
Tetris is Hard, Even to Approximate∗

Ron Breukelaar

Leiden Institute of Advanced Computer Science

Universiteit Leiden

rbreukel@liacs.nl

Erik D. Demaine, Susan Hohenberger

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

{edemaine,srhohen}@theory.lcs.mit.edu

Hendrik Jan Hoogeboom, Walter A. Kosters

Leiden Institute of Advanced Computer Science

Universiteit Leiden

{hoogeboo,kosters}@liacs.nl

David Liben-Nowell

Department of Mathematics and Computer Science

Carleton College

Northfield, MN 55057 USA

dlibenno@carleton.edu

Abstract

In the popular computer game of Tetris, the player is given a sequence of tetromino pieces
and must pack them into a rectangular gameboard initially occupied by a given configuration
of filled squares; any completely filled row of the gameboard is cleared and all filled squares
above it drop by one row. We prove that in the offline version of Tetris, it is NP-complete
to maximize the number of cleared rows, maximize the number of tetrises (quadruples of rows
simultaneously filled and cleared), minimize the maximum height of an occupied square, or
maximize the number of pieces placed before the game ends. We furthermore show the extreme
inapproximability of the first and last of these objectives to within a factor of p1−ε, when given
a sequence of p pieces, and the inapproximability of the third objective to within a factor of
2− ε, for any ε > 0. Our results hold under several variations on the rules of Tetris, including
different models of rotation, limitations on player agility, and restricted piece sets.

∗Appears in International Journal of Computational Geometry and Applications, Volume 14, Number 1–2, April
2004, pp. 41–68. This paper is the merged version of two previous papers: “Tetris is Hard, Even to Approximate”
by Erik D. Demaine, Susan Hohenberger, and David Liben-Nowell [5], and “Tetris is Hard, Made Easy” by Ron
Breukelaar, Hendrik Jan Hoogeboom, and Walter A. Kosters [1]. Comments are welcome.

1

Figure 1: The tetrominoes Sq (“square”), LG (“left gun”), RG (“right gun”), LS (“left snake”), RS

(“right snake”), I (“I”), and T (“T”).

1 Introduction

Tetris [14] is a popular computer game invented by mathematician Alexey Pazhitnov in the mid-
1980s. Tetris is one of the most widespread computer games ever created. By 1988, just a few years
after its invention, it was already the best-selling game in the United States and England. Over 50
million copies have been sold worldwide. (Incidentally, Sheff [13] gives a fascinating account of the
tangled legal debate over the profits, ownership, and licensing of Tetris.)

In this paper, we embark on the study of the computational complexity of playing Tetris. We
consider the offline version of Tetris, in which the sequence of pieces that will be dropped is specified
in advance. Our main result is a proof that optimally playing offline Tetris is NP-complete, and
furthermore is highly inapproximable.

The game of Tetris. Concretely, the game of Tetris is as follows. (We give precise definitions
in Section 2, and discuss some variants on these definitions in Section 6.) We are given an initial
gameboard, which is a rectangular grid with some gridsquares filled and some empty. (In typical
Tetris implementations, the gameboard is 20-by-10, and “easy” levels have an initially empty
gameboard, while “hard” levels have non-empty initial gameboards, usually with the gridsquares
below a certain row filled independently at random.)

A sequence of tetrominoes—see Figure 1—is generated, typically probabilistically; the next piece
appears in the middle of the top row of the gameboard. The piece falls, and as it falls the player
can rotate the piece and slide it horizontally. It stops falling when it lands on a filled gridsquare,
though the player has a final opportunity to slide or rotate it before it stops moving permanently.
If, when the piece comes to rest, all gridsquares in an entire row h of the game board are filled, row
h is cleared. All rows above h fall one row lower; the top row of the gameboard is replaced by an
entirely unfilled row. As soon as a piece is fixed in place, the next piece appears at the top of the
gameboard. To assist the player, typically a one-piece lookahead is provided: when the ith piece
begins falling, the identity of the (i + 1)st piece is revealed.

A player loses when a new piece is blocked by filled gridsquares from entirely entering the
gameboard. Normally, the player can never win a Tetris game, since pieces continue to be generated
until the player loses. Thus the player’s objective is to maximize his or her score, which increases
as pieces are placed and as rows are cleared.

Our results. In this paper, we introduce the natural full-information (offline) version of Tetris:
we have a deterministic, finite piece sequence, and the player knows the identity and order of all
pieces that will be presented. (Games magazine has, incidentally, posed several Tetris puzzles based
on the offline version of the game [10].) We study the offline version because its hardness captures
much of the difficulty of playing Tetris; intuitively, it is only easier to play Tetris with complete
knowledge of the future, so the difficulty of playing the offline version suggests the difficulty of

2

playing the online version. It also naturally generalizes the one-piece lookahead of implemented
versions of Tetris.

It is natural to generalize the Tetris gameboard to m-by-n, for variable m and n, since a
relatively simple dynamic program solves the m · n = O(1) case in time polynomial in the number
of pieces. Furthermore, in an attempt to consider the inherent difficulty of the game—and not
any accidental difficulty due to the limited reaction time of the player—we begin by allowing the
player an arbitrary number of shifts and rotations before the current piece drops in height. (We
will restrict these moves to realistic levels later.)

In this paper, we prove that it is NP-complete to optimize any of several natural objective func-
tions for Tetris: (1) maximizing the number of rows cleared while playing the given piece sequence;
(2) maximizing the number of pieces placed before a loss occurs; (3) maximizing the number of
tetrises—the simultaneous clearing of four rows; and (4) minimizing the height of the highest filled
gridsquare over the course of the sequence. We also prove the extreme inapproximability of the
first two (and the most natural) of these objective functions: given an initial gameboard and a
sequence of p pieces, for any constant ε > 0, it is NP-hard to approximate to within a factor of
p1−ε the maximum number of pieces that can be placed without a loss, or the maximum number
of rows that can be cleared. We also show that it is NP-hard to approximate the minimum height
of a filled gridsquare to within a factor of 2− ε.

To prove these results, we first show that the cleared-row maximization problem is NP-hard,
and then give extensions of our reduction for the remaining objectives. Our initial proof of hardness
proceeds by a reduction from 3-Partition, in which we are given a set S of 3s integers and a bound
T , and asked to partition S into s sets of three numbers each, so that the sum of the numbers in
each set is exactly T . Intuitively, we define an initial gameboard that forces pieces to be placed
into s piles, and give a sequence of pieces so that all of the pieces associated with each integer must
be placed into the same pile. The player can clear all rows of the gameboard if and only if all s of
these piles have the same height. A key difficulty in our reduction is that there are only a constant
number of piece types, so any interesting component of a desired NP-hard problem instance must
be encoded by a sequence of multiple pieces. The bulk of our proof of soundness is devoted to
showing that, despite the decoupled nature of a sequence of Tetris pieces, the only way to possibly
clear the entire gameboard is to place in a single pile all pieces associated with each integer.

