimal score of each player before the group can progress, but also give the players
enough information to enable helping,ž łmake players accountable for their actions, for example by showing
their individual results to the group,ž łguide group members towards social interactions, for example require
consensus to foster discussions,ž and łestablish a rotating leader role.ž

Rocha et al. [53] proposed various methods to force collaboration among the game players. Among them, we can
distinguish between the łshared goalsž method, in which cooperating players have similar (or identical) objectives
that they must complete, putting them on the same pathway toward their goals, and the łcomplementaryž and
łsynergies between abilitiesž methods, both of which involve asymmetry between the two (or more) players
and their abilities. Seif El-Nasr et al. [59] found additional patterns that deine collaboration in commercial
games. Speciically, by analyzing 14 games, they found patterns such as łplayers interacting with the same object,ž
łshared puzzles or characters,ž łenemies speciically targeting separated players,ž łautomatic vocalization,ž and
łlimited (shared) resources.ž Moreover, through an evaluation process, they validated the importance of such
patterns in forming collaborative gameplay. In a similar vein, Reuter et al. [3] introduced game design patterns
for collaborative player interactions. They analyzed 15 well-known games from diferent genres and extracted
the patterns used to guide collaborative game designs to foster interaction between players. Later, they classiied
the interactions into several dimensions (e.g., spatial and temporal). Lastly, to address the issue of authoring
collaborative multiplayer games, Reuter [51] conceptualized an authoring environment that consisted of four
modules: (1) game design patterns as player interaction templates, (2) a formal analysis concerning structural
errors, (3) collaborative balancing, and (4) a rapid prototyping environment.
In addition to the previously mentioned work that presented indings on game design patterns that enforce

collaboration, industry experts have also discussed game mechanics and łdynamicsž used to force collaboration.
Speciically, Luaret13 further deined four categories: gate, comfort, class, and job. łGatež refers to collaboration
mechanics that require all players to be present to complete a task (i.e., two players lifting a gate, hence the name).
łComfortž refers to players facing a challenge that is so diicult that having more than one player is necessary.
Compared to łgatež mechanics, łcomfortž mechanics indicate that it is theoretically possible but extremely
diicult for a solo player to perform the given task, thus strongly encouraging collaborative behavior rather than
rigidly enforcing it. Both łclassž and łjobž involve assigning diferent roles to each player, either through their
player avatar or character (similar to łclassž) or simply through player actions (similar to łjobž). Finally, Redding14

deined several collaboration łdynamics,ž which describe mechanisms used to create collaborative behavior
between two players. Redding placed these dynamics on a gradient from łprescriptivež (forced cooperation)

8https://en.wikipedia.org/wiki/List_of_cooperative_video_games
9https://en.wikipedia.org/wiki/Space_Duel
10https://en.wikipedia.org/wiki/Sky_Force
11https://en.wikipedia.org/wiki/Freelancer_(video_game)
12https://en.wikipedia.org/wiki/The_Forest_(video_game)
13https://www.gamasutra.com/view/news/328756/The_four_atoms_of_cooperative_video_games.php
14https://www.gdcvault.com/play/1014379/Keep-it-Together-Encouraging-Cooperative
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to łvoluntaryž (encouraged but not required collaboration), which included gating/tethering, exotic challenges,
punitive systems, buing systems, asymmetric abilities, combined abilities, and survival/attrition.

However, there are also cases where developers provided practical guidelines to force collaboration in games.
The developers of the Jamestown: Legend of the Lost Colony15 game provided practical guidelines on designing
collaborative games based on player observations16 they made. Speciically, they suggested that game developers
should łprevent waiting times,ž łavoid diferentiating statistics like individual scoresž (which contradicts Zea
et al. [82]), łtake into account that the players’ skill can vary and that negative contributions could result in
blaming,ž łmake sure that teams only fail as a collective and that each player is able to contribute something
tangible,ž and łfacilitate interactions among the players.ž Likewise, the developers of the Together: Amna & Saif 17

game followed similar rules to establish a relationship between the players.18 Speciically, they included the
łavoid levels that could be solved without all players contributing,ž ładd game mechanics that allow helping and
coordination,ž łhave no abilities unique to each player so that each player knows exactly what the others can dož
(contradicts Zagal et al. [81]), and łlet players choose their responsibilities at any given time, for example to help
when a player has diiculties using a certain ability.ž However, we should note that these suggestions coming
from research or industry sometimes difer signiicantly and even contradict each other in some respects. These
diferences highlight the fact that, in the game design process, there is no single right answer for most questions.
Instead, decisions have to be made for each game individually and must be based on the intended target audience.
This necessity was also pointed out by Corrigan et al. [17], who found that collaboration has to be required by
the game; otherwise, the players tend to play solitarily.
In addition to collaboration in video games, the virtual reality research community has proposed various

applications related to collaboration in a shared space. Zhou et al. [84] developed a collaborative asymmetrical
mixed reality dance game called Astaire. The players of this game dance together while hitting the game targets
shaped as musical notes spawning in the space. Ibayashi et al. [34] developed a collaborative experience called
Dollhouse VR, which facilitates an asymmetric collaboration among users in and out of virtual reality. In Dollhouse

VR, one player uses a multitouch device to interact with the virtual environment, while the other player observes
and interacts with the virtual environment through a head-mounted display. Piumsomboon et al. [49] developed a
remote collaborative extended reality system to create new types of collaborations across diferent devices. Malik
et al. [43] developed a uniied training tool framework to integrate human-robot interaction into a virtual reality
environment. Greenwald et al. [31] developed a shared immersive virtual reality environment in which users
interact to create and manipulate virtual objects by using a set of hand-based tools called CocoVerse. Donalek et al.
[20] explored the potential of immersive visualization and data expiration in a collaborative, shared virtual space.
Finally, Men and Bryan-Kinns [45] explored the potential of collaborative music-making in a shared virtual space.

Considering the abovementioned studies on collaborative games and virtual reality experiences, it is obvious
that the collaborative tasks are context-dependent and diverse. Various studies have been conducted to explore
how users collaborate in groups and proposed taxonomies to characterize users’ collaborative activities. For
example, Tang et al. [66] identiied six styles of couplingÐłsame problem same area,ž łone working, another
viewing in an engaging manner,ž łsame problem, diferent area,ž łone working, another viewing,ž łone working,
another disengaged,ž and łdiferent problemsžÐwhere the participants were instructed to interact with a tabletop
surface. Liu et al. [39] discussed ive collaboration stylesÐDivide&Conquer (a parallel-performed task in which
the users must neither communicate nor help each other), LooseComm (a parallel-performed task where the
users are allowed to communicate), LooseTech (a parallel-performed task where the users can also help each
other), CloseComm (only one user can perform the task in sequential order), and CloseTech (only one user can

15https://en.wikipedia.org/wiki/Jamestown:_Legend_of_the_Lost_Colony
16https://www.co-optimus.com/editorial/976/page/1/indie-ana-co-op-and-the-dev-stories-you-re-all-in-this-together.html
17https://togetherthegame.com/
18https://www.co-optimus.com/editorial/1376/page/1/indie-ana-co-op-and-the-dev-stories-fostering-gaming-relationships.html
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perform the task in sequential order, but the second user also has an input device)Ðby operationalizing two
dimensions: task parallelization and shared interaction support. The results of Liu et al. [39] study also indicated
that (1) participants value collaboration even though it incurs a cost, (2) shared interaction increases collaboration,
reduces physical navigation, improves operation eiciency, and provides a more enjoyable experience, and (3)
distance increases the value of collaboration and shared interaction.
In the present research, we used methods such as those used in procedural content generation for virtual

environments and games. Such methods, often called łconstructive methods,ž use grammars [46, 74], noise-based
algorithms [40, 75], search-based methods [42, 69], or solver-based methods [64] to generate virtual environments
or game levels to maximize the objectives of the design and/or to preserve the developer-deined constraints.
For example, Arkel et al. [73] introduced a platform game that utilizes a grammar-based procedural generation
technique to synthesize the layout of puzzle-related game levels. Since its irst successful implementation in
games such as Rogue19 and Elite,20 procedural content generation has become a popular tool for reducing the cost
of developing computer games [68]. In addition to the cost-reduction beneits, game designers can personalize
games to it players’ needs and gameplay behaviors with procedural content generation techniques, leading to
more personalized user experiences [49]. Procedural content generation techniques also reduce storage footprint.
This was especially important in the early 1980s when memory limitations of computers and storage devices did
not allow the distribution of large amounts of predesigned content, such as game levels [4, 68]. Aside from the
examples mentioned above, procedural content generation in games that encounter collaborative gameplay is
relatively uncommon. This is mainly because generating game levels for collaboration is more challenging due to
the need to ensure the mutual beneits of the cooperation, which puts added constraints on the design spaces
[73].
To the best of our knowledge, there are no available methods for evaluating the degree of collaboration at a

game level. However, there are various previously published approaches to assessing the quality of game levels.
Examples include the player challenge method [38] or the use of rapidly expanding random trees to sample a
level’s state space, which later clusters the output tree of the rapidly expanding random trees using Markov
clustering to form a representative graph of the game level [5]. Additionally, researchers have explored spatial
principles in level design to indicate the efects of altering parts of a game level [32]. Furthermore, Berseth
et al. [8] used crowd simulation algorithms to evaluate the scenario complexity of game levels. In the current
project, we considered the use of AI virtual agents in assessing the degree of collaboration of the designed game
level chunks and, consequently, the synthesized game level; therefore, we proposed and evaluated a method to
automatically determine the degree of collaboration of a synthesized game level.

