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This lecture is loosely based on lectures 8 and 9 from Anup Rao’s course (see also some back-
ground in Lecture 3).

Disjointness Recall the disjointness function DISJ(x, y) = 1 iff xiyi = 0 for all i ∈ {1..n}. Our
goal in this lecture is to show R(DISJ) ≥ Ω(n). This was first shown by Kalyanasundaram
and Schnitger (1987), Razborov (1990) gave a simpler proof, and our exposition follows the
information theoretic viewpoint of Bar-Yossef, Jayram, Kumar and Sivakumar (2002)

The disjointness problem is one of the most important questions in communication complexity,
and lower bounds for disjointness have been used to derive lower bounds for streaming algo-
rithms, data structures, barriers in complexity (algebraization), approaches for circuit lower
bounds, proof complexity, game theory. Some sources on this include the survey “The Story
of Set Disjointness” by Chattopadhyay and Pittasi http://www.cs.toronto.edu/~arkadev/
commSurvey.pdf, and the paper “Unifying the Landscape of Cell-Probe Lower Bounds” by
Patrascu http://people.csail.mit.edu/mip/papers/structures/paper.pdf.

We’ll first prove that R(DISJ) ≥ Ω(
√
n), which was shown by Babai, Frankl, and Simon

(1987), and then strengthen the result to a linear lower bound.

Needed facts on entropy, mutual information We are going to use the following facts about
entropy, mutual information, and distances between measures: (see also entropy handout)

• Definitions: H(X) is number of information bits inX, defined as
∑

x Pr[X = x] log(1/Pr[X =
x]). I(X;Y ) is number of bits one can learn about X from Y (or vice versa) defined as
H(X) +H(Y )−H(XY ).

• If X1...Xn are independent, and you can learn mi bits about Xi from Y , then you can
learn at leastm1 + ..+mn bits about X1...Xn from Y . That is,

I(X1...Xn;Y ) ≥
n∑
i=1

H(Xi;Y )

• Conditioning: we define H(X|Y ) as the expectation over y of H(Xy) where Xy =
X|Y = y. Similarly define I(X;Y |W ) as the expectation of I(Xw;Yw) over w where
Xw = X|W = w and Yw = Y |W = w.

• Distances between distribution: we define

∆TV(X,Y ) = 1
2

∑
w

|Pr[X = w]− Pr[Y = w]| = 1
2 max
f :Domain(X,Y )→{0,1}

|Ef(X)− Ef(Y )|
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and

∆2
Hel(X,Y ) = 1

2

∑
w

∣∣∣√Pr[X = w]−
√

Pr[Y = w]
∣∣∣2 = 1−

∑
w

√
Pr[X = w] Pr[Y = w]

It turns out we can move between these two distances freely via the following relation

1
2∆2

Hel(X,Y ) ≤ ∆TV(X,Y ) ≤ ∆Hel(X,Y )

• Mutual information and distances: if I(X;Y ) is small then the distribution Y is close
to the distribution Y |X. That is, we have the following lemma:

Lemma: Let Yx = Y |X = x, then Ex∈X∆2
Hel(Y, Yx) ≤ I(X;Y ).

Proof: We use the fact that for every two distributions X,Y , ∆2
Hel(XY,X × Y ) ≤

∆KL(XY ‖X × Y ) = I(X;Y ). So, letting p(x) = Pr[X = x], p(y) = Pr[Y = y] and
p(y|x) = Pr[Y = y|X = x], we need to prove that

Ex
∑
y

√
p(y)p(y|x) ≥

∑
x,y

√
p(x)p(y)p(x)p(y|x)

but in fact the LHS is equal to the RHS as it can be written as∑
x

p(x)
∑
y

√
p(y)p(y|x) =

∑
x,y

√
p(x)2p(y)p(y|x)

The
√
n lower bound We now prove the following:

Theorem: R(DISJ) ≥ Ω(
√
n).

