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1 Overview

In this lecture, we move towards completing our proof of the PCP theorem by analyzing the
soundness case of the Long Code Test. To do this, we introduce and use Fourier analysis.

Over the past few lectures, we’ve been going through the proof of the PCP theorem. We used
the powering operation to improve the gap in the PCP theorem. However, powering increases the
alphabet by a lot– from Σ to Σdt . This would be okay if we only needed to do it a few times, but
we need to do this operation over and over, so this is too much for the alphabet to grow. We used
the composition step to decrease the alphabet size at each step.

2 The Long Code Test

After powering, the assignment to u is some σ(u) ∈ Σdt . The alphabet is too big, so we solve this
by replacing u with many vertices, and use those vertices to represent an assignment to u. We do
the same for all vertices v, and all edges e connecting vertices u and v. We need to construct edges
between these new vertices so we can tell if the original constraint between u and v, φe, is satisfied.
Essentially, we want to check if all of the constraints among all the vertices are satisfied, but we
want to do this by only querying a constant number of the new vertices for their assignment. But
this is exactly in the spirit of probabilistically checkable proofs – PCPs give a way to write a proof
that you only need to query a constant number of locations to verify correctness; here, we’re not
verifying a proof, but probabilistically checking whether an assignment satisfies a given constraint.
Essentially we’re using a “mini-PCP” (called an assignment tester in the literature) to accomplish
this. The “mini-PCP” we use here is known as the Long Code Test or the Dictator Test.

In the last lecture we proved completeness: if φe is satisfied by σ(v) and σ(u), then the long code
test must always accept. In this lecture we will prove soundness. We can decompose the assignment
table into three tables, one for the vertices that replace u, one for the vertices that replace v, and
one for the vertices that replace e. To prove soundness of the overall PCP theorem, we need to use
the Hastad test that presented in the last lecture, but today, we’re going to talk about a simplified
version of the long code test where we only look at the table of vertices replacing e. Let that
assignment table be A. The simplified test is as follows:

Definition 1 ( The Long Code Test / Dictator Test). Given A : f → {±1}, such that Ef [A(f)] = 0,
the long code test consists of the following:

• Pick f ,g uniformly at random

• Pick µ. For every x, if f(x) = 1, set µ(x) = 1. If f(x) = −1, set µ(x) = 1 with probability
1− τ , and µ(x) = −1 with probability τ .
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• Accept unless A(f) = A(g) = A(gµ) = 1.

3 Analysis of Soundness

The main lemma of the lecture follows:

Lemma 2 (Main Lemma). If the long code test accepts with probability ≥ 1− δ, then there exists
some σ ∈ Σdt = Σ′ such that A(f) = f(σ) for a 1 − δ′ fraction of all functions f : Σ′ → {±1},
where δ′ is a function depending on τ and δ.

That is, if the long code test accepts with high probability, then the table is actually very close to
a long code. The proof of this lemma can be extended to an analysis of the actual 3-table test,
even though this lemma only applies to one table.

It seems very hard to analyze soundness. How will we determine the relationship between A on g
and A on a slightly perturbed input, gµ? The answer is to use Fourier Analysis.

4 Fourier Analysis

If there’s one fundamental idea you should get out of this lecture, it is this: use Fourier analysis
when you want to analyze the correlation between functions and shifted functions. This is exactly
what we want to do, to analyze the relationship between A(g) and A(gµ).

Now, we introduce the basic ideas of Fourier Analysis.

Definition 3 (Convolution). The Convolution of two functions A and B is denoted (A ∗B), and

(A ∗B)(f) = Eg[A(g)B(fg−1)]

Suppose we have a function A. We can always represent A by its truth table, a vector describing,
for each input, what the output of A is. Functions with this representation induce a vector space.
So, we could chose a different basis to represent the elements of the vector space, i.e. the function
A.

One such alternative basis is the Fourier basis. Let N denote the size of A’s input. For all
α ⊆ {±1}N , define the function

χα(A) =
∏
x∈α

A(x).

Then we can represent the function A by

A =
∑
α

Â(α)χα.

The Â(α) are called the Fourier coefficients, and the Fourier Transform is the transformation from

A to Â(α). It was proved in the homework that Â ∗B = ÂB̂.

Thus, analyzing a shift in a function, while hard in the original basis, is just reduced to pointwise
multiplication after the Fourier transform, so it is much easier. To prove the main lemma, we will
represent everything in the Fourier basis and calculate what happens.
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5 Proof of Main Lemma

The proof of the main lemma requires the following two lemmas

Lemma 4. If the long code test accepts with probability ≥ 1− δ, then∑
|α|>1

|Â(α)|2 ≤ O(δ).

Lemma 5 (FKN). If
∑
|α|>1 |Â(α)|2 ≤ ρ and Â(∅) = 0, then ∃σ such that |Â({σ})| ≥ 1−O(ρ).

No proof of Lemma 5 is given here, but one can be found at [2]. Lemma 4 deals with sets α of size
greater than 1, and Lemma 5 deals with α of size ≤ 1. Combining them, we will have our result
for the sum over all α of Â(α), which is what we want. We will show that for all sets α of size
larger than 1, their Fourier coefficient is so small as to be negligible, and thus Lemma 5 proves the
theorem.

