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1 Overview

Randomness is an incredibly useful phenomenon, with applications in many fields. We can solve
some problems using randomness exponentially faster than we know how to do deterministically.
Do we need truly random bits for these algorithms? What if we don’t have access to perfect
randomness? Using results from the theory of computational pseudorandomness, we find that
many algorithms can be made to work with very weak sources of randomness, and possibly with
no randomness at all.

2 The Utility of Randomness

Randomness is useful in a very wide variety of settings. The most familiar example is its use in
statistics to quickly gather aggregate information about a large population. For example, if you
have 280 million people voting either red or blue, you can poll a random sample of 2,000 people.
Then it can be shown (using the law of large numbers) that with probability > 0.99, the fraction
of people voting red in the sample is within 2% of the fraction voting red in the whole population.
Furthermore, the sample size of 2,000 gives this accuracy independent of the total population size.
This is an extremely powerful method: deterministically, you would have to poll all but 4% of the
population to get 2% accuracy.

A computational example is the problem of polynomial identity testing. Suppose we are given a
polynomial p of degree d in n variables, not as a list of coefficients but as a formula which may
not be expanded fully. How can we determine whether p is identically zero? The best known
deterministic algorithm is no faster than simply expanding p out, which can take exponential time.
But there is a simple polynomial-time algorithm based on the following lemma:

Lemma 1 (DeMillo-Lipton ‘78 [1], Schwartz ‘80 [2], Zippel ‘79 [3]). If r1, . . . , rn are picked randomly
from {1, 2, . . . , 100d} and p 6= 0, then Pr[p(r1, . . . , rn) = 0] < 0.01.

All we do is randomly pick such r1, . . . , rn and compute p(r1, . . . , rn) (which clearly takes polynomial
time). If p = 0, we will get zero with certainty. If p 6= 0, then by the lemma we will get something
other than zero with high probability.

Another computational example is the problem of counting the number of tilings of an n-by-n grid
by dominos. This is related to the monomer-dimer problem in statistical physics, and captures var-
ious important thermodynamic properties of real systems. In general, there may be exponentially-
many different tilings, and the best known deterministic algorithm for even approximately counting
how many there are takes exponential time. But using randomness, there is an efficient approxi-
mating algorithm due to Luby, Randall, and Sinclair [4] (this is a Monte Carlo algorithm, the ideas
behind which go back to von Neumann and Ulam).
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Another setting where randomness can be crucial is distributed computation. Consider the dining
philosophers problem, which is a toy model capturing the idea of resource allocation and sharing
in asynchronous systems. Five philosophers sit at a round table, each with a plate of food in front
of them. There are five forks placed between the plates, so that each philosopher has one fork to
the left and one to the right. Each philosopher needs to eat occasionally, and requires two forks
to do so. Say that the behavior of each philosopher is specified by the same program, which is
run independently and concurrently by each philosopher. Is there some program which will ensure
that each philosopher gets properly fed (that is, can eat an infinite number of times)? In fact, it
was shown by Dijkstra that no deterministic program can achieve this — deadlock is unavoidable.
However, it is possible to solve the problem with a probabilistic algorithm, which uses randomness
to break the problem’s symmetry (Lehmann-Rabin ‘81 [5]). In this case, randomness does not
simply make a hard problem easy, but an impossible problem solvable.

Randomness can be fundamental in mathematical definitions, as is the case for the concept of
rational behavior in game theory. For some game, a Nash equilibrium is an assignment of strategies
to each player such that no player has an incentive to change his or her strategy given those of
their opponents. Nash’s fundamental theorem on such equilibria is that every finite game has one.
However, this is only true if the players are allowed to use randomness (so called mixed strategies).
Thus, whether or not rational participants can use randomness is of critical importance in game
theory.

Example: An example [not in Widgerson’s lecture] is the matching pennies game, where each
player picks heads (H) or tails (T) and the payoff matrix is

H T

H 1/-1 -1/1

T -1/1 1/-1

If each player picks H or T deterministically, there is obviously no Nash equilibrium, because
whatever the outcome one player can improve his or her payoff by switching strategies. There is a
mixed strategy equilibrium, however, namely when each player picks H or T with equal probability.

A final application of randomness is in cryptography and e-commerce. Here, randomness is neces-
sary even just to define secrecy — how likely is an adversary to guess the message? The work of
Shannon in information theory shows that a secret is only as good as the entropy in it. Randomness
has proved indispensable in almost every part of cryptography, including public-key cryptography,
digital signatures, and zero-knowledge proofs.

3 Randomness and Pseudorandomness

It is clear from these examples that randomness is useful. But where do you get random bits? Well,
ask Google! Searching for “true random bits” turns up a number of companies who will happily
sell them to you. Where do they get them from? Radioactive decay, atmospheric noise, quantum
optics measurements... are these actually random? What is randomness?
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3.1 Defining Randomness

Until 30 years ago, randomness was a property of events. A coin flip was random. Now, our
perspective is different. Say I toss a coin, and you guess how it will land. What’s the probability
that you guess right? Probably you say 50%. What if I give you a laptop? Probably still 50%. Now
I give you a big supercomputer. It’s not 50% any more, since you can calculate the coin’s trajectory
and get it right every time. Randomness is in the eye computational power of the beholder, not in
an event. As we will see, there can be great value in something which is not actually random, but
“looks random” when you have limited computational ability.

3.2 Defining Pseudorandomness

Psuedorandomness is the study of deterministic structures which have some “random-like” prop-
erties (the particular properties of interest depending on the application). In computer science, we
want to know how to explicitly build such structures, and how quickly this can be done.