The distribution D: Using Yao’s Min-Max principle, it’s enough to come up with a distribu-
tion D on inputs, so that for every protocol π of o(

√
n) communication, Pr(x,y)∈D[π(x, y) =

DISJ(x, y)] < 0.999. We’re going to use the following distributionD: chooses x1....xn, y1..., yn
independently so that each is equal to 1 with probability 1/

√
n and equal to 0 with probability

1− 1/
√
n. We denote by X1...Xn, Y1...., Yn the random variables distributed according to D

and note the following properties of D:

Balance: Pr[DISJ(X1, ..., Xn, Y1, ..., Yn) = 1] ∈ (0.1, 0.9)

Party independence: if we choose (x, y) ∈ D then x is independent from y. This is also
known as D being a product distribution of the form D = D′ ×D′′.

Coordinate independence: for i 6= j, the distribution XiYi is independent from XjYj .
(Here XiYi denotes concatenation, not multiplication).

We will assume towards a contradiction that for some tiny ε > 0 there is a protocol π with
k =≤ ε

√
n communication satisfying Pr(x,y)∈D[π(x, y) = DISJ(x, y)] ≥ 0.999. We will use Π

to denote the random variable that is π’s transcript on X1...XnY1...Yn.
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Proof of the theorem We can now use coordinate independence of D to argue that

I(X1Y1; Π) + · · ·+ I(XnYn; Π) ≤ I(X1Y1...XnYn; Π) ≤ k ≤ ε/
√
n (1)

and so we get that for some typical j, I(XjYj ; Π) ≤ k/n ≤ ε/
√
n.

Fix this j and write for every x, y ∈ {0, 1}, Πx,y the random variable Π obtained when fixing
Xj = x and Yj = y. We use the fact that

Ex∈X∆2
Hel(W,Wx) ≤ I(X;W )

where Wx = W |X = x.

So, we can write for p = 1/
√
n

(1−p)2∆2
Hel(Π0,0,Π)+p(1−p)∆2

Hel(Π1,0,Π)+(1−p)p∆2
Hel(Π0,1,Π)+p2∆2

Hel(Π1,1, P ) ≤ ε/
√
n (2)

In particular, this implies that

∆2
Hel(Π1,0,Π) ≤ ε

∆2
Hel(Π0,1,Π) ≤ ε

and so by triangle inequality

∆Hel(Π0,1,Π1,0) ≤ ε′ = 2
√
ε (3)

We now make the following claim

Claim: ∆Hel(Π0,0,Π1,1) ≤ ε′

Assuming the claim we’re done, since we know using the balance condition that:

• In Π1,1 the value of DISJ(X,Y ) is always equal to 0, and moreover if we choose j at

random then Πj
1,1 covers a constant fraction of the probability space, and so the protocol

outputs 1 with probability at most 0.01.

• In Π0,0 the value of DISJ(X,Y ) is equal to 1 with probability at least 1/2, and so the
protocol outputs 1 with probability at least 0.1.

• This implies that ∆TV(Π1,1,Π0,0) ≥ 0.05, contradicting the fact that for every Z,W ,
∆TV(Z,W ) ≤ O(

√
∆Hel(Z,W )).

Proof of claim Let say that a set of 4 distributions P0,0, P0,1, P1,0, P1,1 over some domain D is
separable if there are some non-negative A0, A1, B0, B1 such that Pxy(α) = Ax(α)By(α) for
all x, y ∈ {0, 1} and α ∈ D.

The claim immediately follows from (3) and the following two lemmas:

Lemma 1: The set {Π0,0,Π0,1,Π1,0,Π1,1} is separable.

Lemma 2: If P0,0, P0,1, P1,0, P1,1 is separable then ∆Hel(P0,1, P1,0) = ∆Hel(P0,0, P1,1).

