
6.841: Advanced Complexity Theory Fall 2012

Lecture 5 — September 20, 2012

Prof. Dana Moshkovitz Scribe: Madars Virza

1 Overview

In the last lecture we looked at lower bounds for constant-depth circuits, proving that PARITY
cannot be computed by constant-depth circuits, i.e. PARITY /∈ AC0.

General circuit lower bounds for explicit functions are quite weak: the best we can prove after
years of effort is that there is a function, which requires circuits of size 5n − o(n). In this lecture
we will examine what happens if we place natural restrictions on a circuit. Namely, we will prove
that detecting a clique in a graph requires superpolynomial circuits.

2 Monotone functions and monotone circuits

Definition 1. A function f is called monotone if for all x ≤ y we have f(x) ≤ f(y).

An alternative definition is that f is monotone if changing an input bit from 0 to 1 cannot change
the value of the function from 1 to 0.

We note that many graph properties (defined as a Boolean functions over Boolean adjacency ma-
trices) are monotone, i.e., adding additional edges cannot destroy the property. Examples of such
properties include the graph being connected, containing a clique or having Hamiltonian cycle.

Definition 2. A Boolean circuit is monotone if it contains AND and OR gates only.

It is not hard to see that those two definitions are closely related. If function f is computed by a
monotone circuit, then f is monotone, because clearly setting a bit cannot unset the value of any
wire. The converse also holds: if f is a monotone function, then there exists a monotone circuit
that computes it. Cnsider all minterms of f and construct the circuit as OR of ANDs of variables
in each midterm.

However, there is no guarantee that monotone circuits that compute a monotone function will be
of small size, because a monotone function can have exponentially many minterms. This motivates
an interesting question: what functions can be computed by monotone circuits of polynomial size?

3 Razborov’s monotone circuit lower bound

In his seminal paper [1] Razborov proved that detecting if a graph contains a clique requires
monotone circuits of superpolynomial size.

1

We can represent each undirected graph of n vertices as a
(
n
2

)
bit vector (x1,2, x1,3, . . . , xn−1,n),

such that xi,j = 1 if and only if (i, j) ∈ G.

Theorem 3 (Razborov). For all n and 0 ≤ k ≤ n denote by CLIQUEk,n a
(
n
2

)
variable Boolean

function that outputs 1 if and only if graph represented by x contains a clique of size at least k.

There exists some constant ϵ > 0 such that for all n and k ≤ n1/4 function CLIQUEk,n doesn’t have

monotone circuits of size 2ϵ
√
k.

Note that this result is almost ideal: if we could prove similar claim for general circuits, then
we would have proved NP ̸⊆ P/poly. Unfortunately, the proof of Razborov’s lower-bound doesn’t
extend to general circuits.

3.1 Proof of Razborov’s lower bound

For every S ⊆ V we can define CS(G) to be the indicator function that outputs 1 iff S is a clique
in G. Then, of course, CLIQUEk,n(G) ,

∨
|S|=k CS(G).

We will prove our main result by proving two claims:

1. every small monotone circuit that computes CLIQUEk,n(G) is essentially computing an OR
of small number of CS(G)’s

2. computing a small number of CS(G)’s is not sufficient to even approximate CLIQUEk,n(G)

We will focus on how well the circuit does on two subproblems:

• sparsest YES instances: having k-clique and no other edges

• densest NO instances: complete k − 1-partite graphs, where partitions are chosen of nearly
equal sizes

Intuitively, k-cliques form hardest “yes” instances, because to answer 1, the circuit must test that
all edges are present; similarly, Turán graphs, the densestKk−1-free graphs, should form the hardest
“no” instances, because the circuit cannot cheat by testing cliques of fewer than k vertices, as it
will almost certainly detect one, while graph doesn’t have k-clique.

More formally, we will define two distributions:

• let YES distribution be generated by picking a k vertices out of n at random and placing a
clique on the selected vertices

• let NO distribution be generated by choosing a function c : [n] → [k−1] uniformly at random
and adding all edges (i, j) for which c(i) = c(j) 1

and prove that:

1Graphs generated in this way are not the densest possible, but with high probability are close and easier to reason
about.

2

1. if C is a monotone circuit of size S < 2
√
n/2 then there exist m sets of vertices Si ⊆ [n] such

that C(G) can be approximated by
∨m

i=1 CSi(G):

• PrG←YES[
∨m

i=1 CSi(G) ≥ C(G)] > 0.9

• PrG←NO[
∨m

i=1 CSi(G) ≤ C(G)] > 0.9

In particular, this results holds if m = (p − 1)2 · l!, p = 10
√
k log n and |Si| ≤ l ,

√
k

10 for all
1 ≤ i ≤ m.

2. CLIQUEk,n(G) cannot be approximated by
∨m

i=1 CSi(G) of the said parameters.

