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1 Overview

In the previous lecture, there was a question about whether or not true randomness exists in the
universe. This question is still seriously debated by many physicists and philosophers. However,
even if true randomness does not exist, it is possible to use pseudorandomness for practical purposes.
In any case, randomization is a powerful tool in algorithms design, sometimes leading to more
elegant or faster ways of solving problems than known deterministic methods.

This naturally leads one to wonder whether randomization can solve problems outside of P, de-
terministic polynomial time. One way of viewing randomized algorithms is that for each possible
setting of the random bits used, a different strategy is pursued by the algorithm. A property of
randomized algorithms that succeed with bounded error is that the vast majority of strategies suc-
ceed. With error reduction, all but exponentially many strategies will succeed. A major theme of
theoretical computer science over the last 20 years has been to turn algorithms with this property
into algorithms that deterministically find a winning strategy. From the outset, this seems like a
daunting task – without randomness, how can one efficiently search for such strategies? As we’ll
see in later lectures, this is indeed possible, modulo some hardness assumptions.

There are two main objectives in this lecture. The first objective is to introduce some probabilis-
tic complexity classes, by bounding time or space. These classes are probabilistic analogues of
deterministic complexity classes P and L. The second objective is to prove that the undirected
connectivity problem is in the certain probabilistic complexity class RL, by intorducing a space-
efficient algorithm for solving it.

2 Probabilistic Complexity Classes

The aim of this section is to introduce several probabilistic complexity classes. These classes are
obtained by bounding time or space of a probabilistic Turing machine(PTM)1. A PTM is a Turing
machine with a random source, and it is a fundamental model for probabilistic computation.

2.1 Time-Bounded Classes

There are several probabilistic analogues of the class P. ZPP, RP or BPP are classes of decision
problems that can be solved by a polynomial-time PTM with zero-sided error, one-sided error or
two-sided error, respectively. The following are more precise definitions for these classes.

1See [1, Definition 7.1] for more precise definition.
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Definition 1. A language L is in the class ZPP if and only if there is an expected polynomial-time
PTM M such that

x ∈ L ⇔ M(x) = 1.

A ZPP algorithm is called a Las Vegas algorithm.

Definition 2. A language L is in the class RP if and only if there is an polynomial-time PTM
M such that

x 6∈ L ⇒ M(x) = 0, and

x ∈ L ⇒ Pr[M(x) = 1] ≥ 2/3.

An RP algorithm is called a Monte Carlo algorithm.

Definition 3. A language L is in the class BPP if and only if there is an polynomial-time PTM
M such that

x 6∈ L ⇒ Pr[M(x) = 0] ≥ 2/3, and

x ∈ L ⇒ Pr[M(x) = 1] ≥ 2/3.

A BPP algorithm is called an Atlantic City algorithm.

Obviously, ZPP and BPP are closed under complementation. RP, however, may not be closed
under complementation, so there is a dual notion coRP. The immediate consequences now follow
from the definitions.

Theorem 4. P ⊆ ZPP ⊆ RP ⊆ BPP

Theorem 5. ZPP = RP ∩ coRP

2.2 Space-Bounded Classes

There are also several probabilistic analogues of the class L. RL or BPL are classes of decision
problems that can be solved by a logarithmic-space polynomial-time PTM with one-sided error or
two-sided error, respectively. Observe that the time is also bounded. The time is automatically
bounded for deterministic cases, since a logarithmic-space Turing machine only has a polynomial
number configurations. This, however, is not true for probablistic cases. The following are more
precise definitions for these classes.

Definition 6. A language L is in RL if and only if there is a logarithmic-space polynomial-time
PTM M such that

x 6∈ L ⇒ M(x) = 0, and

x ∈ L ⇒ Pr[M(x) = 1] ≥ 2/3.

Definition 7. A language L is in BPL if and only if there is a logarithmic-space polynomial-time
PTM M such that

x 6∈ L ⇒ Pr[M(x) = 0] ≥ 2/3, and

x ∈ L ⇒ Pr[M(x) = 1] ≥ 2/3.
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BPL is obviously closed under complementation. RL, however, may not be closed under com-
plementation, so there is a dual notion coRL. The immediate consequences now follow from the
definitions.