For this project, we considered previously conducted research on the procedural generation of game levels and
collaboration in shared virtual spaces to develop a method that automatically synthesizes game levels based on
designer-speciied degrees of collaboration among players and other design decisions. According to the discussed
taxonomies, we mainly focused on the łsame problem same areaž styles of coupling between game players, as
mentioned by Tang et al. [66], and in the LooseTech category of Liu et al. [39], since the players could perform a
parallel task and help each other to overcome the challenges of a game level. We demonstrated that our approach
can be applied to generate variations at a game level based on designer-deined objectives. Through a user study,
we also validated the efectiveness of our method in generating game levels that can impact the collaborative
gameplay behavior of participants.

19https://en.wikipedia.org/wiki/Rogue_(video_game)
20https://en.wikipedia.org/wiki/Elite_(video_game)
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3 PRELIMINARY REMARKS

In this section, we present the diferent game level chunks developed for our project and the methods we followed
to characterize the degrees of collaboration for each game level chunk. We considered synthesizing game levels
for this project’s obstacle course game. Our system composes a game level by placing game level chunks next
to each other in a 1D array structure. We chose a simpliied representation of a game level mainly to validate
whether the presented methodology can synthesize game levels that fulill the degree of collaboration targets
and other design decisions. In addition, through our user study, we aimed to explore whether the participants
could play the synthesized game levels and experience a certain degree of collaboration for each other. Thus,
we leave more complex game level structures (e.g., dungeon crawlers and open-world game levels) for future
implementations.

(a) C1: No Help (b) C2: No Help (c) C3: No Help (d) C4: No Help

(e) C5: No Help (f) C6: Comfort (g) C7: Job (h) C8: Comfort

(i) C9: Job (j) C10: Job (k) C11: Comfort (l) C12: Job

(m) C13: Job (n) C14: Gate (o) C15: Gate

Fig. 2. Playable game level chunks were developed by an experienced game level designer and used in this project to
synthesize game levels and account for the degrees of collaboration. We also characterized each game level chunk based on
Luaret’s taxonomy. The blue shapes indicate the collaboration zones of each game level chunk.

ACM Trans. Interact. Intell. Syst.
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3.1 Game Level Chunks

In a preliminary step, we asked an experienced game level designer to design playable game level chunks,
considering diferent collaboration activities and the diferent degrees of collaboration players need to inish
each game level chunk. The designer created 15 game level chunks. Fig. 2 illustrates all game level chunks, where
łplayable game level chunksž denotes a part of the game that has its own gameplay characteristics and objectives
and is independent of the other game level chunks.

Based on the theories of designing collaborative gameplay by Rocha et al. [53], Luaret,13 and Redding,14 game
level chunks can be divided into three categories: (1) chunks that a player can complete on their own without
the help of another player (C1, C2, C3, C4, and C5); (2) chunks that a player can complete without the help of
another playerÐhowever, if another player helps, the players will complete the chunk faster (C6, C7, C8, C9, C10,
C11, and C12); and (3) chunks that if players do not collaborate to complete, they will become łstuckž and not be
able to exit the chunk (C13, C14, and C15). Each of these chunks are described as follows:

• C1: The exit door of this game level chunk opens when a player enters the room.
• C2: This is a simple maze where no collaboration is required. Once a player reaches the red zone, the exit
door of this game level chunk opens.

• C3: The players cannot pass the narrow exit door simultaneously. Its exit door opens when a player enters
the room.

• C4: A player should touch the pumpkin to open the exit door of this game level chunk.
• C5: There is a large button on the loor in this game level chunk. Its exit door opens once a player jumps
on the button.

• C6: The player(s) should push the chest to move it to a speciic place (red zone). The speed of the chest
increases proportionally to the number of players pushing it. The exit door opens only when the player(s)
places the chest on the red zone.

• C7: One player should attract the enemy’s attention while the other player reaches the red zone to open
the exit door of this game level chunk. In the case of a single player, that player should feint the enemy to
reach the red zone to open the exit door.

• C8: In this game level chunk, there are four bottles. The player(s) should grab the bottles and put them in
the basket. Once all bottles are in the basket, the exit door of this game level chunk opens.

• C9: There is a scroll attached to the back of the enemy. The players should collaborate to łstealž the scroll.
In particular, one player should attract the enemy’s attention, while the other player łstealsž the scroll.
When a player places the scroll in the basket, the exit door of this game level chunk opens. In the case of a
single player, that player should feint the enemy to łstealž the scroll.

• C10: One player should collect the bottles and place them in a designated position, while the other player
should attract the enemies. When the players have placed all bottles in the designated position (wooden
baskets), the exit door of this game level chunk opens. In the case of a single player, that player should run
fast to prevent the enemy from collecting the bottles and placing them in a designated position.

• C11: The player(s) need to touch the pumpkins according to a particular color sequence shown on a board
to open the exit door of this game level chunk. If the players collaborate, they will be able to exit this room
faster.

• C12: A player must carry the board and place it in a suitable place to form a bridge. When a player reaches
the red zone, the exit door of this game level chunk opens.

• C13: In this game level chunk, players can open and close a cage by touching a button. One player is
responsible for controlling the cage, while the other is responsible for directing the enemies to the cage.
Only once the players trap all enemies in the cage does the exit door of this game level chunk open.

ACM Trans. Interact. Intell. Syst.
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• C14: The players should grab the chest together and move it to the designated place (red zone) to open the
exit door of this game level chunk.

• C15: Once a player reaches the top of the wall using the black ladder, the ladder breaks. The player should
then push the white ladder down to allow the other player to climb the wall. When a player reaches the
red zone, the exit door of this game level chunk opens. If the irst player that reaches the top does not push
down the white ladder, the second player will become łstuckž and not be able to exit this chunk.

Fig. 3 illustrates diferent game level chunks from a irst-person perspective. Moreover, we provide gameplay
examples of the synthesized game levels in the accompanying video. All game levels and our implementations
can be found on our project’s website and downloaded from there.

(a) C2 (b) C8 (c) C9

(d) C10 (e) C11 (f) C13

Fig. 3. Example scenes of the developed game level chunks from a first-person perspective.

3.2 Game Level Chunk Characterization

Our characterization process begins by specifying the collaboration zones at each game level chunk. We adopted
the idea of using collaboration zones from Reuter et al. [52], who described various patterns that enforce
collaboration between players. In the current project, the collaboration zones are designer-speciied areas inside
the game level chunks in which we expect both players to be present simultaneously; this means that the players
collaborate to accomplish each given task. Fig. 2 illustrates the collaboration zones of diferent game level chunks.
For example, in the case of the C6 game level chunk (Fig. 2(f)), the players should push the chest to move it

to the designated position to open the exit door. The collaboration zone of this chunk covers the path that the
players should follow when pushing the chest to the designated red zone. Thus, if both players are present in this
collaboration zone and try to push the chest together, a high degree of collaboration will characterize that game
level chunk. Therefore, the players can push the chest faster and consequently exit that game level chunk more
quickly. In this paper, we deine the degree of collaboration as the time ratio for which the virtual avatars are
inside the collaboration zone of a game level chunk over the total time spent in that game level chunk, which, in
practice, can be translated as the łsame problem same area,ž as deined by Tang et al. [66].
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According to the literature [41, 80], the designer who created the game level chunks could have characterized
the degree of collaboration of game level chunks, or we could have recruited participants to play each game
level chunk and capture the necessary data to characterize each of them. However, building on these approaches
and adopting the ideas of Berseth et al. [6], we used AI virtual agents to play each game level chunk. We did
so because, irst, the AI virtual agents could provide more accurate data on the exact degree of collaboration
required to complete each game level chunk. Second, we aimed to explore the potential of using AI virtual agents
as an alternative method for evaluating the degree of collaboration of a game level chunk and, consequently, of a
game level. We also decided to use AI virtual agents, as several previous studies have proved that the use of AI
(virtual) agents for playtesting can provide reasonable playtesting data [19, 27, 29]. In our pipeline, we integrated
AI virtual agents that repeated the gameplay of each game level chunk at super-speed in a headless mode. In
addition, we introduced some variations in the simulation (e.g., changing the starting position of each AI virtual
agent) to capture variations in how the AI virtual agents could play each game level chunk. Thus, although we
considered that each trial of the AI virtual agents might prove less useful than human data within a ixed budget
or time, the proposed automatic method could create more data.