Our reduction is robust to a wide variety of modifications to the rules of the game. In particular,
we show that our results also hold in the following settings: (1) with restricted player agility—
allowing only one rotation/translation move before each piece drops in height; (2) under a wide
variety of different rotation models—including the somewhat non-intuitive model that we have
observed in real Tetris implementations; and (3) without any losses—i.e., with an infinitely tall
gameboard; and (4) when the piece set is restricted to {LG, RG, I, Sq}, plus at least one other piece.
(A more complicated reduction using similar ideas to the one in this paper also establishes hardness
when the piece set is restricted to {LG, LS, I, Sq} or {RG, RS, I, Sq}, plus at least one other piece [5].)

Related work: Tetris. This paper is, to the best of our knowledge, the first consideration
of the complexity of playing Tetris. Kostreva and Hartman [11] consider Tetris from a control-
theoretic perspective, using dynamic programming to choose the “optimal” move, using a heuristic
measure of configuration quality. Other previous work has concentrated on the possibility of a
forced eventual loss (or a perpetual loss-avoiding strategy) in the online, infinite version of the
game. In other words, under what circumstances can the player be forced to lose, and how quickly?

3

Figure 2: Piece centers.

Brzustowski [2] has characterized all one-piece (and some two-piece) piecesets for which there are
perpetual loss-avoiding strategies. He has also shown that, if the machine can adversarially choose
the next piece (following the lookahead piece) in reaction to the player’s moves, then the machine
can force an eventual loss using any pieceset containing {LS, RS}. Burgiel [3] has strengthened
this, showing that an alternating sequence of LS’s and RS’s will eventually cause a loss, in any
gameboard of width 2n for odd n, regardless of the player’s strategy. This implies that, if pieces
are chosen independently at random with a non-zero probability mass assigned to each of LS and
RS, then there is a forced eventual loss with probability one for any such gameboards.

Related work: other games and puzzles. A number of other popular one-player com-
puter games have been shown to be NP-hard, most notably Minesweeper—or, more precisely, the
Minesweeper “consistency” problem [9]. See the survey of the second author [4] for a summary of
other games and puzzles that have been studied from the perspective of computational complexity.
These results form the emerging area of algorithmic combinatorial game theory, in which many
new results have been established in the past few years, e.g., Zwick’s positive results on optimal
strategies for the two-player block-stacking game Jenga [15].

2 Rules of Tetris

Here we rigorously define the game of Tetris, formalizing the intuition of the previous section.
While tedious, we feel that such rigor is necessary so that the many subtle nuances of Tetris
become transparent (following immediately from the rules). For concreteness, we give specific rules
in this section, but in fact the remainder of this paper is robust to a variety of modifications to
these rules; in Section 6, we discuss some variations on these rules for which our results still apply.

The gameboard. The gameboard is a grid of m rows and n columns, indexed from bottom-to-top
and left-to-right. The 〈i, j〉th gridsquare is either unfilled (open, unoccupied) or filled (occupied).
In a legal gameboard, no row is completely filled, and there are no completely empty rows that lie
below any filled gridsquare. We consider all gridsquares outside the gameboard as always-occupied
sentinels; this ensures that pieces can never move outside the boundaries of the gameboard.

Game pieces. The seven Tetris pieces, shown in Figure 1, are exactly those connected rectilinear
polygons that can be created by assembling four 1-by-1 gridsquares, up to rotational symmetry. The
center of each piece is shown in Figure 2. A piece state P = 〈t, o, 〈i, j〉, f〉 is a 4-tuple, consisting
of:

1. a piece type t ∈ {Sq, LG, RG, LS, RS, I, T}.
2. an orientation o ∈ {0◦, 90◦, 180◦, 270◦}, the number of degrees clockwise from the piece’s base

orientation (shown in Figure 1).

4

3. a position 〈i, j〉 ∈ {1, . . . , m} × {1, . . . n} of the piece’s center on the gameboard. (The
position of a Sq is the location of the upper-left gridsquare of the Sq, since its center falls on
the boundary of four gridsquares rather than in the interior of one.)

4. the value f ∈ {fixed , unfixed}, indicating whether the piece can continue to move.

In an initial piece state, the piece is in its base orientation, and the initial position places the highest
gridsquares of the piece into row m, and the center into column bn/2c, and the piece is unfixed.

Rotating pieces. A rotation model is a computable function R : 〈P, θ, B〉 7→ P ′, where P and
P ′ are piece states, θ ∈ {−90◦, 90◦} is the rotation angle, and B is a gameboard. We impose the
following conditions on R:

1. If P = 〈t, o, 〈i, j〉, f〉 and the rotation is legal, then P ′ = 〈t, (o + θ) mod 360◦, 〈i′, j′〉, f〉 for
some i′ and j′. If the rotation is illegal, then P ′ = P .

2. A rotation’s legality depends only on the state of an O(1)-sized neighborhood of the piece P .
3. If all the gridsquares in the neighborhood of P are unfilled, then the rotation is legal.
4. If the rotation is legal, then P ′ does not occupy any gridsquare already filled in B.
5. The function R must be reasonable:

(a) A piece cannot “jump” from one region to another. Namely, the pieces P and P ′ must
be connected by a path of unfilled gridsquares in B.

(b) A piece cannot “squeeze past” an overly constricted portion of the gameboard. Consider
a simple path of filled gridsquares that connect the (filled) gridsquare 〈i, j − 1〉 to the
(filled) gridsquare 〈i, j + 1〉, where 〈i, j〉 is unfilled. Suppose that there are other un-
filled gridsquares found inside the region R of the gameboard defined by this path plus
the gridsquare 〈i, j〉. Thus R is an unfilled section of the gameboard which is almost
disconnected—i.e., only the unfilled gridsquare 〈i, j〉 connects this region to the other
unfilled gridsquares in the gameboard. The second requirement for reasonability is that
no piece except an I can rotate “into” the region R—i.e., no piece other than an I can
rotate to occupy any gridsquare of R which is not in column i.

For now, we will consider the instantaneous rotation model : fix the piece center (shown in Figure 2),
and rotate the piece around that point. The position after rotation is unchanged—i.e., 〈i′, j′〉 =
〈i, j〉. A rotation is illegal only if it violates Condition 4. It is clear by inspection that this
model satisfies the reasonability requirements. Note that our proof assumes an arbitrary reasonable
rotation model; in Section 6, we discuss a number of important such models.

Playing the game. The following moves are legal for a piece P = 〈t, o, 〈i, j〉, unfixed〉, with
current gameboard B:

1. A rotation. The new piece state is R(P,±90◦, B).
2. A translation. If the gridsquares adjacent to P are open in B, then we can translate P by

one column. The new piece state is 〈t, o, 〈i, j ± 1〉, unfixed〉.
3. A drop by one row, if all of the gridsquares beneath the piece are open in B. The new piece

state is 〈t, o, 〈i− 1, j〉, unfixed〉.
4. A fix, if at least one gridsquare immediately below the piece is filled in B. The new piece

state is 〈t, o, 〈i, j〉,fixed〉.

