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1 Overview

We want to prove that NP 6⊆ P/poly. This problem seems to hard to solve with our present proof
techniques. At least we can replace class NP with some stronger class C1 and class P/poly with
some weaker class C2 and to prove that C1 6⊆ C2. In this lecture we investigate for which classes
we can prove this statement and what are the most promising current approches.

2 The Zoo

AC0 ACC0 TC0 NC1 P/poly NP Σ2 PSPACE EXP NEXP MAEXP

Some of the definitions below are from the textbook or [4].

Definition 1. AC0 is the class of languages computable by circuit families of constant depth, poly-
nomial size, and whose gates are from the set {NOT,OR,AND} with unbounded fan-in.

Definition 2. (ACC0) For any integer m, the MODm gate outputs 0 is the sum of its inputs is 0
modulo m, and 1 otherwise.

For integers m1,m2, ...,mk > 1 we say a language L is in ACC0(m1,m2, ...,mk) if there exists a
circuit family {Cn} with constant depth and polynomial size (and unbounded fan-in) consisting of
AND, OR, NOT, and MODm1, MODm2, ..., MODmk

gates accepting L.

The class ACC0 contains every language that is in ACC0(m1,m2, ...,mk) for some k ≥ 0 and
m1,m2, ...,mk > 1.

Definition 3. (MA) Language L is in MA is there exists probabilistic polynomial-time Turing
machine V and polynomial p such that for every input string x of length n = |x|,

• if x ∈ L, then ∃y ∈ {0, 1}p(n)Pr(V (x, y) = 1) ≥ 2/3,

• if x 6∈ L, then ∀y ∈ {0, 1}p(n)Pr(V (x, y) = 1) ≤ 1/3.

M stands for Merlin and A stands for Arthur. Arthur is a verifier with a random number generating
device and Merlin is a prover with infinite computational pover. Class MA is a probabilistic version
of NP.
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We obtain class MAEXP if we replace polynomial time with exponential time in the definition of
MA.

We have containment NEXP ⊆ MAEXP because Arthur can ignore random number generating
device. We also have containment AC0 ⊆ ACC0 because we can ignore MOD gates.

Definition 4. TC0 is a class of decision problems solvable by polynomial-size, constant-depth cir-
cuits with unbounded fanin, which can use AND, OR, and NOT gates as well as threshold gates. A
threshold gate returns 1 if at least half of its inputs are 1, and 0 otherwise.

Definition 5. NC1 is a class of decision problems solvable by a family of Boolean circuits, with
polynomial size, O(log(n)) depth, and bounded fan-in over AND, OR, and NOT gates.

NC stands for Nick’s Class. (Named in honor of Nick Pippenger.)

Known facts:

• We showed ACC0 6⊆ AC0. We proved that PARITY 6∈ AC0. Clearly, PARITY ∈ ACC0 (use
MOD2 gate). Thus AC0 is very weak.

• The best seperation we know for ACC0 is NEXP 6⊆ ACC0 [1].

• MAEXP 6⊆ P/poly.

3 Super-polynomial lower bound for MAEXP

Theorem 6. MAEXP 6⊆ P/poly.

Proof. Suppose that MAEXP ⊆ P/poly. It follows that PSPACE ⊆ P/poly. We know that IP =
PSPACE [2], where IP stands for Interactive Polynomial time. IP is generalization of MA for
polynomially many rounds. In this case PSPACE = MA (the prover can send in one round the
circuit for computing the prover strategy (strategy can be computed in PSPACE) in the interactive
proof). By simple padding this implies that MAEXP = EXPSPACE. But EXPSPACE 6⊆ P/poly
because Σ3EXP 6⊆ P/poly (by similar argument as for ΣP

3 6⊆ SIZE(nk)). Thus MAEXP 6⊆ P/poly.

We believe that NEXP = MAEXP.

4 Lower bound for NC1? (Valiant’s approach)

4.1 Depth-reduction

Lemma 7 ([3]). Any circuit width m wires and depth d has a set S of km/l wires (l = dlog de)
whose removal leaves depth ≤ d/2k.

Proof. First we topologically sort the gates in d layers such that the input wires at the bottom, and
each wire (u, v) ”goes up”, where u and v are gates in the layers. Let depth(x) denote the index of
layer in which gate x is located. We label each wire (u, v) by the index of the most significant bit
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in which binary representations of depth(u) and depth(v) differs. Because there are m wires and l
labels there must be a label that repeats in ≤ m/l wires. We remove those wires. Now the depth is
≤ d/2 (there is no more need for corresponding index in the binary representation of layer). Repeat
the same procedure k times.

4.2 Application of Lemma 7

Consider a linear-sized, logarithmic depth, fan-in-2 circuit over {NOT,OR and AND} with n out-
puts. Note that these circuits doesn’t exactly capture NC1 because they are linear in size instead
of polynomial and they have n outputs, but it is a good model of NC1.

We apply lemma in the following way. Suppose that d = c log n. Choose k = log (c/ε) and remove
mk

logdc logne = O(n/ log log n) wires, where the last equality holds because m is the size of the circuit
and the circuit is linear in size. We obtain circuit of size ≤ ε log n. Since we have fan-in-2 gates,
we must have that each output is connected to at most 2ε logn = nε inputs. Thus each output
is completely determined by nε inputs and the values of the removed wires (the number of the
removed wires is O(n/ log log n)).

Now the idea to prove some lower bound is as follows: choose your favorite strong class and show
that some function in this class doesn’t have this property. Suprisingly, no one has been able to
prove some interesting lower bound using this approach. It is possible to show that random function
does not have this property with high probability.

4.3 A linear-algebraic analog

Consider the previous circuit except with gates of the following kind: ADDα,β(g1, g2) = αg1 + βg2,
where α, β, g1 and g2 are elements from some field. The circuit computes some linear function f
over some field, i.e., there exists a matrix A such that f(−→x ) = A−→x . The previous property allows
us to rewrite any matrix A computed by such a circuit as a sum of two matrices B and C such
that B has low rank (≤ n/ log logn) and C is nε-sparse. We can say that A is ”close to low rank”.
If matrix can not be written as the sum of a matrix of a low rank and a sparse matrix we call it a
rigid matrix. It is possible to prove that almost all matrices are rigid.

To prove a lower bound in some complexity class using this method we have to find a linear function
f in this class with a corresponding rigid matrix. This does not seem to face any known barriers –
it just seems to require some cleverness.
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