For our AI virtual agents, we irst developed behavior trees similar to those developed by Shoulson et al. [61]
with a set of tasks in a modular fashion that our system could use to allow the AI virtual agents to play and
exit each game level chunk successfully. Given the behavior tree that corresponds to a given game level chunk,
the AI virtual agents selected and executed the most appropriate interaction and collaboration pattern during
the runtime of the gameplay. In the Appendix of this paper, we present the behavior trees we developed for the
diferent game level chunks and, consequently, for the diferent behaviors assigned to the developed AI virtual
agents.
To obtain the degree of collaboration of each game level chunk, we assigned a random position to each AI

virtual agent at the entrance of each game level chunk and captured the degree of collaboration that characterized
a given game level chunk. For each game level chunk, we repeated this process 10 times by randomizing the initial
position of each AI virtual agent at the beginning of their gameplay. Then, at each game level chunk, we assigned
the average degree of collaboration of the 10 trials as the value that characterizes that particular game level
chunk. As mentioned, we denote the ratio between the time the AI virtual agents spent inside the collaboration
zone of a game level chunk to the total time spent in that game level chunk as the degree of collaboration. Table
1 lists the obtained values characterizing the degree of collaboration of each game level chunk.

4 PROBLEM FORMULATION AND OPTIMIZATION

Our approach synthesizes game levels with respect to the degree of collaboration and other design decisions. We
outline a detailed description of the problem formulation and optimization in the following subsections.

4.1 Formulation

We begin by denoting a game level (�) composed of a designer-deined number of game level chunks (�� ) assembled
in a sequential order. We represent the synthesis of the game level (�) with a total cost function (�

Total
) that

encodes our game level design considerations:

�Total (�) = w
�
CollabCCollab +w

�
PriorCPrior. (1)

Here,C
Collab

= [��
Collab

,��
Collab

,��
Collab

] is a vector of collaboration-related costs, andw
Collab

= [��
Collab

,��
Collab

,��
Collab

]

is a vector of the corresponding weights, where each weight ∈ [0, 1]. ��
Collab

, ��
Collab

, and ��
Collab

encode the
collaboration-related design decisions: the mean degree of collaboration required to complete the synthesized
game level, the variation in the degree of collaboration, and the progress of the degree of collaboration across the
game level chunks. CPrior = [��

Prior,�
�
Prior] is a vector of game level prior costs that encodes design decisions, such
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Table 1. Classification of the game level chunks based on Luaret’s taxonomy, the degree of collaboration of each game level
chunk based on the data obtained from the AI virtual agents, the percentage of the collaboration zone over the total area of
the game level chunk, and the category to which each chunk belongs (* chunks that a player can complete on their own
without the help of another player; ** chunks that a player can complete without the help of another playerÐhowever,
if another player helps, the players will complete the chunk faster; and *** chunks that if players do not collaborate to
complete, they will become łstuckž and will not be able to exit the chunk).

Chunk ID Luaret’s Taxonomy � (�� ) Collaboration Zone (%) Chunk Category

C1 N/A .21659 25.00 *
C2 N/A .21131 25.00 *
C3 N/A .21744 25.00 *
C4 N/A .32782 14.00 *
C5 Job .27382 6.25 *
C6 Comfort .51531 13.43 **
C7 Job .49580 62.50 **
C8 Comfort .52015 34.51 **
C9 Job .45949 62.50 **
C10 Job .70475 68.75 **
C11 Comfort .40382 12.50 **
C12 Job .43350 12.58 **
C13 Job .77391 56.25 ***
C14 Gate .71462 37.50 ***
C15 Gate .76937 65.63 ***

as the size of the game level (number of game level chunks) and repetition among adjacent game level chunks. As
mentioned before, wPrior = [��

Prior,�
�
Prior] is a vector of the corresponding weights, where each weight ∈ [0, 1].

Based on the above formulation, we provide the game developers with the ability to control the design decisions
related to the game level by changing the target of each cost term. In addition, we provide them with the ability
to control the output synthesized game levels by allowing them to change the priority (weight) of each cost term.
This means that even if the game level designer sets a target value for a speciic cost term, if the assigned weight
of that cost term is a low value, such a design decision might not appear in the synthesized game level due to its
low priority. In contrast, if a designer assigns a high weight value to a cost term, such a design decision would
appear at the synthesized game level.

4.2 Collaboration Costs

We developed three cost terms to encode the design decisions regarding the degree of collaboration at a game
level (�). The collaboration costs include the mean degree of collaboration, variation in the degree of collaboration,
and progress in the degree of collaboration.

Mean Degree of Collaboration Cost: We deine a cost term to control the mean degree of collaboration the
game players require to accomplish the game level (�). We deine this cost as follows:

��
Collab (�) =

(

1

|� |

︁

��

D(�� ) − ��

)2

, (2)
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where �
�

∈ [0, 1] is the target mean degree of collaboration, and D(�� ) is the degree of collaboration of the (�� )
game level chunk. By assigning a low �

�
value to the above equation, our system will synthesize a game level in

which the users will expect low collaboration to inish that game level, while by assigning a high �
�
target value,

the system will most likely synthesize a game level that the users will not be able to inish without collaboration.
Fig. 4 illustrates the game levels synthesized by varying the value of �

�
.

Variation in the Degree of Collaboration Cost: We deine a variation in the degree of collaboration cost to
consider the range of the collaboration required among the selected game level chunks, as follows:

��
Collab (�) =

�

�

�

1

|� |

︁

��

(

D(�� ) − D̄
)2

− ��

�

�

�, (3)

where �
�

∈ [0, 1] is the target variation in the degree of collaboration, and D̄ is the mean of the degree of
collaboration of the game level chunks. By changing the �

�
target value, the developer can specify the variation

in the degree of collaboration at the synthesized game level. In particular, by assigning a low �
�
, the synthesized

game level will comprise game level chunks whose degree of collaboration is close to the mean degree of
collaboration target (�

�
), while when the �

�
target value is high, we will observe in the synthesized game level,

game level chunks from the whole spectrum of the degree of collaboration we have in our dataset.
Degree of Collaboration Progress Cost: This cost controls the progression of the degree of collaboration

along the synthesized game level. For this purpose, we allow the developer to deine a line graph (�) with a
number (|� |; equal to the size of the level) of elements (�� ; each �� corresponding to a target degree of collaboration
value). This line graph is used as a reference to synthesize a game level with a degree of collaboration across
the game level chunks comprising � and aligning with the designer-deined line graph (�) while following the
designer-deined mean collaboration cost. We deine the degree of collaboration progress cost as follows:

��
Collab (�) =

1

|� |

︁

��

(

N
(

D(�� )
)

− N
(

D(�� )
)

)2
, (4)

where �� is the target degree of collaboration for the � − �ℎ game level chunk from the pre-deined line graph. N
denotes the normalized values of the degree of collaboration, D(�� ), of the game level chunk (�� ) of the game
level (�) and the target degree of collaboration, D(�� ), of the element (�� ) of the input line graph (�). A designer
can easily control the progress of the degree of collaboration by choosing from a list of predeined curves and
lines (we illustrate line graphs and the corresponding game levels in Fig. 5) or by deining and importing a new
progression line graph (�). Based on this functionality, the game level designer can specify the targets of the
mean degree of collaboration (�

�
) and variance of the degree of collaboration (�

�
). Then, the line graph speciies

the progression of the game level chunks across the systemized game level. This functionality provides the game
level designer with additional control over the synthesis process of a game level.

4.3 Prior Costs

We deine the prior cost terms to encode speciic game level design decisions. Among other variables, we choose
the size (number of game level chunks) that constitutes a game level and the repetition of adjacent game level
chunks.