Proof of the first claim uses ideas from the proof of the second claim, so we will begin by proving
the second claim.

3.2 CLIQUEk,n cannot be approximated by small CLIQUES’s

Fix S ⊆ [n] and consider two cases depending on whether S is small or large:

(a) |S| ≤ l. Consider graph G drawn from NO distribution. With high probability all vertices in
S are in different parts of G: by birthday bound the expected number of collisions (u, v ∈ S
having c(u) = c(v)) is

(|S|
2

)
1

k−1 , which is less than 0.01 for sufficiently large n. Therefore, by
Markov’s inequality the probability that all edges from S are present is at least 0.99 and

PrG←NO[CS(G) = 1] ≥ 0.99]

.

(b) |S| > l. Consider graph G drawn from YES distribution. As G is sparse, a random clique will
be hidden from CS :

Pr
G←YES

[CS(G) = 1] ≤
(
n−l
k−l

)(
n
k

) ≤
(
2k

n

)l

≤ n−0.7l

Note that we don’t actually need part (b) to prove our second claim (we are promised that all Si

are of size at most l), but we will use the result for arbitrary set size to prove our first claim.

3.3 Every small circuit that approximates CLIQUEk,n is essentially computing
bunch of CS’s

We will prove our claim by induction, traversing the circuit and replacing gates by OR’s of CS ,
starting from bottom (replacing input wires by indicators for 1-cliques) and working our way up,
finally replacing the output gate. We will ensure that replaced gate approximates the original
gate on > 1 − 1

10s fraction of inputs drawn both from YES and NO distribution. Therefore by
union bound the probability that all replaced behave as original ones (and therefore the circuit is
well-approximied) will be 1− s · 1

10s > 0.9 as required.

3

3.3.1 Handling OR gates

If f =
∨m

i=1 CSi and g =
∨m

i=1 CTi (for |Si| ≤ l, |Ti| ≤ l), we would be tempted to replace gate f ∨ g
as f ∨ g =

∨m
i=1 CSi ∨

∨m
i=1 CTi . However, we cannot afford to double number of sets each time we

replace a gate, because the second claim crucially depends on our ability to approximate final gate
by small number of circuit indicators.

To reduce this back to OR of at most m indicators, we use the Sunflower Lemma by Erdös and
Rado [2]:

Lemma 4 (Sunflower Lemma). Given at least (p− 1)l · l! sets Zi of size at most l, it is possible to
find choose p of them, Z1, . . . , Zp such that for any k ̸= j: Zk ∩ Zj =

∪p
i=1 Zi.

The name comes from the following resemblance: apart from common intersection (sunflower’s
center) each two sets are disjoint as are sunflower’s petals; so each set is an union of petal and the
center.

We can apply Sunflower lemma to reduce OR of 2m indicator variables in the following way: as
long as we have more than m sets (initially: Si’s and Ti’s), we will find a sunflower Z1, . . . , Zp

among them and replace
∨

CZi by a single indicator variable C∩Zi .

Note that doing such replacement never damages YES instances (if graph was declared as having
a k-clique by some indicator CZi , then it is also flagged by all subindicators, notably, C∩Zi).

However, such replacement might introduce a mistake for a NO instance. This happens exactly
when sunflower’s center has a clique, but all petals have missing edges. We claim that probability
of this happening is small.

By proof of first claim we know that PrG←NO[CZi(G) = 0] < 1
2 . But, then PrG←NO[CZi(G) =

0|C∩Zi(G) = 1] < 1
2 as center having a clique only increases the probability of having a clique

overall. Conditioned on what happens in the center, events CZi(G) are independent (since they
depend on values of c on disjoint sets), therefore PrG←NO[

∧
CZi(G) = 0|C∩Zi(G) = 1] <

(
1
2

)p
.

3.3.2 Handling AND gates

If f =
∨m

i=1 CSi and g =
∨m

i=1 CTi , then we can open f ∧ g up as follows: f ∧ g ≥
∨

1≤i,j≤m CSi∪Tj

2. There are two potential issues: we now have m2 indicators instead of m, and the cardinalities of
sets are now bounded by 2l instead of l.

The first problem can be handled in exactly the same way as we handled OR’s: as long as we have
more than m sets we apply the sunflower trick. The second problem is handled by discarding sets
of more than l vertices. Discarding indicators can introduce false negatives, but as we proved in
claim 1, they have only a probability of n−0.7l of detecting a YES instance, so we don’t lose much.

Filling the details is left as an exercise.

2And we actually have equality for our two distributions, as NO instances are maintained and YES instances
consist of just one clique

4

References

[1] A. A. Razborov, Lower bounds on the monotone complexity of some Boolean functions, Dokl.
Akad. Nauk. SSSR, 281(4):798-801, 1985

[2] P. Erdös, R. Rado, Intersection theorems for systems of sets, J. Lond. Math. Soc., 35:85-90,
1960

5