We can make an analogy to the problem of finding explicit normal numbers. A normal number1 is
a real number whose digit expansion in any base b has each digit occurring 1/b of the time, each
pair of digits occuring 1/b2 of the time, etc. Borel [6] proved that a random real number (with
respect to Lebesgue measure) is normal, which means normality is a pseudorandom property in
our terminology. The problem of building a deterministic structure with this property in this case
is that of finding an explicit real number which is normal. How about π, or

√
2, or e? No simple

example like these is known2.

Many other problems can be phrased in this way. The P vs. NP question is an example: we know
that random functions are hard to compute (require superpolynomial-size circuits) — how about
TSP? The Riemann Hypothesis is another example. Consider a walk on the integers where we
start at 0 and can move one unit to the left, one to the right, or stay in place at each time step.
If the walk is chosen randomly, it can be shown that after N steps almost surely we will be within
O(n1/2+ε) of the origin. This is our pseudorandom property, and it turns out that the Riemann
Hypothesis is equivalent to the particular walk where the direction to move at time x is given by
µ(x) (where µ is the Möbius function) having this property (Mertens [8]).

3.3 Coping with Imperfect Randomness

All of our examples in Section 2 assumed that we had access to perfect randomness. This is the
ideal situation, but in the real world we much more frequently have weak random sources, which can
be biased and dependent on each other. What can we do given several independent weak sources,
what can we do with a single one, and what if we have no access to randomness at all? In fact,
even a single weak source will suffice to make probabilistic algorithms work, and assuming P 6= NP,
for polynomial-time algorithms no source is needed at all!

1Sometimes called an absolutely normal number.
2There are some explicit normal numbers known — they are just not particularly natural [7].
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3.3.1 Poor Sources: Randomness Purification

The problem with a weak random source is that it may be biased in favor of certain outcomes,
and that successive trials may not be independent. The idea of extractor theory is to purify such
sources and yield uniformly-distributed independent bits.

In the case of multiple independent weak sources, one approach to designing an extractor is that of
pseudorandom tables. In can be shown that in a random matrix, any k-by-k “window” (formed by
taking the entries at the intersections of k rows and k columns) contains k1+ε distinct entries with
high probability (for any ε > 0). Can we generate such a table deterministically? You can try the
addition and multiplication tables, for example, but in either case it is easy to find windows with
only O(k) distinct entries. However, we have the following theorem:

Theorem 2 (Erdös-Szemerédi ‘83 [9], Bourgain-Katz-Tao ’04 [10]). Every k-by-k window will have
Ω(k1+ε) distinct entries in one of the addition table or the multiplication table.

This implies that if A, B, and C are independent weak random sources, A+B ·C has greater entropy
than any of the sources individually. This allows us combine many poor sources of randomness to
create a single good source (Barak-Impagliazzo-Wigderson ’04 [11]).

If we only have a single weak source (or we have multiple but they are not independent), there
is still hope. Say our probabilistic algorithm requires n unbiased, independent bits. The idea is
to convert a large number of “bad” bits from the source into a smaller number of better bits.
For example, say that we collect n3 bits from the source, and that they have about n2 entropy.
There are extractors which will convert these bits into sequences of n bits which are (with high
probability) a perfect sample of all possible n-bit sequences. We can then feed each sequence in turn
into our algorithm, and take the majority vote of the results. Because the extracted sequences are
a perfect sample, with high probability we will obtain the correct result. One such extractor is due
to Guruswami-Umans-Vadhan ’07 [12], which can extract all the entropy from an n-bit distribution
using an O(log n) truly random seed. We simply run the extractor with all the polynomially-many
possible seeds, and do majority vote as above.

3.3.2 No Sources: Deterministic Derandomization

If we don’t even have weak random sources, it is not clear what we can do — we can’t generate
entropy from nothing. The key is to remember our observation that randomness depends on com-
putational power: if our algorithms run with limited resources, we don’t need actual randomness,
but merely something which is indistinguishable from randomness given those resources.

Here is the general idea. Following Goldwasser-Micali ‘82 [13], we say a distribution D over se-
quences is pseudorandom if for every probabilistic polynomial-time algorithm, using D instead of
truly random coins gives the same output distribution. How can we deterministically generate an
n-bit pseudorandom sequence? Suppose we had k ∼ c log n truly random bits. A starting point
would be to go from k bits of true randomness to k+1 bits of pseudorandomness. If we have a hard
(requiring exponentially-large circuits) function f , we can do this simply by applying f to the first
k bits to yield the last bit. This idea can be extended to yield an n-bit pseudorandom sequence
(Nisan-Wigderson ‘88 [14]). Since we don’t actually have a random source, as before we repeat this
process for all of the 2k ∼ nc seeds, feed the resulting sequences into our algorithm, and take the
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majority vote. This gives a deterministic3 algorithm which runs in polynomial time: BPP = P!

The assumption in this argument is that we have a sufficiently hard function f . The best current
result is the following:

Theorem 3 (Impagliazzo-Wigderson ‘98 [15]). If NP requires exponential-size circuits, then BPP=P.

We make two final notes. First, there is a partial converse to Theorem 3 (Kabanets-Impagliazzo
‘04 [16])! Second, it is possible to derandomize specific algorithms without assumptions. Agrawal,
Kayal, and Saxena derived their primality testing algorithm [17] by designing a pseudorandom
number generator good enough for a probabilistic algorithm that already existed! The same is true
for Reingold’s log-space algorithm [18] for undirected graph connectivity.
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