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The game of Tetris. In the popular computer
game of Tetris, we are given an initial m-by-n game-

board, which is a partially filled rectangular grid. The
player is given, one by one, a sequence of p tetromi-

noes; see Figure 1. Each piece begins in the middle

Figure 1: The tetrominoes Sq

(“square”), LG (“left gun”), RG

(“right gun”), LS (“left snake”),
RS (“right snake”), I, and T, with
each piece’s center marked.

of the top row of
the gameboard, and
falls downward at a
constant speed. As
it falls, the player
can rotate the piece
and slide it horizon-
tally. If, when the
piece comes to rest,
all gridsquares in an
entire row h of the gameboard are filled, row h is
cleared : all rows above h fall one row lower, and the
top row of the gameboard is replaced by an entirely
unfilled row. As soon as a piece is fixed in place, the
next piece appears at the top of the gameboard. Typ-
ically a one-piece lookahead is provided: when the
ith piece begins falling, the identity of the (i + 1)st
piece is revealed. A player loses when a new piece
is blocked by filled gridsquares from entirely entering
the gameboard. The player’s objective is to maxi-
mize his or her score (which increases as pieces are
placed and as rows are cleared).

Offline Tetris. We introduce the natural full-
information (offline) version of Tetris: there is a
deterministic, finite piece sequence, and the player
knows the identity and order of all pieces that will
be presented. We study the offline version because
its hardness captures much of the difficulty of playing
Tetris; intuitively, it is only easier to play Tetris with
complete knowledge of the future, so the difficulty of
playing the offline version suggests the difficulty of
playing the online version. It is also natural to let m
and n grow, since a relatively simple dynamic pro-
gram solves the case of m ·n = O(1) in time poly(p).

NP-hardness of maximizing rows cleared. We
first show that maximizing the number of rows
cleared while playing the given sequence is NP-
complete. Our proof proceeds by a reduction from
3-Partition, in which we are given a set S =
{a1, . . . , a3s} of integers and a bound T , and asked
to partition S into s sets of three numbers each,
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so that the sum of the numbers in each set is ex-
actly T . (3-Partition is NP-complete even when
the ai’s and T are given in unary [2].) The initial
gameboard is shown in Figure 2. The piece sequence
consists of the following sequence of pieces for each
i: one initiator 〈I, LG,Sq〉, then ai repetitions of the
filler 〈LG, LS, LG, LG,Sq〉, and then one terminator

〈Sq,Sq〉. After the pieces associated with a1, . . . , a3s,
we have the following additional pieces: s successive
I’s, one RG, and 3T/2 + 5 successive I’s. (Without
loss of generality, we force T to be even by doubling
all input numbers.) The last three columns of the
gameboard form a lock which prevents any rows from
being cleared using only the pieces corresponding to
a1, . . . , a3s. If all buckets are filled exactly to the
same height, then the entire board can be cleared
using the last portion of our piece sequence.
The piece sequence is chosen carefully so that all

pieces corresponding to each ai must be placed into
the same bucket. The bulk of our proof of correctness
is devoted to showing that, despite the decoupled na-
ture of a sequence of Tetris pieces, the only way to
possibly clear the entire gameboard is to place into a
single bucket all pieces associated with each integer.
We can then prove that there is a legal 3-partition
for {a1, . . . , a3s} if and only if the gameboard can be
entirely cleared using the given piece sequence. The
NP-completeness of Tetris follows.
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Figure 2: The initial gameboard for a Tetris game mapped
from an instance of 3-Partition.



Inapproximability and NP-hardness for other

objectives. We extend the above proof to show
NP-hardness of optimizing several other natural ob-
jective functions: (1) maximizing the number of
pieces placed before a loss occurs; (2) maximizing the
number of tetrises—the simultaneous clearing of four
rows; (3) minimizing the height of the highest filled
gridsquare over the course of the sequence. We also
prove the extreme inapproximability of the most nat-
ural objective functions: for any constant ε > 0, it is
NP-hard to approximate to within a factor of p1−ε the
maximum number of pieces that can be placed with-
out a loss, or the maximum number of rows that can
be cleared. We also show (2 − ε)-inapproximability
of the minimum height of a filled gridsquare.

Figure 3: Gameboard for in-
approximability and hardness
results for other objectives.

To show these results,
we use the extension in
Figure 3. (The extension
for the maximization of
the number of tetrises is
somewhat different.) Be-
neath the original con-
struction, we have cre-
ated a large reservoir of
r rows filled only in the
first column, and a sec-
ond lock in four new
columns, which prevents
access to the reservoir
until all the top rows are
cleared. We append to
our piece sequence a sin-
gle RG (to open the sec-
ond lock) and enough Sq’s to exactly fill the reservoir.
In the “yes” case of 3-Partition, we can clear the

top of the gameboard as before, and then clear the
second lock and reservoir with the appended pieces.
In the “no” case, we cannot entirely clear the top
part, and thus cannot unlock the reservoir with the
RG. No number of Sq’s can subsequently clear the
lock row. Because the gameboard has odd width, the
rows above the second lock can be cleared at most
once by Sq’s (and then only if an odd number of
gridsquares in the row were initially filled).
If r is chosen so that the unfilled area of the reser-

voir is more than twice the total area of the remain-
der of the gameboard, a loss must occur before all
the Sq’s have been placed. Choosing a much larger
r = poly(s, T ) yields the inapproximability results.

Variants on Tetris. Our reduction is robust to a
several modifications to the rules of Tetris, including
(1) with restricted player agility—allowing only two
rotation/translation moves before each piece drops
in height, (2) without any losses—i.e., with an in-
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Figure 4: The Tetris model of rotation. The pictured k-by-k
bounding box is in the same position in each configuration; the
piece can be rotated clockwise (respectively, counterclockwise)
to yield the configuration on its right (respectively, left).

finitely tall gameboard, and (3) when the piece set is
restricted to {LG, LS, I,Sq} or {RG,RS, I,Sq}, plus at
least one other piece.
The most interesting variants on the Tetris game,

however, arise from altering the definition of the way
in which pieces rotate. In our proof, we make use of
only a few properties of the rotation model; thus our
results hold under any model that satisfies these re-
quirements. There are three important rotation mod-
els which meet these requirements: (1) the instanta-
neous model, in which the piece rotates ±90◦ around
its center, as shown in Figure 1; (2) the continuous
(or Euclidean) model, which differs from instanta-
neous in that we require that all gridsquares that
the piece passes through during its rotation must be
unoccupied—this is the natural model if one pictures
Tetris pieces as physically rotating in space; and (3)
the somewhat unintuitive Tetris model (illustrated
in Figure 4), which we have observed to be the one
used in a number of actual Tetris implementations.

Conclusion. We have shown that it is NP-hard to
optimize—or even approximate—a number of natu-
ral objectives for offline Tetris. (See [1] for details.) A
number of interesting open questions remain. What
is the complexity of Tetris if the initial gameboard
is empty? For what piecesets is Tetris polynomially
solveable? What is the complexity for m = O(1)
or n = O(1)? It would also be interesting to an-
alyze theoretically the online version of Tetris, per-
haps considering a probabilistically generated piece
sequence. (Some possible directions for this question
have been considered by Papadimitriou [3].)
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