Theorem 8. L ⊆ RL ⊆ BPL

2.3 Some Remarks

Although the error bound in the definitions was 1/3, this could be exponentially reduced by repeat-
ing the algorithm, and taking a majority vote. More precisely, the error bound becomes ε > 0 if the
algorithm is repeated dlog3 ε

−1e-times. Therefore, the error bound could be significantly reduced,
so that for all intents and purposes the algorithm may never fail – one would have to wait beyond
the life of the universe before the algorithm makes a mistake. This fact implies that randomized
algorithms are highly practical.

Moreover, a small error bound of an algorithm implies that most random strings are good. Some-
times, however, it is very difficult to find which random strings are good or not. In other words,
derandomization may be difficult. For example, the median finding problem has a fairly simple
linear-time randomized algorithm, but all known linear-time deterministic algorithms are relatively
complicated and less practical [1, 7.2.1].

The following theorems show that with nonuniformity or nondeterminism, we can efficiently search
for the good random strings. The first theorem is due to Leonard Adleman [2] and the second
theorem is known as the Siper-Gács theorem [3].

Theorem 9. BPP ⊂ P/poly

Proof. Suppose L ∈ BPP. Then there is a polynomial-time PTM M for L using an m-bit random
string y ∈ {0, 1}m such that

Pr [M(x) 6= L(x)] ≤ 2−n−1

for each input size n by the error reduction procedure. Here, it may be assumed thatm is polynomial
in n, because of the running time of M . For each x ∈ {0, 1}n, there are at most 2m−n−1 random
strings that give a wrong answer. Therefore, at most 2m−1 random strings give a wrong answer for
some x, meaning there is y0 ∈ {0, 1}m that always give a correct answer. The circuit Cn for L is
now obtained by using y0, implying L ∈ P/poly.

Theorem 10 (Siper-Gács Theorem). BPP ⊆ Σp
2

Sketch of Proof. Suppose L ∈ BPP. Then there is a polynomial-time TM M for L using an m-bit
random string y ∈ {0, 1}m such that

Pr
y

[M(x, y) 6= L(x)] ≤ 2−n

for each input size n. Let k = dm/ne+ 1. Then x ∈ L if and only if

∃u0, · · · , uk−1 ∈ {0, 1}m ∀y ∈ {0, 1}m
∧
i<k

M(x, y ⊕ ui) accepts

is true. Therefore, L ∈ Σp
2. See [1, Theorem 7.15] for more detailed proof.
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There is also a known result for BPL due to Michael Saks and Shiyu Zhou [4]. The proof was not
given in the lecture.

Theorem 11. BPL ⊆ DSPACE(log3/2 n)

3 Undirected Connectivity

The aim of this section is to prove that the undirected connectivity problem is in the class RL.
The undirected connectivity problem is a decision problem that decides whether or not two points
s and t are in the same connected component of an undirected graph G = (V,E). The problem has
a simple linear time algorithm by using DFS or BFS. This algorithm, however, requires a linear
space. There is a simple redomized algortihm that only uses logarithmic space.

The idea of the algorithm is fairly simple. It takes a random walk on the graph, and with high
probability the walk will reach the terminal vertex if the initial vertex is in the same connected
component. More precisely, take a large polynomial l in the input size. Then do a random walk of
length l starting from the initial vertex s. The random walk is where at each time, the walk chooses
a neighbor of the current vertex uniformly at random to go to. The algorithm accepts the input if
the walk reaches the termial vertex t, and rejects if not. Now, we need to analyze this algorithm.
This algorithm is due to Romas Aleliunas et al. [5].

Theorem 12. Let l = 72n4 log n where n is the number of vertices. If s and t above are in the
same connected component, the algorithm accept with the probability greater than 2/3. If not, the
algorithm always rejects. In other words, the undirected connectivity problem is in RL.

