
6.841: Advanced Complexity Theory Fall 2012

Lecture 12 — October 18, 2012

Prof. Dana Moshkovitz Scribe: Justin Kopinsky

1 Overview

Last time we showed

‖Gl~p− ~u‖ ≤ λl

for any connected graph G and initial distribution ~p, where ~u is the uniform distribution and λ
is the second eigenvalue of G. This gave us a randomized algorithm for solving undirected s − t
connectivity by choosing a random neighbor at each step and accepting if we ever reach t and
rejecting if we’ve taken l = l(n, λ) steps without finding t.

We didn’t have time to see this last time, but there is the following lemma:

Lemma If G is not bipartite, then λ ≤ 1− 1
poly(n) .

In this lecture we derandomize this algorithm by giving a deterministic log space undirected con-
nectivity algorithm, a result due to Reingold[1].

2 Expanders

The main idea behind our approach is to find a class of graphs for which derandomization is easy.
Then, if we can transform any graph into a member of such a class, we can fully derandomize
connectivity. So...

Definition A graph on n vertices which is d-regular and has 2nd eigenvalue λ is called an
(n, d, λ)-expander.

In particular we will require d = O(1), λ < 1, λ = O(1). A family of graphs with growing n which
satisfy these constraints, is called an expander family.

2.1 Motivation

Suppose we wish to solve undirected connectivity on G, and we are told in advance that G is an
expander. Then, because λ = O(1), we only need l = Θ(log n) steps to get λl < 1/2n (i.e. Glp

1

is very close to uniform for any starting distribution p). There are only polynomially many such
walks, so we can enumerate and simulate all of them, and because G is d-regular (and d = O(1)),
this takes only logarithmic space to do, giving us a deterministic undirected connectivity algorithm.

Remark Notice that a path s→ v1 → · · · → vn → t is not an expander. After l = Θ(log n) steps
there will still have been no possible way to get from s to most of the nodes in the path, so Glp
cannot possibly be close to uniform, if p is the vector with 1 at s and 0 everywhere else.

3 Main Algorithm

Here we give a full algorithm for solving undirected connectivity on an arbitrary graph, G, deter-
ministically in logarithmic space.

Idea We would like to transform G into an expander by creating “shortcuts”. As long as we
never connect two nodes that are initially disconnected (or disconnect those which are initially
connected), we preserve the integrity of the problem, and can make any transformations we like.
Notice that we don’t have enough space to represent an entire transformed graph, so we will need
to keep track of all the transformations implicitly.

Observation It suffices to maintain the relation N(〈v, i〉) = 〈u, j〉, where u is the ith neighbor of
v (i ∈ [d]) and v is the jth neighbor of u. If we can compute N(〈v, i〉) using logarithmic space, we
can do all the operations necessary to simulate random walks on G.

3.1 d-Regularization

We first need to make sure that G is d-regular. For any node with degree < d, we can just duplicate
some edges incident to that node arbitrarily. Then, for any node with degree D > d, we split it into
a connected collection of D nodes, each of which is incident to d− 1 other nodes in the collection
(e.g. if d = 3, we just get a cycle). Furthermore, each node in the collection should be incident to
exactly one of the original neighbors of v, so that in total, each node has degree d.

Observation Let’s suppose d = 3 and call the nodes in the collection corresponding to the original
node v by {vk} for k ∈ [D]. Then it is easy to compute the new neighbor function N∗(〈vk, i〉) as
follows:

N∗(〈vk, 1〉) = 〈N(〈v, k〉), 1〉
N∗(〈vk, 2〉) = 〈vk−1, 3〉
N∗(〈vk, 3〉) = 〈vk+1, 2〉

2

and it is easy to check that there are systematic ways to do this for any d. Unfortunately, this
method can ruin our bounds on λ, as previously, we could just walk from v to u, but now we may
have to walk all the way around the cycle corresponding to v before being able to get to u, so we
will need to do something more clever later.

3.2 Dealing with λ

We’ve shown how to regularize the degree of G, but what about λ? Recall that we need λ = O(1)
for our algorithm to work.

Observation Consider G2, i.e. the graph obtained by putting an edge between any two vertices
in G which can be reached by a path of length 2 in G. It is well known that if G is represented as
a matrix, then the corresponding matrix G2 really does represent the correct graph. Furthermore,
we know λ(G2) = (λ(G))2. Better yet, if G was regular, then G2 is regular too! If we iterate this
process enough times for λ to become small, are we done?

Unfortunately not. Every time we square G, the degree of G is squared as well, so if we square G
a logarithmic number of times (enough for λ to shrink appropriately), the degree of G will become
polynomial, meaning we can’t enumerate its paths.

3.3 Replacement Products

Idea Unfortunately, our cycle method for regularizing graphs can significantly increase λ. We
need an alternative method of regularization which doesn’t deteriorate λ as much, which we can
then alternate with squaring to systematically lower λ without blowing up the degree.