Size Cost: We deine a level size cost for constraining the number of game level chunks that compose a game
level, as follows:

��
Prior (�) = 1 − exp

(

−
1

2�2
�

(

|� | − ��
)2

)

, (5)

where �
�
is the designer-deined number of game level chunks, and �� controls the spread of the Gaussian penalty

function, which is empirically set as �� = 1.00.
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Adjacent Repetition Cost: We also deine a cost to penalize the repartition of similar game level chunks,
therefore eliminating the synthesis of monotonic game levels in which similar game level chunks are placed next
to one another. We represent the adjacent repetition cost as follows:

��
Prior (�) =

1

|� | − 1

︁

�� ,��+1

Γ(�� , ��+1), (6)

where �� and ��+1 are adjacent game level chunks in �, and Γ(�� , ��+1) returns a high value if �� and ��+1 are identical
and a low value otherwise, under following the condition:

Γ(�� , ��+1) =

{

1 if (�� ≡ ��+1)

0 otherwise
.

In conclusion, game developers can consider various other prior costs depending on the game’s objectives and
design decisions.

4.4 Optimization

Given the game level designer-deined decisions, our system optimizes the total cost function by applying a
Markov-chain Monte Carlo (MCMC) [30] method, known as łsimulated annealing,ž with a Metropolis-Hastings
[13] state-searching step. Given that any number of game level chunks can synthesize a game level, a trans-
dimensional solution space encodes all possible design outcomes of a game level. Thus, to successfully sample the
solution spaces of game levels assembled by several game level chunks, we use the reversible-jump [21] variation
in the MCMC technique. For our optimization process, we start by deining a Boltzmann-like objective function:

� (�) = exp

(

−
1

�
�Total (�)

)

, (7)

where � encodes the temperature parameter of simulated annealing. Given the current game level (�) during the
optimization process, the optimizer proposes a change to that game level, creating a proposed game level (�′). In
particular, to obtain the proposed game level (�′), our system updates the current game level (�) by choosing one
of the following moves:

• Add a Game Level Chunk: When this move is selected, the system randomly selects a game level chunk
from our game level chunk set and places it in a randomly chosen location within the game level.

• Remove a Game Level Chunk: In this move, the system randomly selects a game level chunk from the
current layout (�) and removes it.

• Replace a Game Level Chunk: In this move, from the current game level, the system randomly selects a
game level chunk from the current layout (�) and replaces it with a randomly selected game level chunk
from our game level chunk set.

In our method, we set the probabilities of ładd a game level chunkž as �add = .40, łremove a game level chunkž
as �remove = .20, and łreplace a game level chunkž as �replace = .40. This approach selects the ładd a game level

chunkž and łreplace a game level chunkž moves with higher probability.
The optimizer accepts a proposed game level coniguration (�′) by comparing its total cost value, �Total (�

′),
with the total cost value, �Total (�), of the current layout (�). To ensure a detailed balanced condition in trans-
dimensional optimization, the optimizer accepts a proposed layout (�′) based on the acceptance probabilities for
the ładd a game level chunk,ž łremove a game level chunk,ž and łreplace a game level chunkž moves. We deine
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the probability of the ładd a game level chunkž move as:

�add (�
′ |�) = min

(

1,
�remove

�add

� − |� |

|�′ |

� (�′)

� (�)

)

; (8)

the probability for the łremove a game level chunkž move as:

�remove (�
′ |�) = min

(

1,
�add

�remove

|� |

� − |�′ |

� (�′)

� (�)

)

; (9)

and the probability for the łreplace a game level chunkž move as:

�replace (�
′ |�) = min

(

1,
� (�′)

� (�)

)

. (10)

The acceptance probabilities during the optimization process consider the variable� , which denotes the upper
limit of the number of game level chunks. For formulation simplicity, we assume that each game level chunk (�� )
can only be selected (�� ) times rather than an ininite number of times. Thus, our system synthesizes a level of
up to� =

∑

� �� game level chunks. In our implementation, we set� = 20 for all game level chunks.
We implement simulated annealing to efectively explore the solution space. Regarding the temperature

parameter (� ) of the optimizer, at the beginning of the optimization, we set � to a high value such that the
optimizer aggressively explores the whole solution space, decreasing gradually until reaching a value near zero.
We initialize the temperature as � = 1.00 at the beginning of the optimization and multiply it by �∗ = .998 after
each iteration. The optimizer becomes łgreedierž when reining the optimal solution as the iteration evolves. The
optimization terminates when the change in �Total (�) is less than 2.5% over the last 50 iterations.

Unless we specify otherwise, for all collaboration-related cost terms presented in this paper, we set the weights
at��

Collab = 1.00,��
Collab = .30, and��

Collab = .50. For the prior cost terms, we set the weights at��
Prior = 1.00 and

��
Prior = .50. We assign a high weight value to��

Collab as we want the optimizer to prioritize the corresponding
cost term and synthesize a game level whose mean degree of collaboration is as close as possible to the designer-
speciied target value �

�
. In addition, we assign a high value to ��

Prior as we want our system to synthesize a
game level whose size is the requested one. If, for example, we assign a lower value to��

Prior, our system might
compose a game level with either less or more game level chunks since the system would have irst tried to fulill
the design decisions having higher weight values and, consequently, higher priorities than those with lower
weight values. Finally, we assign low and medium values to��

Collab,�
�
Collab, and�

�
Prior as such design decisions

should not be prioritized by the optimizer. The designer can also control the priority of each design goal at a
given game level by changing these weights. Fig. 4 illustrates the examples of the synthesized game levels with
diferent targets for the collaboration cost terms. Fig. 5 shows the game levels synthesized using various degrees
of collaboration progress line graphs while keeping the mean degree of collaboration target and variation in the
degree of collaboration constant.

5 USER STUDY

In this study, we explored whether our developed method can synthesize game levels with diferent targeted
degrees of collaboration, thereby impacting the participants’ gameplay behavior. Moreover, we attempted to
evaluate whether the AI virtual agents can characterize the degree of collaboration in the game level chunks. We
provide more details about the study and our results in the following sections.
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(a) �
�

= .30 and �
�

= .10; [C3, C5, C1, C3, C10, C11, C1, C5, C1, C3]

(b) �
�

= .30 and �
�

= .50; [C9, C2, C1, C7, C10, C11, C4, C2, C5, C2]

(c) �
�

= .30 and �
�

= .90; [C9, C11, C7, C15, C6, C7, C4, C2, C8, C4]

(d) �
�

= .60 and �
�

= .10; [C3, C6, C5, C7, C13, C4, C3, C11, C6, C4]

(e) �
�

= .60 and �
�

= .60; [C6, C4, C2, C10, C13, C10, C1, C4, C2, C12]

(f) �
�

= .60 and �
�

= .90; [C12, C7, C9, C6, C10, C15, C10, C6, C5, C4]

Fig. 4. Diferent game levels synthesized by our system by varying the targets of our cost terms. For all examples, we set the

weights of the collaboration-related cost terms at��
Collab = 1.00,��

Collab = .30, and��
Collab = .50, and those of the prior cost

terms at��
Prior = 1.00 and��

Prior = .50. The same game level chunk can appear more than once at a synthesized level (e.g.,
C1, C3, and C5 in Fig. 4(a)); however, due to the adjacent repetition cost term, the system does not repeat the same chunk
one ater the other.

5.1 Participants

We conducted an a priori power analysis [15] to determine the sample size for our study, using the G*Power
version 3.10 software [23]. The calculation was based on one group with three repeated measures, 90% power,
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(a) [C14, C8, C12, C9, C5, C11, C5, C2, C3]

(b) [C2, C1, C4, C11, C10, C13, C11, C4, C1]

(c) [C13, C12, C2, C5, C1, C5, C12, C7, C15]

(d) [C5, C3, C2, C3, C6, C11, C8, C14, C15]

(e) [C15, C14, C8, C6, C8, C7, C11, C4, C1]

(f) [C2, C1, C5, C12, C9, C7, C15, C14, C15]

(g) [C12, C9, C7, C6, C9, C12, C6, C8, C9]

Fig. 5. Example game levels (�
�
= 9) using diferent degrees of collaboration progress line graphs while maintaining the

mean degree of collaboration target constant. For all examples, we use �
�

= .50 and �
�
= .50 as the targets.

medium-to-large efect size of � = .35 [22], non-sphericity correction � = .70, correlation among repeated
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measures of � = .50, and � = .05. The analysis resulted in a recommended sample size of 25 groups of participants
(for clariication, each group was composed of two students).