To understand the lemmas, first we must determine the values of Â(∅) = 0 and Â({σ}) for a
singleton set {σ}. We have

Â(∅) = 〈A,χ∅〉
= Ef [A(f)]

= 0,

and

Â({σ}) = 〈A,χ{σ}〉
= 〈A, f(σ)〉
= Ef [A(f)f(σ)]

= (1) · Pr
f

[A(f) = f(σ)] + (−1) · Pr
f

[A(f) 6= f(σ)]

= 2 Pr
f

[A(f) = f(σ)]− 1.

This says that A is close to a long code! So if we can apply the HKN lemma we will be done. We
only need to show that the contributions from subsets besides {σ} are so small as to be negligible,
and we will do this by proving lemma 4.

Proof of Lemma 4. The probability that the test accepts is

Pr(test accepts) = 1− Ef,g,µ
[(

1 +A(f)

2

)(
1 +A(g)

2

)(
1 +A(gµ)

2

)]
because if the test passes, at least one of A(f), A(g) and A(gµ) will be −1 so the corresponding
term will be zero, and the expectation for that case will be zero. Otherwise the expectation will be
1. We’ve simply transformed the range of A(f) from {−1, 1} to {1, 0} and multiplied.

Expanding this expression, we have that the probability is

7

8
−1

8
(E[A(f)A(g)] + E[A(f)] + E[A(g)] + E[A(gµ)] + E[A(f)A(gµ)] + E[A(g)A(gµ)] + E[A(f)A(g)A(gµ)]) .
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Of the seven expectation terms, the first five terms are zero because the functions are not correlated
with each other and by assumption, the expected value of A(f) is zero. Thus, the probability is

7

8
− 1

8
E[A(g)A(gµ)]− 1

8
E[A(f)A(g)A(gµ)].

We will analyze the two expectations in the expression above.

5.1 Analysis of E[A(g)A(gµ)]

First we analyze the expression Eg,µ[A(g)A(gµ)]. We move to the Fourier basis, so the expression
is

Eg,µ[A(g)A(gµ)] = Eg,µ

(∑
α

Â(α)χα(g)

)∑
β

Â(β)χβ(gµ)


=
∑
α,β

Â(α)Â(β)Eg,µ[χα(g)χβ(gµ)]

We know that χβ(gµ) = χβ(g)χβ(µ), and that χα(g)χβ(g) = χα⊕β(g). Thus we have

E[A(g)A(gµ)] =
∑
α,β

Â(α)Â(β)Eg[χα⊕β(g)]Eµ[χβ(µ)]

Now, if α 6= ∅, then Ef [χα(f)] = 0. Thus, the only terms that are nonzero occur when α⊕ β = ∅,
or when α = β. So this sum is ∑

α

Â(α)2Eµ[χα(µ)].

Now, we need to calculate Eµ[χα(µ)]:

Eµ[χα(µ)] = Eµ

[∏
x∈α

µ(x)

]
=
∏
x∈α

Eµ[µ(x)]

=
∏
x∈α

(−τ)

= (−τ)|α|

So, we find that

E[A(g)A(gµ)] =
∑
α

Â(α)2(−τ)|α|.
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5.2 Analysis of E[A(f)A(g)A(gµ)]

We are interested now in the quantity E[A(f)A(g)A(gµ)]. In the Fourier basis, this is∑
α,β,γ

Â(α)Â(β)Â(γ)Ef,g,µ[χα(f)χβ(g)χγ(gµ)].

As before, we write χγ(gµ) = χγ(g)χγ(µ). We can combine the g’s to rewrite the expectation term
as

Eg[χβ(g)χγ(g)] = Eg[χβ⊕γ(g)]

which is 0 unless β = γ, in which case it is 1. So we may eliminate this term and substitute β = γ
in the original expression, which becomes∑

α,γ

Â(α)Â(γ)2Ef,µ[χα(f)χγ(µ)].

Now, we want to understand the expectation term Ef,µ[χα(f)χγ(µ)].

Ef,µ[χα(f)χγ(µ)] = Ef,µ

[(∏
x∈α

f(x)

)(∏
y∈γ

µ(y)

)]

= Ef,µ

[( ∏
x∈α∩γ

f(x)µ(x)

)( ∏
x∈α−γ

f(x)

)( ∏
x∈γ−α

µ(x)

)]

There are three products in this term. The first product is (−1 + τ)|α|. For the second product, if
α 6⊆ γ, the second product is zero. For the third product, as before we calculate that the expectation
is (−τ)|γ−α|.

Thus we have
E[A(f)A(g)A(gµ)] =

∑
α⊆γ

Â(α)Â(γ)2(−1 + τ)|α|(−τ)|γ−α|.

Now we must simply bound
∑
|α|>1 Â(α)2. We have run out of time to do this in lecture, but in

about 5 more lines of computation, we can invoke Cauchy-Schwartz, to find that∑
|α|>1

Â(α)2 ≤ 8δ

(1− τ)(1−
√

1− τ)
.

For more details, refer to [1]. The relevant proof is in the appendix.

The key point of the lecture was, once we moved to the Fourier basis, everything was just arithmetic.
This is the way to analyze the long code to get exactly the tight results.
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