Proof of Lemma 1: Let ~m = (m1...mk) be a transcript in the domain of Π, and let
x, y ∈ {0, 1}. Πx,y(~m) can be computed as follows:
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1. Pick {Xi}i 6=j , {Yi}i 6=j at random from D.

2. Now let p1 be the probability that Alice sendsm1 on inputs (X−j , x) = X1..Xj−1, x,Xj , .., Xn.

Let p2 be the probability that Bob sends m2 after receiving m1 on inputs Y−j , y.

And similarly define p3, p4, ..., pk

We get that Πx,y(~m) = p1p2 · · · pk, but the odd terms in this product can be computed by
knowing X−j , x and the even terms in this product can be computed by knowing Y−j , y, and
moreover using the coordinate independence and (most importantly) party indepen-
dence property of D, X−j and Y−j are independent. Hence, we can define functions Ax and
By such that Πx,y(~m) = Ax(~m)Bx(~m).

Proof of Lemma 2: We know that for every two distributions P, P ′, ∆2
Hel(P, P

′) = 1 −∑
α

√
P (α)P ′(α), but if {Px,y} is separable then for every α,√

P0,1(α)P1,0(α) =
√
A0(α)

√
B1(α)

√
A1(α)

√
B0(α) =

√
P0,0(α)P1,1(α)

A linear lower bound We now want to prove the stronger theorem

Theorem: R(DISJ) ≥ Ω(n).

We will use the same general approach via the min-max principle. However, we cannot use
the same distribution D (can you see why?)

In fact, it turns out that you can solve on average disjointness on any distribution D satisfying
player independence (also known as being a product distribution) with communication
Õ(
√
n).

The new distribution D We define the new input random variables X1...Xn, Y1...., Yn as fol-
lows: we choose for every i the pair XiYi to equal one of {00, 01, 10, 11} with probabilities
p00, p01, p10, p11 respectively defined as follows: p00 = p01 = p10 = 1

3(1− 1/n) and P11 = 1/n.
Note that this distribution satisfies balance and coordinate independence but not party
independence.

The auxiliary random variables W We also define the following random variables W1...Wn

that are correlated with X,Y as follows: for every i, with probability 1/2, Wi = Xi? and
with probability 1/2, Wi = ?Yi, with these choices made independently. That is, for every
coordinate i, Wi reveals either Xi or Yi. The important properties we’ll use about the relation
between W,X, Y are the following:

Conditional balance: For a typical w ∈W , the probability of DISJ(X,Y ) = 1 conditioned
on W = w is in (0.1, 0.9). The reason is that with very high probability, about a third
of the the coordinates revealed in W will equal to 1, and then for each such coordinate
there is probability 3/n that it will make sets not disjoint.

Conditional coordinate independence: Conditioned on W = w, we still have that XiYi
is independent from XjYj for i 6= j. This is because the Wi’s themselves are chosen
independently for each coordinate.

Conditional party independence: Conditioned on W = w, X is independent from Y .
This is because in each coordinate w will fix either Xi or Yi to be some constant. This
property turns out to be crucial for our analysis.
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We are now going to carry out the analysis as before but always conditioning on W = w.
In some sense this may seem very similar to us simply picking w from W and then using
the distribution Dw instead of D where Dw = D|W = w. But using such a distribution Dw

would never work, since there is a trivial O(1) communication protocol to solve the problem
on Dw: the protocol π can depend on w and for every coordinate where wi = ?yi, Alice can
check if xiyi = 1 and for every coordinate where wi = xi? Bob can check if xiyi = 1, and
so each of them can send one bit to let the other know whether they found a 11 coordinate.
Still, a lot of the analysis from above can be done by working with Dw, though at some point
we’ll use the fact that w is actually chosen at random and not known to the parties.