5

No moves are legal for a piece P = 〈t, o, 〈i, j〉,fixed〉.
A trajectory σ of a piece P is a sequence of legal moves starting from an initial state and ending

with a fix move. The result of a trajectory for a piece P on gameboard B is a new gameboard B ′,
defined as follows:

1. The new gameboard B′ is initially B with the gridsquares of P filled.
2. If the piece is fixed so that, for some row r, every gridsquare in row r of B ′ is full, then row r

is cleared. For each r′ ≥ r, replace row r′ of B′ by row r′ + 1 of B′. Row m of B′ is an empty
row. Multiple rows may be cleared by the fixing of a single piece.

3. If the next piece’s initial state is blocked in B ′, the game ends and the player loses.

For a game 〈B0, P1, . . . , Pp〉, a trajectory sequence Σ is a sequence B0, σ1, B1, . . . , σp, Bp so that,
for each i, the trajectory σi for piece Pi on gameboard Bi−1 results in gameboard Bi. However, if
there is a losing move σq for some q ≤ p then the sequence Σ terminates at Bq instead of Bp.

The Tetris problem. We will consider a variety of different objectives for Tetris (e.g., maximiz-
ing the number of cleared rows, maximizing the number of pieces placed without a loss, etc.). For
the decision version of a particular objective Φ, the Tetris problem is formally as follows:

Given: A Tetris game G = 〈B, P1, P2, . . . , Pp〉.
Output: Does there exist a trajectory sequence Σ so that Φ(G, Σ) holds?

We say that an objective function Φ is acyclic when, for all games G, if there is a trajectory sequence
Σ so that Φ(G, Σ) holds, then there is a trajectory sequence Σ′ so that Φ(G, Σ′) holds and there
are no repeated piece states in any trajectory in Σ′. Most interesting Tetris objective functions are
acyclic; in fact, many depend only on the final placement of each piece.

An objective function Φ is checkable when, given a game G and a trajectory sequence Σ, we
can compute the truth value of Φ(G, Σ) in time poly(|G|, |Σ|).

Lemma 2.1 For any checkable acyclic objective Φ, we have Tetris ∈ NP.

Proof. We are given a Tetris game G = 〈B, P1, . . . , Pp〉. Here is an NP algorithm for Tetris:
Guess an acyclic trajectory sequence Σ, and confirm that Σ is a legal, acyclic trajectory in

time poly(|Σ|). Confirming that all rotations in Σ are legal depends on the computability of the
rotation function, and the fact that legality can only depend on the constant-sized neighborhood
of the piece.

Since Σ is acyclic, each of its p trajectories can only contain at most 4 · |B|+ 1 states—unfixed
once in each position and each orientation, and one final fixed state. Thus |Σ| = poly(|G|). Since
Φ is checkable, we can then in time poly(|G|, |Σ|) = poly(|G|) verify that Φ(G, Σ) holds, and since
Φ is acyclic, guessing an acyclic trajectory sequence Σ suffices. 2

The Φ(G, Σ) that we will initially concern ourselves with is the following: in the game G, does the
trajectory sequence Σ clear at least k rows without incurring a loss? (In Section 6, we will consider
a variety of other objective functions.) This objective is acyclic because it only depends on the
fixed piece state at the end of each trajectory, so the piece’s path in the trajectory is irrelevant,
and is checkable since a simple scan of the status of the gameboard after each trajectory allows one
to count the number of rows cleared by Σ on G.

6

3 NP-Completeness of Tetris

3.1 The Reduction

In this section, we define a mapping from instances of 3-Partition [7, p. 224] to instances of
Tetris. Recall the 3-Partition problem:

Given: A sequence a1, . . . , a3s of non-negative integers and a non-negative integer T , so that
T/4 < ai < T/2 for all 1 ≤ i ≤ 3s and so that

∑3s
i=1 ai = sT .

Output: Can {1, . . . , 3s} be partitioned into s disjoint subsets A1, . . . , As so that, for all 1 ≤ j ≤ s,
we have

∑

i∈Aj
ai = T?

We limit our attention to 3-Partition instances for which T is divisible by four, for technical
reasons that will become apparent when we define the gameboard later in this section. We can
map an arbitrary 3-Partition instance into one obeying this requirement by multiplying T and
each ai by 4. This mapping does not affect whether or not the instance has a valid 3-partition.

Note that, even after this multiplication, we still have that T/4 < ai < T/2 for all 1 ≤ i ≤ 3s
and so that

∑3s
i=1 ai = sT . This guarantees that, for any set S ⊆ {1, . . . , 3s}, if

∑

i∈S ai = T then
|S| = 3.

We choose to reduce from this problem because it is NP-hard to solve 3-Partition even if the
inputs ai and T are provided in unary:

Theorem 3.1 (Garey and Johnson [6]) 3-Partition is NP-complete in the strong sense. 2

Given a 3-Partition instance P = 〈a1, . . . , a3s, T 〉 with T divisible by four, we will produce a
Tetris game G(P) whose gameboard can be completely cleared precisely if P is a “yes” instance of
3-Partition.

The initial gameboard is shown in Figure 3. Intuitively, there are s buckets corresponding to
the sets A1, . . . , As for the 3-Partition problem. The piece sequence will consist of a number of
tetrominoes corresponding to each ai, chosen carefully so that all pieces corresponding to ai must
be placed into the same bucket. There is a legal 3-partition for a1, . . . , a3s exactly when the piles
of pieces in each bucket have the same height. The last three columns of the gameboard form a
lock which prevents any rows from being cleared until the end of the piece sequence; if all buckets
are filled exactly to the same height, then the entire board can be cleared using the last portion of
our piece sequence. Formally, our game G consists of the following:

Initial board: Our gameboard will have 5T +18+2s+O(1) rows and 4s+3 columns. Intuitively,
the factor of five in the height is because each ai will be represented by ai+1 blocks of five rows
and three columns each; since the three elements from Aj sum to T , this is 5(T +3) = 5T +15.
In addition to these 5T +15 rows, there are three rows at the bottom ensuring that the initial
blocks are placed correctly.

The top 2s+O(1) rows—the O(1) depends linearly on the size of the O(1)-sized neighborhood
in the rotation model—are initially empty, and are included solely as a staging area in which
to rotate and translate pieces before they fall into the bottom 5T + 18 rows. We will not
mention them again in the construction (and, below, the highest row is the (5T +18)th). Our
choice of 2s + O(1) as the number of staging rows will be discussed in Section 6.

The remainder of the initial board can be thought of in s + 1 logical pieces, the first s of
which are four columns wide and the last of which is three columns wide. The first s logical
pieces are buckets, arranged in the following four-column pattern:

7

. . .

5T
+

18
2s

+
O

(1
)

4s + 3

Figure 3: The initial gameboard for a Tetris game mapped from an instance of 3-Partition.

8

• the first column is empty except that the two lowest rows are full;

• the second column is completely empty;

• the third column is full in each row h ≡ {1, 2, 3} (mod 5) and empty in each h ≡
{0, 4} (mod 5);

• the fourth column is completely full;

We refer to adjacent unfilled rows of column 3 as a notch. Each bucket contains T +3 notches.