To achieve this, we will use the replacement product, GrH. We require that |V (H)| = d = deg(G),
and that H is an expander graph (i.e. fix some expander family beforehand and choose H from
it) and construct GrH by replacing each vertex, v, of G with a copy of H, Hv = {Hv1, . . . ,Hvd}.
Then, if u is the ith neighbor of v in G (and v is u’s jth neighbor), we add deg(H) edges from Hvi

to Hvj (we duplicate edges so that the number of edges between separate Hv is about the same as
the number of edges interior to a single Hv). The resulting graph, G′, will have degree ∼ 2d.

We need to prove the following lemma:

Lemma If λ(G) ≤ 1− ε and λ(H) ≤ 1− δ then λ(GrH) ≤ 1− εδ2/24.

We start with the following claim:

Claim If G is an (n, d, λ)-expander, then

3

G = (1− λ)

1
n . . . 1

n
...

. . .
...

1
n . . . 1

n

+ λC

where ‖C‖ ≤ 1. Here ‖ · ‖ is the spectral norm, defined by

max
‖v‖22=1

‖Cv‖2

Proof of claim Write U =

1
n . . . 1

n
...

. . .
...

1
n . . . 1

n

. We can write C = 1/λ(G − (1 − λ)U). We need to

show ‖Cv‖22 ≤ ‖v‖22 holds for any v. Suppose {vi} is the eigenvector basis relative to G. Write
v =

∑
αivi, with v1 = ~u (the uniform vector). Write ~w =

∑
i>1 αivi. Then:

C~u =
1

λ
(Gu− (1− λ)U~u)

=
1

λ
(~u− (1− λ)~u)

= ~u

On the other hand,

‖Cw‖22 =
1

λ2
‖Gw‖22 (because w ⊥ u so Uw = 0)

=
1

λ2

∑
i>1

α2
i ‖Gvi‖22

≤ 1

λ2

∑
α2
iλ

2‖vi‖22

=
∑

α2
i ‖vi‖22

= ‖w‖22

so combining these, we have

‖Cv‖22 = ‖Cu‖22 + ‖Cw‖22 ≤ ‖u‖22 + ‖w‖22 = ‖v‖22

as desired. With this, we can prove the lemma:

4

Proof of lemma We’ll show λ((GrH)3) ≤ 1− εδ2

8 . The original lemma follows by basic approx-
imation theorems from calculus.

We can calculate the matrix (GrH)3 as:

(GrH)3 =

(
1

2
G⊗ Id +

1

2
(I ⊗H)

)3

(where ⊗ is the tensor product, i.e. A ⊗ B =

a11B . . . a1nB
...

. . .
...

an1B . . . annB

). Using the claim we just

proved, we also get:

H = δU + (1− δ)H ′

for some H ′ with ‖H‖ ≤ 1. Then we can calculate the dominant term of the expansion of (GrH)3

to be:

δ2

8
(I ⊗ U)(G⊗ ID)(I ⊗ U)

(which comes from one particular term in the binomial expansion, the other terms can be checked
to be inconsequential). However, we know λ(G) ≤ 1− ε by assumption, and λ(U) = 1, so in total,
we get:

λ(GrH)3 ≤ δ2

8
(1)(1− ε)(1) + (1− δ)H ′ = 1− εδ2

8

completing the proof.

3.4 Wrapping up

Now, we play a balancing game between powering G to decrease the eigenvalue and using replace-
ment products to reduce the degree. Suppose our initial graph were a d50-regular graph for some
constant d, where d is chosen such that H is a (d50, d/2, 1−δ) expander graph (which can be stored
with constant space and computed in constant time). Because we can brute force search for H, we
can make 1 − δ = 0.01. We iteratively build Gk = (Gk−1rH)50. Notice that Gk is a d50n-vertex
graph with degree d, where n is the number of vertices in G. These transformations preserve
connectivity. Now, by the lemmas above, we know that each connected component GO(logn) is an
expander.

Lemma 1. For every k, every connected component in Gk is a (d50kn, d50, 1 − ε(k))-expander,
where ε(k) ≥ 2k/n4.

Proof. This is by induction. For the base case: By the lemma in the previous lecture regarding the
second eigenvalue of regular graphs, we saw that λ(G) ≤ 1− 1/n4. GrH is a d-regular graph with

5

d50n vertices. Thus, G1 = (GrH)50 is a d50-regular graph, with d50n vertices. So first, λ(GrH) ≤
1 − δ2/(24n4) ≤ 1 − 1/(25n4), by the lemma above. Then, λ(G1) ≤ λ(GrH)50 ≤ 1 − 2/n4. This
establishes the base case. Then, assuming Gk−1 is a (d50(k−1)n, d50, 1− ε)-expander, we know that
λ(Gk−1rH) ≤ 1−ε/25, and then λ(Gk) ≤ 1−2ε. So Gk is a (d50kn, d50, 1−2ε(k−1))-expander.

So after k = O(log n) many steps, we obtain a graph that is a (poly(n), d50, O(1))-expander.
Furthermore, we can compute the neighbors of Gk implicitly in logarithmic space given G. We
then enumerate over all O(log n)-length walks in Gk. Thus, computing connectivity on Gk can be
done deterministically in logarithmic space, giving the desired result.

References

[1] O. Reingold, Undirected ST-connectivity in log-space, STOC, 376-385, 2005.

6