Bounding mutual information The first step of the analysis is as before. We show the following
analog to (1): ∑

j

I(XjYj ; Π|W ) ≤ I(X1Y1..XnYn; Π|W ) ≤ εn (4)

and so we get that for some typical j,

I(XjYj ; Π|W ) ≤ ε (5)

This means that for a random choice of w = (w−j , wj) ∈W , we have that I(Xw
j Y

w
k ; Πw) ≤ ε,

where Xw
j , Y

w
j ,Π

w are the distributions of Xj , Yj ,Π respectively conditioned on W = w. Note

that Xj and Yj only depend on the jth coordinate of w, and so we’ll drop all other coordinates
from the superscripts of Xw

j and Y w
j .

Let Π
w−j
x,y denote the distribution of Π conditioned not only on W = w but also on Xj = x

and Yj = y (because this condition implies the information in the jth coordinate of w we
dropped it from the superscript). In this notation (and using the relation between mutual
entropy and squared Hellinger distance), 5 becomes:

Ew−j ,x,y∆
2
Hel(Π

w−j
x,y ,Π

w) ≤ ε (6)

Lets fix a typical choice for w−j and for simplicity of notation drop w−j from the superscripts
and write Πwj for Πw and Πx,y for Π

w−j
x,y .

So we can write (6) as

ε ≥ 1
2p00∆

2
Hel(Π0,0; Π0?) + 1

2p00∆
2
Hel(Π0,0; Π?0)+

1
2p01∆

2
Hel(Π0,1; Π0?) + 1

2p01∆
2
Hel(Π0,1; Π?1)+

1
2p10∆

2
Hel(Π1,0; Π1?) + 1

2p10∆
2
Hel(Π1,0; Π?0)+

1
2p11∆

2
Hel(Π1,1; Π1?) + 1

2p11∆
2
Hel(Π1,1; Π?1)

Since p00 = p01 = p10 ∼ 1/3, we get that (letting ≈ denotes closeness up to, say, 10
√
ε in

Hellinger distance)
Π0,1 ≈ Π0? ≈ Π1,0

But for the same reasons as above, the distributions {Πx,y}x,y∈{0,1} are separable (this is
because after fixing w−j , the remaining distributions of X−j and Y−j satisfy both party
independence and coordinate independence and so the proof of Lemma 1 works as is).
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So we get that (up to 20
√
ε in Hellinger distance, and hence also in total variation distance)

Π0,0 ≈ Π1,1 (7)

But because of our conditional balance property, for a typical w−j , while DISJ(Π1,1) = 0
with probability 1, DISJ(Π0,0) = 0 with probability at most 0.9. Now because by choosing
a random j and w−j , we cover a constant fraction of the measure space with Π

w−j

1,1 and with
Πw−j , 00 then the protocol would have to answer 0 on Π1,1 with probability roughly 0.99 while
answering 0 on Π0,0 with probability at most 0.01 thus contradicting (7).

Note on the log rank conjecture I mentioned last lecture that there are known functions f
such that C(f) ≥ (log rank(f))1.01. This was first shown by Nisan and Wigderson in 1994 using
the following example. Let g1(z1, z2, z3) = 1 iff z1+z2+z3 ∈ {1, 2}, and we define gk that takes
3k inputs,splits them to three blocks Z1, Z2, Z3 and outputs g(gk−1(Z1), gk−1(Z2), gk−1(Z3)).
For n = 3k, let fk(x1...xn, y1..., yn) = g(x1y1, ..., xnyn). We can show the following:

• C(fk) (and in fact R(fk)) is at least Ω(n) = Ω(3k). This is by reduction to the unique
disjointness problem (distinguishing between the case that x ∩ y = ∅ and the case that
|x ∩ y| = 1). The same proofs as above establish an Ω(n) lower bound for this problem.

• rank(fk) ≤ ck·2
k

for some constant c, meaning that log rank(f) = Õ(2k) = O(n0.99). This
is a good exercise, see footnote for hint.1

1Hint: Prove that the degree of gk as a polynomial in n variables is at most 2k, and then argue this implies that rank(fk) is at most the

number of monomials in gk.
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