We recruited the participants through e-mails sent to our department’s undergraduate and graduate students.
As we conducted this study to explore the collaborative behavior of our participants during gameplay, they were
scheduled to attend the sessions in groups of two. In total, 50 students participated in our study (25 groups of
students). The age range of our participants was 18 − 29 years (age: � = 19.28, �� = 1.79). All participants
had previously experienced virtual reality, and all of them played video games regularly. The participants in
each group were randomly assigned to minimize the chances that the groups were composed of students who
knew each other. The research team also asked a designated question before the beginning of the study. Our
results indicated that no group was composed of students who had played games together in the past. We did not
provide monetary compensation to our participants for their participation; however, we provided snacks and
water to them throughout the study session to compensate them for their time and efort.

5.2 Setup and Implementation Details

This study was conducted in a laboratory in our department. We used the Unity game engine version 2019.4.12 to
develop our application and ran the application on two (one computer per participant) Dell Alienware Aurora
R7 desktop computers (Intel Core i7, NVIDIA GeForce RTX 2080, 32GB RAM). The optimization of the game
level with �

�
= 10 game level chunks did not exceed ive seconds. We used Oculus Quest and its Unity SDKs

(Oculus Integration). Finally, we used the Photon Unity Networking21 asset to enable the networking functionality
between the two computers and, consequently, to allow the participants to collaborate in a shared virtual space.

5.3 Experimental Conditions

We developed three experimental conditions (game levels) to determine whether optimizing the game levels with
diferent targeted degrees of collaboration would impact the collaboration gameplay behavior of our participants.
We followed a within-group study design, which meant that all participant groups played the three developed
game levels. To balance the conditions across the participant groups and minimize the carryover efect of gameplay
knowledge across game levels with diferent degrees of collaboration targets, we used the Latin squares [36]
ordering method. We used �

�
= 10 as the target size of the game levels for all three conditions. The conditions

were as follows:

• Low Collaboration (LC): We requested that our system create an LC game level expecting that our
participants could inish it with minimal to no collaboration necessary. We set the target value of the degree
of collaboration cost term at �

�
= .30. Under this condition, we expected the synthesized game level to be

composed mainly of the game level chunks that require low to medium degree of collaboration activity
(C1-C12).

• Medium Collaboration (MC): Under this condition, we requested that our system synthesize a game
level in which our participants would moderately collaborate to inish it. This meant that if the participants
collaborated on some parts of the game level, they would complete the game faster. We set �

�
= .50. Under

this condition, we expected the synthesized game level to be composed of game level chunks from the
whole spectrum of the degree of collaboration (C1-C15).

• High Collaboration (HC): Under the last condition, we requested our system to synthesize a game level
in which the participants should collaborate even more to inish the level. We set �

�
= .70. In HC, it is

highly likely that if the participants do not collaborate, they will not be able to inish the game. Under
this condition, we expected the synthesized game level to be composed of game level chunks that require
medium to high collaboration activity (C6-C15).

21https://www.photonengine.com/pun
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We did not change the weights assigned to collaboration and prior costs across the experimental conditions.
However, we set a diferent target value to the mean degree of collaboration cost term; therefore, we requested our
method to synthesize a game level with a certain goal (i.e., a diferent degree of collaboration target). Additionally,
for the degree of collaboration progress term, we used a Gaussian-like line graph as a reference (similar to Fig.
5(b)). This meant that the system should synthesize the game level for which at the start and end of a level, we
would be able to observe game level chunks of low degree of collaboration. In contrast, we would observe game
level chunks of a higher degree of collaboration in the middle of the game level. We synthesized our game levels
in such a way for three reasons. First, we did not want to synthesize monotonic game levels with a near-equal
degree of collaboration across the game level chunks. Second, we wanted to synthesize game levels that included
game level chunks of low amd medium degree of collaboration activity, similar to most commercial games (i.e.,
most games have designated areas at each game level that require more collaboration than other areas at the
same level). Third, during a preliminary study, we realized that when we placed higher collaboration game level
chunks toward the end of the synthesized game level, the participants tended to collaborate more than they
actually collaborated. This indicated that the participants’ collaborative gameplay experiences at the end of game
levels tended to override those at the beginning of the same game levels. Fig. 6 shows the three synthesized game
levels we used in our study. The LC game level (Fig. 6(a)) indicated that such a game level is mainly composed
of low collaboration activity game level chunks, the MC game level (Fig. 6(b)) is primarily formed by medium
collaboration activity game level chunks, and the HC game level (Fig. 6(c)) is mainly composed of medium and
high collaboration activity game level chunks.

(a) �
�

= 0.30 and �
�

= 0.50; [C2, C5, C3, C5, C11, C2, C1, C3, C4, C2]

(b) �
�

= 0.50 and �
�

= 0.50; [C9, C2, C1, C12, C8, C7, C8, C6, C9, C13]

(c) �
�

= 0.70 and �
�

= 0.50; [C11, C4, C7, C15, C10, C14, C7, C12, C9, C11]

Fig. 6. Three diferent synthesized game levels used in our study. From top to botom: (a) low degree of collaboration, (b)
medium degree of collaboration, and (c) high degree of collaboration.

5.4 Measurements

For our study, we collected both objective and subjective data. We collected the degree of collaboration

regarding objective data mainly to understand how the three diferent conditions impacted the two participants
when playing at the synthesized game levels. However, we also performed several other in-game measurements
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to evaluate the potential use of AI virtual agents as a method for assessing the degree of collaboration at the
game level. In particular, we collected the following data:

• Degree of Collaboration: The ratio of time for which the virtual avatars were inside the collaboration
zone to the total time spent at the game level.

• Player Distance: The average distance between two virtual avatars during gameplay.
• Travel Distance: The average length of the trajectory that the two virtual avatars traveled in the game.
• Completion Time: The total time players spent inishing the game (the timer stopped when the second
player inished the game).

• Collaboration Time: The total time for which the virtual avatars were inside the deined collaboration
zones.

• Close Proximity Time: The total time for which the two virtual avatars were in close proximity to each
other (inside one another’s personal space).

In addition to the objective data, we collected subjective data based on a scale we developed. Inspired by
Thomson et al. [67] empirically validated theory of collaboration, we created a perceived collaboration scale
comprising six items (Table 2) to capture how the participants perceived the degrees of collaboration at the
synthesized game levels. We collected the responses from our participants using a seven-point Likert scale, where
1 = łnot at allž and 7 = łtotally.ž

Table 2. Perceived collaboration scale used in this study.

Label Statement

Q1 During the gameplay, I felt I belonged to the group.
Q2 During the gameplay, I felt I helped the group.
Q3 During the gameplay, I felt I helped my partner.
Q4 During the gameplay, I felt my partner was helping me.
Q5 During the gameplay, a collaborative atmosphere was created.
Q6 During the gameplay, I collaborated with my partner to inish the game.

5.5 Procedure

After scheduling a date and time with the research team, the participants arrived at the laboratory in our
department. Upon arrival, the researchers provided the participants with informed consent forms approved by
the university’s Institutional Review Board. The participants were required to sign up for inclusion in the study.
Next, the research team instructed the participants to provide their demographic information by illing out the
questionnaire. Once both participants from each group were in the laboratory, the research team helped them
with the virtual reality equipment.

The research team was responsible for starting the game using the desktop computer. The research team
instructed the participants to play a game composed of diferent game level chunks. Before the game started, we
provided a short tutorial to all participants to familiarize them with the controllers. A previous study showed
that such tutorials can improve participants’ performance and player experience [35]. When the research team
clicked the play button in Unity, the participants irst saw the game level. Both participants were in the same
shared real environment (our laboratory space) and virtual space (Fig. 1). Once the game began, the research
team instructed the participants to play the synthesized game level, with the goal of inishing the game level. The
research team did not provide further information to the participants about the game and gameplay. They also
did not tell the participants whether they would need to collaborate with their partner during gameplay. They
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were left to explore on their own whether such collaboration would be necessary. The research team informed
the participants that an on-screen indicator would notify them when they inished the game level.

The researchers were responsible for setting up each subsequent game level. After the end of each game level
(see Fig. 6 for the LC, MC, and HC game levels), the participants were instructed to self-report their perceived
collaboration (Table 2) through Qualtrics, which is a web-based survey tool provided by our university. We
allowed the participants to take a short break between the experimental conditions. No participant group spent
more than 60 min completing the study. We also told the participants that they could quit the study at any time;
however, no team quit the study.