The last logical piece is a three-column lock, and consists of the following:

• the first column is full except that the highest row is empty;

• the second column is full except that the two highest rows are empty;

• the third column is empty except that the second-highest row is full.

Pieces: The sequence of pieces for our game consists of a sequence of pieces for each ai, followed
by a number of additional pieces after all the ai’s. For each integer a1, . . . , a3s, we have the
following pieces:

• the initiator, which consists of a RG;

• the filler, which consists of the sequence 〈Sq, LG, Sq〉 repeated ai times;

• the terminator, which consists of the sequence 〈Sq, I〉.

These pieces are given for a1, a2, etc., in exactly this order. After the pieces corresponding
to a3s, we have the following pieces:

• s successive RG’s;

• one T;

• (5T + 16)/4 successive I’s. (We required that T be divisible by four so that this would
be an integral number of pieces. We can remove this technical requirement on T at the
cost of a slightly more complicated initial gameboard: by adding, at the bottom of the
gameboard, (−T) mod 4 rows filled in each column except the last, we guarantee that
the height of the unfilled segment of the last column is divisible by four.)

Lemma 3.2 The game G(P) is polynomial in the size of P, and can be constructed from P in
polynomial time.

Proof. The gameboard has size 5T + 18 + 2s + O(1) by 4s + 3, and the total number of pieces is

3s∑

i=1

[1 + 3ai + 2] + s + 1 +

(
5T + 16

4

)

= 10s + 3sT +
5T

4
+ 5.

The ai’s and T are represented in unary, so the size of the game is polynomial. Polynomial time
constructibility is obvious. 2

9

︸ ︷︷ ︸

initiator

· · ·
...

︸ ︷︷ ︸

filler, filler, . . . , filler

...
...

︸ ︷︷ ︸

terminator

Figure 4: A valid sequence of moves within a bucket.

3.2 Completeness

Here we show the easier direction of the correctness of our reduction: for a “yes” instance of
3-Partition, we can clear the entire gameboard.

Lemma 3.3 (Completeness) For any “yes” instance P of 3-Partition, there is a trajectory
sequence Σ that clears the entire gameboard of G(P) without triggering a loss.

Proof. In Figure 4, we show the move sequence to place all of the pieces associated with the number
ai (initiator, ai fillers, and terminator) into a particular bucket.

Since P is a “yes” instance, there is a partitioning of {1, . . . , 3s} into sets A1, . . . , As so that
∑

i∈Aj
ai = T . We have ensured that |Aj | = 3 for all j. Place all pieces associated with set

Aj = {x, y, z} into the jth bucket of the gameboard, as in Figure 4.
Figure 5(a) shows the configuration after all of the pieces associated with a1, . . . , a3s have been

placed, as follows. After all pieces associated with the number ax have been placed into bucket j,
the first 3 + 5ax + 2 rows of bucket j are full, and the left-hand column of bucket j is filled two
rows above that. The pieces associated with the number ay fill the next 3+5ay +2 rows, and those
with az the next 3+5az +2 rows, leaving again one column with two additional rows filled. So the
total number of rows filled after the “numbers” is 15 + 5(ax + ay + az) = 15 + 5T . Doing this for
each bucket j yields a configuration in which all buckets are totally filled up to row 15 + 5T , with
the first column of each bucket filled up to row 17 + 5T .

We next get s successive RG’s in the sequence. We produce the configuration in Figure 5(b)
by dropping one of the RG’s into each bucket, to fill rows 16 + 5T through 18 + 5T . Now the
configuration has the first 18 + 5T rows filled in all of the buckets, and the lock is untouched.

Next we get a T. Drop it into the slot in the lock, yielding the configuration of Figure 5(c);
the first two rows are then cleared. In the resulting configuration, all columns are filled to the
(16 + 5T)th row, except the last, which is completely empty.

Figures 5(d), 5(e), and 5(f) show the final stage of the sequence, as the (5T + 16)/4 successive
I’s arrive. Drop each into the last column of the lock. Each of the I’s clears four rows; in total, this

10

. . .

(a) After all the pieces for the ai’s
have been placed as in Figure 4.

. . .

(b) After placing the s consecutive
RG’s.

. . .

(c) Placing the T in the lock; this
clears two rows.

. . .

(d) The first I of (5T +16)/4 clears
four more rows.

. . .

(e) The second I, also clearing four
rows.

. . .

(f) The last I; the board is now
completely clear.

Figure 5: Finishing a valid move sequence.

11

clears 4 · (5T + 16)/4 = 5T + 16 rows, clearing the entire the gameboard. The first, second, and
last of these I’s are illustrated, respectively, in Figures 5(d), 5(e), and 5(f). 2

3.3 Soundness

Call valid any trajectory sequence that, using the pieces from the reduction, clears 5T + 18 rows
in the gameboard of G(P). We will refer to a move or trajectory as valid if it can appear in a valid
trajectory sequence. In this section, we show that the existence of a valid strategy for the Tetris
game G(P) implies that P is a “yes” instance of 3-Partition. We will often omit reference to
G(P), and refer to its parts simply as the gameboard and the piece sequence.

Proposition 3.4 In any valid trajectory sequence, no gridsquare above row 5T + 18 is ever filled.

Proof. As a direct consequence of Lemma 3.3, we have that the number of gridsquares in the piece
sequence is exactly the same as the number of unfilled gridsquares in the bottom 5T + 18 rows of
the gameboard. (This holds because

∑3s
i=1 ai = sT , and does not depend on whether we are given

a “yes” instance of 3-Partition.)
Thus the total number of gridsquares contained in the entire game (either initially filled in the

gameboard or present in the piece sequence) is exactly the same as the area of the bottom 5T + 18
rows of the gameboard. Since initially there are filled gridsquares in each of these rows, clearing
the gameboard requires clearing all of these 5T + 18 rows, which in turn requires placing all pieces
of the sequence entirely in these rows. 2

Call a bucket unfillable if it cannot be filled completely using arbitrarily many pieces from the set
{LG, RG, Sq, I}. Note that unfillability is defined with respect to a bucket in isolation, and does not
allow the clearing of rows. This definition is motivated by the following lemma:

Proposition 3.5 In any valid trajectory sequence:

1. all pieces preceding the T in the piece sequence are placed into buckets, completely filling them;
2. no rows are cleared before the T;
3. no unfillable bucket arises.

Proof. For (1), we need only observe that if any piece other than T is the first piece placed in the
lock columns, then it must fill some gridsquare above the (5T + 18)th row. Thus any piece before
the T that is not placed entirely within a bucket will violate Proposition 3.4.

Fact (2) follows straightforwardly from (1), since no rows can be cleared until at least one piece
is placed into the lock columns.