The proof requires some elementary linear algebra. First of all, it may be assumed that the graph
is regular with self-loops at each vertex by adding several loops and parallel edges. It may be also
assumed that the graph G is conneceted, because the algorithm always returns the correct answer
if s and t are in different connected components. Now, let n, m and d be |V |, |E| and the degree.
Without loss of generality, let the vertex set be of the form of {0, 1, · · · , n− 1}.

Let v be any distribution over V . Then v could be also considered as a column vector where
vi = Pr[v = i]. Let A be the adjacency matrix of G multiplied by a constant scalar 1/d. Then Av
is a new distribution of v after one random walk step.

The idea of the proof is also simple. It will be shown that after some long random walk, the
distribution becomes almost uniform. In other words, if l0 is large enough then every entry of Al0v
becomes larger than 1/(2n) regardness of the initial distribution v. Then the random walk reaches
t within l0 steps with the probability greater than 1/(2n), so reaches t within 3nl0 steps with the
probability greather than 2/3. Before we prove the theorem, several lemmata are needed.

Lemma 13. Let u be the uniform distribution. Then Au = u, or equivalently, u is an eigenvector
of A with the correnponding eigenvalue 1.

Proof. Since the graph is regular, (Au)i is just an average of uj ’s where j’s are neighbors of i. Since
the distribution u is uniform, ui = uj , meaning (Au)i = ui. Therefore, Au = u.

Now, it should be proved that ‖Alv−u‖2 is fairly small for large l. This requires several facts about
eigenvalues and eigenvectors of A. Note that A has n eigenvalues with corresponding orthogonal
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eigenvectors, because A is symmetric. Also, since every entry of A is in [0, 1] and the sum of entries
of each row and column is 1, the eigenvalues should be between −1 and 1. Let the eigenvalues be
λ0, λ1, · · · , λn−1 and the corresponding eigenvectors be x0, x1, · · · , xn−1. Without loss of generality,
it may assumed that λn−1 = 1, xn−1 = u and |λ0| ≤ |λ1| ≤ · · · ≤ |λn−1| = 1 by Lemma 13. Also,
let λ(G) = |λn−2|.

Lemma 14. For every distribution v and a natural number l,

‖Alv − u‖ ≤ λ(G)l,

where u is the uniform distribution and the norm here is the Euclidean norm.

Proof. Let v =
∑

i<n αixi. Since v is a distribution, αn−1 = 1. Therefore,

‖Alv − u‖2 =

wwwwwAl

(∑
i<n

αixi

)
− u

wwwww
2

=

wwwww
(∑

i<n

αiλ
l
ixi

)
− u

wwwww
2

=

wwwww
( ∑

i<n−1

αiλ
l
ixi

)
+ αn−1λ

l
n−1xn−1 − u

wwwww
2

=

wwwww ∑
i<n−1

αiλ
l
ixi

wwwww
2

=
∑

i<n−1

|αi|2|λi|2l ‖xi‖2

≤ λ(G)2l
∑
i<n

|αi|2 ‖xi‖2

= λ(G)2l

wwwww∑
i<n

αixi

wwwww
2

= λ(G)2l ‖v‖2

≤ λ(G)2l.

This completes the proof.

Lemma 15. λ(G) ≤ 1 − 1
4dn2 ≤ 1 − 1

4n3 , where d is the degree of each node in G (including self
loops).

Proof. The proof of this lemma was not given in the lecture. See [1, Lemma 21.4] for proof.
(Warning: the book uses a bound on the diameter that doesn’t work when self loops are added,
hence we get a worse bound on the eigenvalue, but it doesn’t end up mattering).

Proof of Theorem 12. let l0 = 8n3 log n. Then

‖Al0v − u‖2 <

(
1− 1

4n3

)8n3 logn
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≤ 1

n2
.

This implies that for every coordinate i, |(Al0v)i − ui| ≤ 1/n2. Thus the random walk reaches t
within l0 steps with the probability greater than 1/(2n) ≤ 1/n − 1/n2. Thus the random walk
reaches t within 72n4 log n ≥ 3nl0 steps with the probability greather than 2/3.
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