5.6 Results

We used a one-way repeated measures analysis of variance to explore potential diferences across the examined
conditions. We evaluated the normality of the collected data using Shapiro-Wilk tests to the 5% level and the
residuals’ graphic Q-Q plots. The Shapiro-Wilk tests and Q-Q plots indicated that our data were normal. Moreover,
we screened the internal validity of the perceived collaboration scale using Cronbach’s alpha coeicient. With
suicient scores (� = .81 for the LC game level, � = .89 for the MC game level, and � = .77 for the HC game level),
we used a cumulative score for the six items. The removal of items would not have enhanced these reliability
measures. We used a �-value of < .05 to denote statistical signiicance. Finally, we used Bonferroni-corrected
estimates for our post-hoc comparisons.

5.6.1 In-game Measurements. Table 3 shows the descriptive statistics for the in-game measurements. The analysis
of the player distance data did not reveal any signiicant results (Λ = .770, � [2, 23] = 3.442, � = .526, �2� = .019).
Similarly, the close proximity time measurement data did not reveal any statistically signiicant diferences
(Λ = .762, � [2, 23] = 3.589, � = .349, �2� = .039) across the examined conditions.

The analysis of the degree of collaborationmeasurement revealed signiicant diferences across the examined
conditions (Λ = .065, � [2, 23] = 166.730, � = .0001, �2� = .935). The results of post-hoc analysis revealed that the
degree of collaboration during the LC condition (� = .17, �� = .06) was signiicantly lower than that during the
MC condition (� = .40, �� = .03), at � = .001, and the HC condition (� = .45, �� = .04), at � = .0001. Moreover,
the degree of collaboration during the MC condition was signiicantly lower than that during the HC condition,
at � = .001.

We identiied signiicant results for the travel distance measurement (Λ = .095, � [2, 23] = 109.548, � = .0001,
�2� = .905). The results of the post-hoc analysis revealed that the participants in the LC condition (� = 642.69,
�� = 36.90) traveled less than that in the MC condition (� = 717.40, �� = 58.20), at � = .001, and the HC
condition (� = 799.19, �� = 93.41), at � = .0001. Moreover, the participants in the MC condition traveled less
than they did in the HC condition, at � = .007.

The completion time measurement was also statistically signiicant [Λ = .091, � (2, 23) = 115.385, � = .0001,
�2� = .909]. The results of the post-hoc analysis revealed that the participants in the LC condition (� = 110.73,
�� = 16.54) spent less time inishing the game than that in the MC condition (� = 146.15, �� = 24.61), at
� = .001, and the HC condition (� = 178.91, �� = 31.70), at � = .001. Moreover, the time that the participants
spent inishing the MC condition was signiicantly lower than that in the HC condition, at � = .002.
Finally, the collaboration time measurement was also statistically signiicant [Λ = .048, � (2, 23) = 229.117,

� = .0001, �2� = .952]. The results of the post-hoc analysis revealed that the participants in the LC condition
(� = 22.72, �� = 5.86) spent less time inside the collaboration zone than that during the MC condition (� = 59.16,
�� = 9.28), at � = .001, and the HC condition (� = 84.97, �� = 17.81), at � = .001. Moreover, the participants in
the MC condition spent less time inside the collaboration zones compared to that in the HC condition, at � = .001.
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Table 3. Descriptive statistics of the in-game measurements across the three experimental conditions (LC: Low Collaboration,
MC: Medium Collaboration, and HC: High Collaboration), and the obtained results.

Condition M SD Min Max Results

Degree of Collaboration

LC .17 .06 .05 .39 LC<MC (� = .001)
MC .40 .03 .32 .47 MC<HC (� = .001)
HC .45 .04 .38 .55 LC<HC (� = .0001)

Player Distance (in cm)

LC 111.21 67.54 55.87 384.46 no signiicant result
MC 102.11 16.73 75.04 140.92
HC 111.45 12.75 79.93 133.96

Travel Distance (in cm)

LC 642.69 36.90 585.54 770.46 LC<MC (� = .001)
MC 717.40 58.20 638.04 832.21 MC<HC (� = .007)
HC 799.19 93.41 611.40 969.68 LC<HC (� = .0001)

Completion Time (in sec)

LC 110.73 16.54 85.34 143.86 LC<MC (� = .001)
MC 146.15 24.61 90.46 191.09 MC<HC (� = .002)
HC 178.91 31.70 112.67 236.13 LC<HC (� = .001)

Collaboration Time (in sec)

LC 22.72 5.86 11.40 35.64 LC<MC (� = .001)
MC 59.16 9.28 41.24 77.64 MC<HC (� = .001)
HC 84.97 17.81 58.77 140.89 LC<HC (� = .001)

Close Proximity Time (in sec)

LC 4.30 4.11 .29 15.14 no signiicant result
MC 3.53 1.61 .41 8.22
HC 4.30 1.45 .94 6.93

5.6.2 Subjective Ratings. The perceived collaboration was also statistically signiicant across the examined
conditions [Λ = .469, � (2, 48) = 27.145, � = .0001, �2� = .231]. The results of the post-hoc analysis revealed that
the participants rated the LC condition (� = 4.93, �� = 1.80) lower than the MC condition (� = 6.31, �� = .91),
at � = .001, and the HC condition (� = 6.54, �� = .72), at � = .001. However, no statistically signiicant result
was found between the MC and HC conditions (� = .102). Table 4 shows the descriptive statistics for the perceived
collaborations.

5.6.3 Participant-Agent Correlation. We also explored how the participants collaborated during the gameplay
compared to the AI virtual agents used to characterize the degree of collaboration of the developed game level
chunk. For this part of the study, we isolated the per-game level chunk data collected from our participants. For
the Pearson product-moment correlation analyses, we used the data obtained from the AI virtual agents for each
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Table 4. Descriptive statistics of the perceived collaboration ratings across the three experimental conditions (LC: Low
Collaboration, MC: Medium Collaboration, and HC: High Collaboration) and the obtained results.

Condition M SD Min Max Results

Perceived Collaboration

LC 4.93 1.80 1.17 7.00 LC<MC (� = .001)
MC 6.31 .91 3.34 7.00 LC<HC (� = .001)
HC 6.54 .72 4.00 7.00

game level chunk and the averages obtained from the participants for each given game level chunk for all (15)
game level chunks. Table 5 summarizes the raw numerical values used to compare the results obtained with the
AI virtual agents and those obtained from our participants.

Table 5. Raw numerical values used to compare the results obtained with AI virtual agents (AI) and those obtained from our
participants (P).

Degree of
Collaboration

Player Distance Travel Distance Completion Time Collaboration Time
Close Proximity

Time

Chunk ID P AI P AI P AI P AI P AI P AI

C1 .02168 .21659 11.53515 3.84015 41.84316 37.36840 5.86087 10.05723 .00000 1.05340 .02168 .03501
C2 .07466 .21131 8.18353 5.13270 95.31888 109.64185 15.44542 31.55432 2.50024 5.65169 .07239 .00461
C3 .29778 .21744 12.42533 .58894 41.68053 40.08104 5.68682 10.00639 1.56606 2.25398 .02089 .08487
C4 .24246 .32782 9.58411 5.49595 46.83138 43.56703 7.31520 11.35065 1.78127 4.44627 .03168 .07620
C5 .30332 .27382 10.32784 2.27646 48.70996 36.08767 8.45367 9.45878 2.52987 2.78206 .03438 .04000
C6 .59434 .51531 4.60391 .62813 53.81859 40.15609 14.56040 10.04309 8.43210 5.45890 .02910 .06998
C7 .52461 .49580 11.64476 1.94619 54.15456 43.55383 10.66392 11.60944 5.55907 6.67865 .04141 .06698
C8 .69114 .52015 12.45848 12.33019 89.22649 81.91881 16.36952 26.34777 11.36309 12.64062 .03146 .00431
C9 .63797 .45949 9.62962 3.21142 68.36594 45.38921 14.48255 15.63601 9.25626 7.16166 .04872 .01937
C10 .65318 .70475 17.79996 14.54406 208.75490 106.59528 44.00969 77.62875 28.12076 46.55848 .05104 .04315
C11 .12335 .40382 11.88042 14.28864 82.99025 93.58184 21.11941 29.03274 2.56256 9.43818 .05524 .00000
C12 .09761 .43350 8.61864 10.38947 65.35683 68.06172 13.91274 25.77981 1.15355 8.10278 .03064 .01729
C13 .13913 .77391 16.44345 12.89808 93.89479 67.26303 26.08352 25.73684 3.65488 13.28221 .02949 .01305
C14 .78093 .71462 11.23880 12.58725 66.39209 41.04868 19.88709 10.83099 15.90273 5.63966 .02114 .00474
C15 .78348 .76937 12.34321 4.75234 68.78322 66.57927 15.00534 17.69756 11.71757 16.40833 .01260 .00399

The results of our analyses revealed a moderate positive correlation for the degree of collaboration variables
(AI virtual agents and participants; � = .604, � = 15, � = .004), a moderate positive correlation for the player
distance variables (� = .613, � = 15, � = .012), a strong positive correlation for the travel distance variables
(� = .811, � = 15, � = .0001), a strong positive correlation for the completion time variables (� = .896, � = 15,
� = .0001), and a strong positive correlation for the collaboration time variables (� = .835, � = 15, � = .0001).
No signiicant correlation was observed for the close proximity time variables (� = −.033, � = 15, � = .902).