For (3), note that Proposition 3.4 and (1) imply that there are the same number of unfilled
bucket gridsquares as there are gridsquares contains in the pieces preceding the T in the given
sequence. Therefore, if we do not entirely fill each bucket, then at least one of these gridsquares
will not go into a bucket, violating (1). (Since no rows are cleared before the T, an unfillable bucket
cannot be made fillable again, and therefore makes the trajectory sequence invalid.) 2

There are two classes of unfillable buckets on which we will focus our attention:

Holes: A hole is an unfilled gridsquare in some bucket so that there is a contiguous series of filled
gridsquares separating that gridsquare from the empty rows above the buckets.

12

•

(a) (b) (c) ∗ (d)

1
2

(e)

•

(f) ∗

•

•

(g)

•

(h) ∗

•

(i)
•

(j) (k) ∗

Figure 6: All possible placements of {Sq, LG, I} in an unprepped bucket. A ‘•’ denotes (the upper-
most, left-most gridsquare in) a hole, and a vertical arrow indicates a choked region. In Figure 6(e),
filling either numbered gridsquare makes the other numbered gridsquare into a hole or a choked
region. Buckets labelled with an asterisk also denote the placement of the given piece in an arbitrary
higher notch. See Proposition 3.7.

Choke points and choked regions: A choke point is a row r of a bucket in which only one
gridsquare is unfilled. Intuitively, a choke point prevents any piece other than I from “getting
past” row r, implying that any unfilled gridsquares below r must be filled entirely using I’s.

A choked region is a maximal contiguous vertical run of α unfilled gridsquares that (1) appears
below a choke point in the bucket, (2) is in a different column than the unfilled gridsquare in
the choke point, and (3) has α 6≡ 0 (mod 4).

Proposition 3.6 Any bucket containing a hole or a choked region is unfillable.

Proof. It is immediate from our definition of a rotation model that a bucket with a hole is unfillable,
and that only an I can “pass” a choke point—i.e., fill any gridsquares below the choke point that
are in any column other than the one left open at the choke point. Since our buckets have width
at most three, any I’s must be placed vertically, and thus can only fill regions in which all maximal
contiguous vertical runs of unfilled gridsquares have length divisible by four. Thus choked regions
cannot be filled by I’s, and therefore are unfillable. 2

Call a bucket unprepped if it has exactly the form of the buckets in the initial gameboard, i.e.,
completely filled up to three rows below the bottom of a notch, and with the next two rows of the
first column filled as well. Call the configuration of a gameboard unprepped if all of its buckets are
unprepped. Call a bucket prepped if it is filled completely up to just below the bottom of a notch.

Proposition 3.7 Placing any of {Sq, LG, I} in an unprepped bucket is invalid.

13

•

(a)

•

(b) ∗ (c)

•

(d) ∗

•

(e) ∗

Figure 7: All possible placements of RG in an unprepped bucket. See Figure 6 for explanation of
notation. Figure 7(c) shows the only potentially valid move, which produces a prepped bucket. See
Proposition 3.8.

Proof. All of the possible placements are shown in Figure 6. Note that Figure 6(e) shows the only
placement of any of {Sq, LG, I} that does not immediately result in a hole or a choked region. In
this case, observe that any Tetris piece placed to fill the gridsquare marked ‘1’ makes the gridsquare
marked ‘2’ into a hole or a choked region, and vice versa. Thus this bucket is also unfillable. 2

Proposition 3.8 The only valid trajectory sequences must exactly follow the sequence in Theo-
rem 3.3:

1. If a RG is placed into an unprepped bucket, it must produce a prepped bucket;
2. If the sequence 〈Sq, LG, Sq〉 is placed into a prepped bucket, it must produce a prepped bucket;
3. If the sequence 〈Sq, I〉 is placed into a prepped bucket, it must produce an unprepped bucket.

Proof. All of the possible placements for these pieces are shown in Figures 7, 8, and 9, respectively.
As in Proposition 3.7, the only way to place the given pieces without immediately producing a
bucket with a hole or a choked region results in the stated resulting bucket. The only exception is
Figure 9(d); there, the only possible way to fill the gridsquare marked ‘3’ is by placing a I into the
first column, but the resulting bucket is then exactly that of Figure 6(e), which was established as
unfillable by Proposition 3.7. 2

Proposition 3.9 For any r ≥ 0, in an unprepped gameboard, the only possibly valid strategy for
the sequence RG, r × 〈Sq, LG, Sq〉, Sq, I is to place all of the pieces into a single bucket, yielding an
unprepped configuration.

Proof. Immediate by induction on r using Propositions 3.7 and 3.8. 2

Lemma 3.10 (Soundness) There is a valid trajectory sequence for G(P) only if P is a “yes”
instance of 3-Partition.

Proof. By Proposition 3.9, there exists a valid trajectory sequence only if there is a sequence that
places, for each i, all of the pieces associated with ai into the same bucket. For each bucket j,
define Aj := {i : all of the pieces associated with ai are placed in bucket j}.

14

•

(a) (b) ∗ (c)

•

(d)

•

(e) ∗

•

(f) ∗ (g) (h) ∗ (i)

(j) (k) ∗ (l)

Figure 8: All possible placements of 〈Sq, LG, Sq〉 in a prepped bucket. See Figure 6 for explanation
of notation. Figures 8(c), 8(i), and 8(l) show the only potentially valid moves, which produce a
prepped bucket. See Proposition 3.8.

15

•

(a) (b) ∗ (c)

1
2

3

(d) (e)

Figure 9: All possible placements of 〈Sq, I〉 in a prepped bucket. See Figure 6 for explanation of
notation. Figures 9(c) and 9(e) show the only potentially valid moves, which produce an unprepped
bucket. See Proposition 3.8.

Note that placing all of the pieces of ai into bucket j fills ai + 1 notches in that bucket—one
for each of the three-piece filler blocks, and one additional notch for the terminator. Thus the
number of notches filled in each bucket is

∑

i∈Aj
(ai + 1). In total, this is

∑

j

∑

i∈Aj
(ai + 1) =

3s +
∑

1≤i≤3s ai = s(T + 3). Since there are exactly T + 3 notches in each of the s buckets, this
implies that

∑

i∈Aj
(ai +1) = T +3 for every bucket j. Recall from Section 3.1 that our instance of

3-Partition guarantees that, for every i, we have T/4 < ai < T/2. Thus
∑

i∈Aj
(ai + 1) = T + 3

implies that, for every bucket j, we have that |Aj | = 3 and
∑

i∈Aj
ai = T—i.e., P is a “yes” instance

of 3-Partition. 2

Theorem 3.11 It is NP-complete to maximize the number of rows cleared in a Tetris game.

Proof. Immediate from Theorem 3.1 and Lemmas 2.1, 3.2, 3.3, and 3.10. 2

4 NP-Completeness for Other Objectives

In this section, we describe reductions extending that of Section 3.1 to establish the hardness of
optimizing several other natural Tetris objectives.

4.1 Maximizing Tetrises

One natural objective for (the actual play of) Tetris is the maximization of tetrises—i.e., the
number of times that four rows are cleared simultaneously, by the vertical placement of an I. Note
that the decision version of this objective is acyclic and checkable—i.e., we can check if a trajectory
sequence Σ achieves at least k tetrises on G in polynomial time. Thus this version of the Tetris
problem is in NP.

Theorem 4.1 Maximizing the number of tetrises in a Tetris game is NP-complete.

16

Proof. We use a reduction very similar to that of Section 3.1, as shown in Figure 10(a). Given an
instance P of 3-Partition, our game is as follows:

• The top 5T + 18 + 2s + O(1) rows of the gameboard are exactly the same as in our previous
reduction. We add four rows below these, entirely full except in the fourth column.

• The piece sequence is exactly the same as in the previous reduction, with a single I appended.

We extend our previous reduction since it is not clear that (5T + 16)/4 tetrises—i.e., the number
achieved in the “yes” case—cannot be achieved in the “no” case: perhaps by clearing only 5T + 17
rows in total, it would still be possible to clear 5T + 16 rows using tetrises. In our extension,
however, the only way to achieve enough tetrises is by entirely clearing the original part of the
gameboard.

For a “yes” instance of 3-Partition—namely, one in which we can clear the top 5T + 18 rows
using the original part of the piece sequence—(5T + 16)/4 + 1 = 5T/4 + 5 tetrises are achievable.
(The first 5T/4 + 4 occur when we place the I’s vertically into the lock column; the last occurs
when the appended I is placed into the new bottom rows.)

For a “no” instance, we cannot clear the top 5T + 18 rows using the original part of the piece
sequence, as shown in the previous section. Since the fourth column is full in all of the original
rows, we cannot clear the bottom four rows with the last I in the sequence. Thus we clear at most
5T + 18 rows in total. This implies that there were at most (5T + 18)/4 < 5T/4 + 5 tetrises.

Therefore we can achieve 5T/4 + 5 tetrises just in the case that the top 5T + 18 rows can be
cleared by the first part of the sequence, which occurs exactly when the 3-Partition instance is a
“yes” instance. 2

4.2 Maximizing Lifetime

Another type of metric—considered by Brzustowski [2] and Burgiel [3], for example—is that of
survival. How many pieces can be placed before a loss must occur? The decision problem—given
a number p and a Tetris game G, can the first p pieces of G be placed without incurring a loss?—is
in NP, since the corresponding Φ is checkable and acyclic.

Our original reduction already yields some initial intuition on the hardness of maximizing
lifetime. A closely related problem is the following: given a height h and a Tetris game G, can all
of the pieces of G be placed so that no gridsquare above height h is ever filled? (Membership in
NP follows as above.) In the “yes” case of 3-Partition, there is a trajectory sequence that fills
no gridsquares above the (5T + 18)th row, while in the “no” case we must fill some gridsquare in
the (5T + 19)th row:

Theorem 4.2 Minimizing the maximum height of a filled gridsquare is NP-complete. 2

However, this does not immediately imply the hardness of maximizing the number of pieces that
the player can place without losing, because Theorem 4.2 only applies for certain heights—and, in
particular, does not apply for height m (the top row of the gameboard), because our trajectory
sequence from Section 3.2 requires some operating space above the (5T +18)th row for rotations and
translations. To show the hardness of maximizing survival time, some additional work is required.

Theorem 4.3 Maximizing the number of pieces placed without losing is NP-complete.

17

. . .

(a) Initial gameboard showing the hard-
ness of maximizing tetrises.

. . .

(b) Initial gameboard showing the hardness of
maximizing survival time.

Figure 10: Initial gameboards showing the hardness of optimizing other objectives.

18

Proof. We augment our previous reduction as shown in Figure 10(b). Intuitively, we have created
a large area at the bottom of the gameboard that can admit a large number of Sq’s, but we place
a lock so that Sq’s can reach this area only if the gameboard of the original reduction is cleared.
Crucially, the entire gameboard has odd width, so after a large number of Sq’s a loss must occur.
Formally, our new gameboard consists of the following layers, for a value r to be determined below:

• The top 5T + 18 + 2s + O(1) rows are exactly the same as in our previous reduction, with
the addition of four completely filled columns on the right-hand side of the gameboard.

• The two next-highest rows form a second lock, preventing access to the rows beneath. This
lock requires a T to be unlocked, just as the lock at the top of the previous reduction.

• The bottom r rows form a reservoir, and are empty in all columns but the first.

The gameboard has 5T + 18 + 2s + r + O(1) rows and 4s + 7 columns. Let A = O((T + s)s) be the
total area in and above the (second) lock rows, and let R = r(4s + 6) be the total initially unfilled
area in the reservoir.

Our piece sequence is augmented as follows: first we have all pieces of our original reduction,
then a single T, and finally R/4 successive Sq’s.

For the moment, choose r = poly(T, s) so that R ≥ 2A + 4.
In the “yes” case of 3-Partition, the first part of the sequence can be used to entirely clear

the 5T + 18 rows of the original gameboard. The T clears the second lock, and the R/4 successive
Sq’s can then be packed into the reservoir to clear all of the reservoir rows. (By construction, there
are an even number of unfilled gridsquares in each of the rows of the reservoir.)

In the “no” case of 3-Partition, the first part of the sequence cannot entirely clear the top
5T +18 rows of the gameboard. Since all rows above the second lock are filled, this means that the
T cannot unlock the reservoir, and crucially the T is the last chance to do so—no number of Sq’s
can ever subsequently clear the lock rows. We claim that within A/2 + 1 Sq’s (which cover 2A + 4
gridsquares), a loss will occur. Since there are an odd number of columns in the entire gameboard,
only rows that initially contain an odd number of filled gridsquares can be cleared by a sequence
of Sq’s; thus each row can be cleared at most once in the Sq sequence. In order to survive 2A + 4
gridsquares from a Sq sequence, at least one row must be cleared more than once. Therefore after
A/2 + 1 ≤ R/4 successive Sq’s, a loss must occur. 2

5 Hardness of Approximation

In this section, we give results on the hardness of approximating the objectives discussed above.
By modifying the reduction of Theorem 4.3, we can prove extreme inapproximability for either
maximizing the number of rows cleared or maximizing the number of pieces placed without a loss,
and a weaker inapproximability result for minimizing the maximum height of a filled gridsquare.

Theorem 5.1 Given a sequence of p pieces, approximating the maximum number of pieces that
can be placed without a loss to within a factor of p1−ε for any constant ε > 0 is NP-hard.

Proof. Our construction is as in Figure 10(b), but with a larger reservoir: choose r so that the
r-row reservoir’s unfilled area R is larger than (2A)1/ε, where A is the total area of the gameboard

19

excluding the reservoir rows. As before, we append to the original piece sequence one T followed
by exactly enough Sq’s to completely fill the reservoir. As in Theorem 4.3, in the “yes” case of
3-Partition, we can place all of the pieces in the given sequence (which in total cover an area of
at least R), while in the “no” case we can place pieces covering at most 2A area before a loss must
occur. Thus it is NP-hard to distinguish the case in which we can survive all p pieces of the original
sequence from the case in which we can survive at most 2A/4 < (Rε)/4 < pε pieces. 2

Theorem 5.2 Given a sequence of p pieces, approximating the maximum number of rows that can
be cleared to within a factor of p1−ε for any constant ε > 0 is NP-hard.