5.7 Discussion

We collected both objective data related to how the participants interacted in the synthesized game levels and
subjective self-reported ratings to understand whether we could use our method to synthesize game levels that
enforce a diferent collaboration gameplay behavior for our participants. The irst glance at our results indicated
that, although we used the degree of collaboration as the most important cost term of our total cost function (the
assigned weight for the mean degree of collaboration cost was��

Collab = 1.00, while most other costs had weights
< 1.00), four (degree of collaboration, travel distance, completion time, and collaboration time) out of the
six measurements revealed a similar pattern: the measurements under the LC condition were lower than those
under the MC and HC conditions, and the measurements under the MC condition were lower than those under
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the HC condition. Based on these indings, we argue that an optimization-based method can synthesize game
levels that impact the collaboration gameplay behavior of our participants.

In terms of the degree of collaboration measurement, we observed an ofset between the requested degree
of collaboration targets (�

�
= .30 for the LC, �

�
= .50 for the MC, and �

�
= .70 for the HC condition) and

the actual collected data (.17 for the LC, .40 for the MC, and .45 for the HC condition) from our participants.
The mean degree of collaboration of our participants was closer to the target degree of collaboration under
the MC (.10 ofset) and LC (.13 ofset) conditions compared to the HC (.25 ofset) condition. According to the
literature [37, 41, 48], such an ofset exists between the requested and actual values. In our method, the initial
characterizations of the game level chunks from AI virtual agents were the main cause of such diferences. We
scripted the AI virtual agents to complete the task as eiciently as possible without being inluenced by other
parameters that might have impacted the participants (e.g., time of day, mood, and prior virtual reality and
gameplay experiences). In addition, the participant groups were randomly composed, which meant that each
participant also had to quickly understand the gameplay behavior of their partner during the study and build their
gameplay strategy based upon that. Therefore, the main cause of the mentioned ofsets could be the optimality of
the AI virtual agents to execute and solve the given tasks.

Two of the examined measurements (player distance and close proximity time) were not signiicant. These
indings indicate that the participants did not try to be in close proximity of each other; instead, each participant
tried to build their own strategy during the gameplay. By combining both the signiicant and non-signiicant
results, we realized that although the participants were planning their gameplay strategy independently, they
planned it in such a way that would beneit the team and not only themselves, which is a typical behavior found
in games [3, 18, 78]. Our indings indicated that our participants collaborated to progress the game by building
their own strategies; therefore, a collaborative culture was maintained and built between the participants who
worked together toward inishing the game.

Although we noted the ofset between the requested degree of collaboration and the actual collected data, the
correlation indings were also notable; they showed that the participants could perform their tasks in parallel
with the AI virtual agents. According to the literature, AI virtual agents can be used to evaluate the diiculty of
game levels [7, 54, 76, 85]. Our study extends such knowledge by revealing that AI virtual agents can also be
used to evaluate the degree of collaboration that characterizes a game level; therefore, it extends the potential
usage of AI virtual agents for evaluating not only the diiculty of a game level (as in [28, 55]) but also the degree
of collaboration of game levels. However, as mentioned above, when game developers use AI virtual agents, they
should always consider that such a method will return the optimal collaborative gameplay behavior and not the
actual gameplay collaborative behavior that external or non-predeined parameters might inluence.
Regarding the self-reported perceived collaboration, our participants perceived LC and HC as expected;

however, they rated MC closer to HC. This result implies that the participants could not diferentiate among the
three conditions; however, the performed in-game measurements did not support this assumption. Either the
targets for the degree of collaboration assigned to the mean degree of collaboration cost term were too close, or
after a certain degree of collaboration, it was diicult for our participants to subjectively distinguish the degree of
collaboration between the game levels (MC and HC conditions in our case). Another potential explanation for this
inding could be how our participants interpreted each game level’s łmeanž collaboration target and how they
relected such interpretation on their understanding of the provided questions and their responses. For example,
the participants might have thought more in terms of łmaxž degrees of collaboration for a given game level instead
of the łmeanž degree of that game level. Thus, instead of interpreting how much they collaborated by averaging
their collaborative behavior across a whole level, they might have interpreted how much they collaborated in the
game level chunk where they had to collaborate the most. According to the literature, individual cognitive styles
impact collaborative gameplay [2, 85]. Moreover, by considering that increased self-esteem [83], self-eicacy
[14], and self-motivation [25] can afect the perceived performance [11, 24] of participants, we should conduct
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further experimentation to properly understand and interpret how participants perceive diferent degrees of
collaboration during gameplay.
Another cause that could have limited the results is that our method may not have linearly mapped spatial

collaboration with the perceived collaboration of our participants. This could have been the case for two reasons.
First, a spatial approach for deining collaboration between two entities could be considered somewhat limited, or
its applicability could be restricted to only a small number of collaborative tasks. According to the Tang et al. [75]
styles of coupling, it is obvious that people can be in the same area and work on diferent problems (the łdiferent
problemsž style of coupling); therefore, a spatial measurement would not necessarily describe the collaboration
between people. Second, another potential explanation is participants’ potential overestimation of their relative
contributions to collaborative endeavors [56], which means that capturing the perceived collaboration through
self-reported data could also limit our understanding of how participants perceived their collaboration.
Furthermore, we collected comments from our participants to better understand their gaming experience

regarding the three examined game levels (LC, MC, and HC game levels). Most participants indicated that they
considerably enjoyed the collaborative experience in the gaming environment, and many said that they liked the
game they played. One participant wrote, łThis was a great experience and a really enjoyable game. I deinitely felt

the collaborative atmosphere and felt that we worked well together.ž Another commented, łI think that the easier
the level, the less the players are inclined to collaborate with each other.ž One other participant wrote, łThe more

complex puzzles made it much more necessary to interact with the other participant and made inishing them a lot

more satisfying.ž Thus, according to the collected comments, the participants not only enjoyed the developed
game levels but also understood that they had to build collaborative gameplay behavior with their partners.

Additionally, some participants noted the importance of communication in facilitating their collaboration. In
particular, one wrote, łI feel like my partner and I were always communicating about what we needed and were able

to work well together.ž Another elaborated, łDuring the simulation, my partner and I were able to communicate and

collaborate to reach our end goal, which was to inish all the levels. We were able to develop plans to inish the levels

successfully and within a decent amount of time. We were also able to inish the levels correctly.ž Note that, although
we did not ask the participants to communicate during the gameplay, we observed that they were communicating.
Based on our observations, as the target degree of collaboration of the game level increased, the communication
between the participants also increased. This inding aligns with those of the previous studies conducted in the
ield [10, 12, 50, 77] that explored and analyzed the collaboration behavior of the participants during gameplay.

6 LIMITATIONS

Synthesizing game levels for collaborative gameplay is a complex process that requires numerous components to
work harmoniously. Although the proposed pipeline can synthesize game levels for collaborative gameplay, we
should also report the limitations. Note that these limitations do not invalidate our pipeline toward developing an
automatic method for synthesizing game levels that satisfy the degrees of collaboration targets and other design
decisions. Instead, they can help future research toward further advancement of the design of game levels for
collaborative gameplay.