Proof. Our construction is again as in Figure 10(b), with r > a2/ε rows in the reservoir, where
there are a total rows at or above the second lock. As above, in the “yes” case of 3-Partition,
we can completely fill and clear the gameboard, and in the “no” case we can clear at most a rows.
Thus it is NP-hard to distinguish the case in which at least r rows can be cleared from the case in
which at most a < rε/2 rows can be cleared.

Note that the number of columns c in our gameboard is fixed and independent of r, and that
the number of pieces in the sequence is constrained by r < p < (r + a)c. We also require that r be
large enough that p < (r + a)c < r2/(2−ε). (Note that r, and thus our game, is still polynomial in
the size of the 3-Partition instance.) Thus in the “yes” case we clear at least r > p1−ε/2 rows,
and in the “no” case we clear at most a < rε/2 < pε/2. Thus it is NP-hard to approximate the
number of cleared rows to within a factor of (p1−ε/2)/(pε/2) = p1−ε. 2

Theorem 5.3 Given a sequence of p pieces, approximating the minimum height of the highest filled
gridsquare to within a factor of 2− ε for any constant ε > 0 is NP-hard.

Proof. Once again, our construction follows Figure 10(b). Let F = O(Ts) be the total number of
filled gridsquares at or above the rows of the lower lock, and let P = O(Ts) be the total number of
gridsquares in the piece sequence up to and including the second T. Choose r = (F + P)/δ, where
δ = ε/(3− ε).

As before, in the “yes” instance of 3-Partition, we can place the pieces of the given sequence
so that the highest filled gridsquare is in the (5T + 18)th row of the original gameboard, which is
height 5T + 20 + r ≤ r + P + F ≤ r(1 + δ) in our gameboard.

In the “no” case, all of the Sq’s appended to the piece sequence will have to be placed at or above
the second lock, since we can never break into the reservoir. Note that, if rows are not cleared,
we can never pack the appended Sq’s into fewer than r rows. Thus the height of the highest filled
gridsquare is at least 2r−κ, where κ is the number of rows cleared during the sequence. As before,
we can only clear rows that have an odd number of filled gridsquares in them before the Sq’s in the
sequence. Since there are only F + P gridsquares in total in this part of the sequence, obviously
κ ≤ F + P = rδ. Thus there is a filled gridsquare at height at least r(2− δ).

Therefore it is NP-hard to approximate the minimum height of the highest filled gridsquare to
within a factor of r(2− δ)/r(1 + δ) = (2− δ)/(1 + δ) = 2− ε. 2

6 Varying the Rules of Tetris

The completeness of our reduction does not depend on the full set of allowable moves in Tetris,
and the soundness does not depend on all of its limitations. Thus our results continue to hold in

20

some modified settings. In this section, we will prove the following theorem:

Theorem 6.1 It remains NP-hard to optimize (or approximate) the maximum height of a filled
gridsquare, the number of rows cleared, tetrises attained, or pieces placed without a loss when any
of the following hold:

1. the player is restricted to one rotation/translation move before each piece drops in height.

2. pieces are restricted to {LG, RG, I, Sq}, {LG, LS, I, Sq}, or {RG, RS, I, Sq}, plus at least one other
piece. (For the latter two cases, the player can only be restricted to two rotation/translation
moves at each height.)

3. losses are not triggered until after filled rows are cleared, or if losses never occur. (For the
latter case, maximizing the number of pieces placed without a loss is meaningless, so the
hardness results only apply for the other objectives.)

4. rotations follow any reasonable rotation model. 2

6.1 Limitations on Player Agility

We have phrased the rules of Tetris so that the player can, in principle, make infinitely many
translations or rotations before moving the piece down to the next-highest row. When actually
playing Tetris, there is a fixed amount of time (varying with the difficulty level) in which to make
manipulations at any particular height h; one cannot slide pieces arbitrarily far to the left or right
before the piece falls.

Our reduction requires only that the player be able to make a single translation before the piece
falls by another row (or is fixed), to slide a Sq into a notch. This is why we have chosen to have
2s + O(1) empty rows at the top of the game board: at most 2s translations and 2 rotations are
required to place a piece into any desired column and orientation, since each piece starts in the
middle of the top of the gameboard. Thus 2s + O(1) rows in the staging area affords us enough
room to do any desired translation and rotation before the piece reaches the top of a bucket, while
still only making one such move at any given height. (In the “no” case for loss-avoidance, this may
cause the game to end more quickly, but the “yes” case remains feasible.)

Thus the problem remains NP-hard even when move sequences are restricted to at most one
move between drops, for any of the objectives.

6.2 Piece Set

Our reduction uses only the pieces {LG, RG, I, Sq, T}, so Tetris remains NP-complete when the
pieceset is thus restricted.

Additionally, the reduction described in a previous paper [5] uses the pieceset {LG, LS, I, Sq, T},
and, by taking the mirror image of that reduction, the reduction also holds for the pieceset
{RG, RS, I, Sq, T}. (That reduction uses similar ideas to the one in this paper, but is much more
complicated. In particular, the notches in that reduction are of width two, and thus for complete-
ness the player must be able to make two translation moves at a particular height.) Thus Tetris is
still hard when restricted to any of these piecesets.

In fact, the use of the T in the lock was not required; we simply need some piece that does not
appear elsewhere in the piece sequence. Thus Tetris remains NP-hard for any piece set consisting

21

of {LG, RG, I, Sq}, {LG, LS, I, Sq}, or {RG, RS, I, Sq}, plus at least one other piece. When we use a
snake as the lock piece, the bottom three gridsquares of a vertically oriented snake serves as the
key, and we observe that no other piece—except T, which is thus not in our sequence—can be
placed without filling at least two gridsquares above the (5T + 18)th row. This implies the same
hardness results.

6.3 Losses

In Section 2, we defined a loss as the fixing of a piece so that it does not fit entirely within
the gameboard; i.e., the piece fills some gridsquare in the would-be (m + 1)st row of the m-row
gameboard. Instead, we might define losses as occurring only after rows have been cleared—that
is, a piece can be fixed so that it extends into the would-be (m+1)st row, so long as this is not the
case once all filled rows are cleared. Since the completeness sequence (of Proposition 3.3) never fills
gridsquares anywhere near the top of the gameboard, our results hold for this definition as well.

In fact, for our reduction, we do not depend on the definition of losses at all—the completeness
trajectory sequence does not near the top of the gameboard, and the soundness proof does not rely
on losses. Obviously the objective of Theorem 4.3 is nonsensical without a definition of losses, but
all of the other hardness results still hold even if there are no losses whatsoever.