In this project, we demonstrated a simple approach to synthesize a game level, which we characterized as highly
structured and linear. We think that conducting additional experiments in which we distribute collaboration-
related tasks in an open-space virtual environment or form a non-linear method (e.g., similar to the work of Ma et
al. [42]) of synthesizing game levels (e.g., having a game level chunk that may ofer two branches to get through to
a common destination) would help us further understand the collaborative gameplay behavior of the participants.
In addition, we considered only two players collaborating to inish the game. However, in multiplayer games, we
found more than two players; therefore, it is unclear how an increased number of players can afect our results.
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The developed game level chunks that we used in our project impacted our project. In particular, the developed
game level chunks were context-dependent and, thus, highly reliant on the designer’s decisions. Given that game
level and gameplay designers can use diferent approaches to enforce collaboration, it would be useful to develop
guidelines to help researchers and developers more easily develop collaborative tasks for games. Furthermore, it
remains unclear how our results would be afected when we use a larger number of game level chunks to compose
a game level; this is something that we should certainly explore. Finally, you might have noticed, especially in
Fig. 5, that some chunks (e.g., C15 in Fig. 5(f)) were repeated twice toward the end of the chunk sequence, but the
line graph was strictly increasing. We think that developing a dataset with more than 15 game level chunks can
introduce more variations in the degree of collaboration of the game level chunks so that our method can more
closely match the targets requested by the game designer.
Many collaborative games (such as Portal 22) and soccer games (such as FIFA22) require players to position

themselves strategically across a sizable area rather than in close proximity, and other types of collaborations do
not depend on any spatial relationship at all (similar to collaborations that occur in Keep Talking and Nobody

Explodes5). Our method addresses only one particular aspect of player collaborationÐa collaboration that requires
physical proximity and task completion by two playersÐwhich we consider a limitation, given the potential
variety of collaborative gameplay that game designers can develop.

In addition, we developed behavior trees to force our AI virtual agents to collaborate to inish each designed
game level chunk to characterize the degree of collaboration of each game level chunk. The developed behavior
trees were considered highly structured and did not allow the AI agents to explore potential alternatives. Moreover,
the behavior trees did not contain actions such as łdo nothingž or łdo something not related to the given game
level chunk.ž Such additional behaviors can help introduce even more variations in our trials during the automatic
annotation process; however, it can also make the simulation run longer and might not capture the optimal
collaborative behavior required to inish each game level chunk. In addition, instead of manually deining the
collaboration zones, we can predict them using AI virtual agents; this is an additional direction we should further
explore. Moreover, asking a few people playing the game level chunks can provide additional data that we can
use besides the data provided by the AI virtual agents to augment the annotation of each game level chunk, thus
complementing the automatic annotation pipelines. The abovementioned approach can lead to generalized and
improved methods for characterizing the degree of collaboration at any game level. All these limitations should
be further explored in future studies.
It will be interesting to collect data on the collaboration łin the real world,ž such as chatting. In our study,

the participants were co-located in the same room; thus, collecting the data on the time they spent discussing
their strategy could have provided additional measurements to evaluate their collaborative behavior. Moreover,
we should have collected measurements to capture the interactions that each player contributed to inishing
the provided game level, such as each player’s actions toward task completion (e.g., button clicks and gestures).
Finally, including additional questionnaires, such as a questionnaire on presence [63] and questions related to
mutual awareness and dependent actions [9], could have helped us to understand the overall experiences of our
participants.
Lastly, our current study does not encompass real-world collaboration or how virtual reality collaboration

could be translated into real-world collaboration, which we consider an additional limitation. However, we think
that such a method could be used for automatically synthesizing serious games, such as virtual reality skill
training applications (e.g., ire evacuation training) [79], which beneit skills acquisition and retention [62]. In
such a case, trainees could experience variations in training scenarios with diferent degrees of collaboration,
which could potentially beneit their real-world collaboration.

22https://en.wikipedia.org/wiki/FIFA_(video_game_series)
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7 CONCLUSIONS AND FUTURE WORK

We developed a method that considers the degree of collaboration the players are exposed to when playing a
game. Our method provides game developers with the freedom to control various parameters of cost terms,
allowing them to design game levels with speciied objectives. To understand the potential of our method to
synthesize game levels with diferent degrees of collaboration objectives, we conducted a user study and collected
both in-game measurements and subjective ratings. We found that the degree of collaboration targets of the
synthesized game level of our method impacted the way the participants collaborated in the gaming application.

In the future, we will work to synthesize collaboration-aware game levels for multiple players. We would also
like to extend and evaluate our method to analyze less structured game levels. Moreover, we wish to explore the
potential of using collaboration-aware games as a training tool to improve the collaborative behavior required
by game players when playing games of various genres. Given that deining gameplay collaboration is an
under-explored domain and that collaboration is task- and objective-dependent, we should conduct additional
research toward developing a more generalized method for controlling the degree of collaboration required for
diferent game levels and game genres. Finally, to further understand the collaborative gameplay behavior of the
participants, we will conduct additional studies to compare collaboration behaviors in which people perform tasks
such as those presented in this paper while being co-located in the same room with instructions to communicate
and those not to communicate and being in separate rooms with chat functionality enabled. Such study conditions
would help us further understand how the players perform the various tasks encoded in the game level chunks
and how they communicate to coordinate in such tasks.
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A APPENDIX: THE BEHAVIOR TREES

In this section, we present the developed behavior trees, which summarize the major events used in our game
level chunks. Behavior trees describe switchings between a inite set of tasks in a modular fashion and control
the execution low of the tasks. Events can invoke other events during their execution. Please refer to previously
published work on behavior trees [16, 26, 60] for a detailed description of the implementation process. Here, we
provide a brief description of the main components of the behavior trees:

• Composite: A composite node is a node that can have one or more children. Such a node processes one
or more of these children in either a irst to last sequence or random order depending on the particular
composite node in question. In addition, at some stage, it considers their processing complete and passes
either success or failure to the parent, which is often determined by the success or failure of the child nodes.
During the time a composite node is processing children, it continues to return łRunningž to the parent.

• Decorator (or Decor): A decorator node, like a composite node, can have a child node. Unlike a composite
node, a decorator node can only have a single child. The decorator node’s function is either to transform
the result it received from its child node’s status to terminate the child, or to repeat processing of the child,
depending on the type of decorator node.

• Leaf: Leafs are the most powerful node type, as they are deined and implemented to command the
game-speciic actions. An example of this, as used in the behavior trees implemented in this project, is
łGo to the target.ž A łGo to the targetž leaf node makes the AI virtual agent walk to a speciic position
in the game level chunk and return success or failure, depending on the result. Because we can deine
what leaf nodes are, they can be very expressive when layered on top of composite and decor nodes and
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allow the developer to make powerful behavior trees capable of quite complicated layered and intelligently
prioritized behaviors.

Fig. 7. Behavior tree for the C1 game level chunk (Nodes: 2; Depth: 1).

Fig. 8. Behavior tree for the C2 game level chunk (Nodes: 3; Depth: 1).

Fig. 9. Behavior tree for the C3 game level chunk (Nodes: 2; Depth: 1).
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Fig. 10. Behavior trees for the C4 game level chunk (Let: Player 1 [Nodes: 4; Depth: 2]; Right: Player 2 [Nodes: 4; Depth: 1];).

Fig. 11. Behavior tree for the C5 game level chunk (Nodes: 5; Depth: 2).

Fig. 12. Behavior tree for the C6 game level chunk (Nodes: 5; Depth: 2).
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Fig. 13. Behavior trees for the C7 game level chunk (Let: Player 1 [Nodes: 4; Depth: 2]; Right: Player 2 [Nodes: 5; Depth: 2];).

Fig. 14. Behavior tree for the C8 game level chunk (Nodes: 6; Depth: 2).

Fig. 15. Behavior trees for the C9 game level chunk (Let: Player 1 [Nodes: 5; Depth: 2]; Right: Player 2 [Nodes: 5; Depth: 2];).
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Fig. 16. Behavior trees for the C10 game level chunk (Let: Player 1 [Nodes: 4; Depth: 2]; Right: Player 2 [Nodes: 6; Depth: 2];).

Fig. 17. Behavior trees for the C11 game level chunk (Let: Player 1 [Nodes: 7; Depth: 2]; Right: Player 2 [Nodes: 6; Depth: 2];).

Fig. 18. Behavior trees for the C12 game level chunk (Let: Player 1 [Nodes: 5; Depth: 2]; Right: Player 2 [Nodes: 5; Depth: 1];).
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Fig. 19. Behavior trees for the C13 game level chunk (Let: Player 1 [Nodes: 4; Depth: 2]; Right: Player 2 [Nodes: 5; Depth: 2];).

Fig. 20. Behavior trees for the C14 game level chunk (Let: Player 1 [Nodes: 5; Depth: 2]; Right: Player 2 [Nodes: 5; Depth: 2];).

Fig. 21. Behavior trees for the C15 game level chunk (Let: Player 1 [Nodes: 5; Depth: 2]; Right: Player 2 [Nodes: 4; Depth: 1];).
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