6.4 Rotation Rules

Above, we specified concrete rules for the rotation of pieces around a particular fixed point in each
piece. However, our proof of correctness only relied on the general properties of reasonable rotation
models, as defined in Section 2. In particular, there are two other reasonable rotation rules of
interest: the continuous model and the Tetris model that we have observed in real implementations.

In the continuous (or Euclidean) rotation model, the rotation of a piece is around its center,
as before, but we furthermore require that all gridsquares that the piece passes through must be
unoccupied. Note that this rotation model is significantly more restrictive than a generic reasonable
rotation model, and, in particular, the buckets shown in Figures 6(f), 6(h), 7(d), 7(e), 8(e), and 8(f)
cannot be produced via translations and Euclidean rotations.

The Tetris rotation model, which we have observed to be the one used in a number of actual
Tetris implementations, is illustrated in Figure 11. Intuitively, this model works as follows: for
each piece type, choose the smallest k so that the piece fits within a k-by-k bounding box (k = 2
for Sq, k = 4 for I, and k = 3 otherwise). In a particular orientation, choose the smallest k1 and k2

so that the piece fits in k1-by-k2 bounding box. Place the piece so that the k1-by-k2 bounding box
is exactly centered in the k-by-k box. This does not in general yield a position aligned on the grid,
so shift the k1-by-k2 bounding box to the left and up, as necessary. (Incidentally, it took us some
time to realize that the “real” rotation in Tetris did not follow the instantaneous model, which is
intuitively the most natural one.)

One can quickly confirm that both the continuous and Tetris rotation models are reasonable,
and thus that our results continue to hold under them.

7 Conclusion and Future Work

An essential part of our reduction is a complicated initial gameboard; it is a major open question
whether Tetris can be played efficiently with an empty initial configuration. One possible approach

22

←− ←→ ←→ ←→ −→

←− ←→ ←→ ←→ −→

←− ←→ ←→ ←→ −→

←− ←→ −→

←− ←→ −→

←− ←→ −→

←− −→

Figure 11: The Tetris model of rotation. The pictured k-by-k bounding box is in the same position
in each configuration; each piece can be rotated clockwise to yield the configuration on its right
(wrapping to the leftmost column) or counterclockwise to yield the configuration on its left.

to this question would be to give a sequence of pieces that forces the player to produce the initial
gameboard in Figure 3. We note that, at least, there is a piece sequence that can be played
to produce this configuration. This fact suggests an interesting combinatorial problem: given a
gameboard B, does there exist a piece sequence that can be played to produce B? Recently, the
fourth and fifth authors have proved that a gameboard B can be constructed if and only if a
simple parity condition on the number of filled gridsquares of B is met, and have given an efficient
algorithm to construct any such B [8].

Our results are largely robust to variations on the rules (see Section 6), but our completeness
result relies on the translation of pieces as they fall. At more difficult levels of the game, it may
be very hard to make even one translation before the piece drops another row in height. Suppose
the model for moves (following Brzustowski [2]) is the following: the piece can be translated and
rotated as many times as the player pleases, and then falls into place. (That is, no translation or
rotation is allowed after the piece takes its first downward step.) Is the game still hard?

It is also interesting to consider Tetris with gameboards of restricted size. What is the com-
plexity of Tetris for a gameboard with a constant number of rows? A constant number of columns?
Is Tetris fixed-parameter-tractable with respect to either dimension of the gameboard? (We have
polynomial-time algorithms for the special cases in which the total number of gridsquares is loga-

23

rithmic in the number of pieces in the sequence, or for the case of a gameboard with two columns.)
We have reduced the pieceset down to five of the seven pieces. For what piecesets is Tetris

polynomial-time solvable? (For example, with the pieceset {I} the problem seems polynomially
solvable, though non-trivial because of the initial partially filled gameboard.)

Finally, in this paper we have concentrated our efforts on the offline, adversarial version of Tetris.
In a real Tetris game, the initial gameboard and piece sequence are generated probabilistically, and
the pieces are presented in an online fashion. What can be said about the difficulty of playing online
Tetris if pieces are generated independently at random according to the uniform distribution, and
the initial gameboard is randomly generated? Some possible directions for this type of question
have been considered by Papadimitriou [12].

Acknowledgments. We would like to thank Amos Fiat, Siegfried Nijssen, and Ming-wei Wang
for helpful discussions and comments. Thanks also to Josh Tauber for pointing out the puzzles in
Games Magazine [10].

This work was partially supported by an NDSEG Graduate Research Fellowship and an NSF
Graduate Research Fellowship.

References

[1] Ron Breukelaar, Hendrik Jan Hoogeboom, and Walter A. Kosters. Tetris is hard, made easy.
Technical Report 2003-9, Leiden Institute of Advanced Computer Science, Universiteit Leiden,
2003.

[2] John Brzustowski. Can you win at Tetris? Master’s thesis, University of British Columbia,
1992.

[3] Heidi Burgiel. How to lose at Tetris. Mathematical Gazette, pages 194–200, July 1997.

[4] Erik D. Demaine. Playing games with algorithms: Algorithmic combinatorial game theory.
In Jǐŕı Sgall, Aleš Pultr, and Petr Kolman, editors, Proc. 26th Symposium on Mathematical
Foundations in Computer Science, volume 2136 of Lecture Notes in Computer Science, pages
18–32, August 2001. Full version available as cs.CC/0106019.

[5] Erik D. Demaine, Susan Hohenberger, and David Liben-Nowell. Tetris is hard, even to approx-
imate. In Tandy Warnow and Binhai Zhu, editors, Proc. 9th Annual International Conference
on Computing and Combinatorics (COCOON’03), volume 2697 of Lecture Notes in Com-
puter Science, pages 351–363. Springer-Verlag, July 2003. Also available as Technical Report
MIT-LCS-TR-865, Laboratory for Computer Science, Massachusetts Institute of Technology,
September 2002, and as cs.CC/0210020.

[6] Michael R. Garey and David S. Johnson. Complexity results for multiprocessor scheduling
under resource constraints. SIAM J. Comput., 4:397–411, 1975.

[7] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York, 1979.

24

[8] Hendrik Jan Hoogeboom and Walter A. Kosters. How to construct Tetris configurations.
Technical report, Leiden Institute of Advanced Computer Science, Universiteit Leiden, 2003.
Submitted for publication.

[9] Richard Kaye. Minesweeper is NP-Complete. Mathematical Intelligencer, 22(2):9–15, 2000.

[10] Scott Kim. Tetris unplugged. Games Magazine, pages 66–67, July 2002.

[11] Michael M. Kostreva and Rebecca Hartman. Multiple objective solution for Tetris. Technical
Report 670, Department of Mathematical Sciences, Clemson University, May 1999.

[12] Christos Papadimitriou. Games against nature. Journal of Computer and System Sciences,
31:288–301, 1985.

[13] David Sheff. Game Over: Nintendo’s Battle to Dominate an Industry. Hodder and Stoughton,
London, 1993.

[14] Tetris, Inc. http://www.tetris.com.

[15] Uri Zwick. Jenga. In Proc. 13th Symposium on Discrete Algorithms, pages 243–246, 2002.

25

