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1 Checking of Proofs and Hardness of Problems

The works of Cook, Levin and Karp is the years 1971-2 brought two important revelations to
theoretical computer science:

• Checkability: Whether a problem can be verified efficiently is an interesting/important/crucial
property. It is the very foundation of mathematics, and also a classification that theoreti-
cal computer science can contribute to its understanding. The class of efficiently verifiable
problems is NP .

• Hardness: A large number of basic combinatorial problems are as hard as any of the
problems in NP . Since for some NP problems, like 3Sat, even sub-exponential algo-
rithms could not be found, this is evidence that the NP-hard problems are actually hard
computationally.

The notion of reductions we will use in the course will be Karp reductions, meaning that an
input to the initial problem is efficiently transformed to an input to the new problem. This is
as opposed to the more general notion of Cook reductions, where the initial problem is solved
using access to a black-box that solves the new problem. In fact, the reductions we will show
will typically (but not always) be Levin reductions, meaning that a witness/proof for the new
problem can be efficiently transformed to a witness/proof for the initial problem.

Examples: Some NP-complete problems that will be important for the course are:

1. “Does [your favorite math conjecture here] have a proof of length n?”

2. Max-3Sat: Given clauses C1, . . . , Cm over variables x1, . . . , xn, where each clause is of
the form (x∧y∧z) where x, y, z are either variables or their negations, find an assignment
to the variables that satisfies as many clauses as possible.

3. Constraint Satisfaction Problems (CSP): Given constraints C1, . . . , Cm over variables
x1, . . . , xn, where each variable is over alphabet Σ, and each constraint is a predicate
on q variables, find an assignment to the variables that satisfies as many constraints as
possible.

4. Label-Cover: Given a bipartite graph G = (A,B,E), alphabets ΣA, ΣB, and functions
{Pe : ΣA → ΣB}e∈E , find assignments fA : A → ΣA, fB : B → ΣB that satisfy as many of
the edges as possible. We say that an edge e = (a, b) ∈ E is satisfied if Pe(fA(a)) = fB(b)
(“projection test”).

Note that both Max-3Sat and Label-Cover can be seen as special cases of the constraint
satisfaction problem.
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2Since 1972 there was a flurry of works showing that NP -hard problems come up almost every-
where: in planning networks, tours or circuits, in scheduling, in sequencing, and in optimizing
mathematical programs. The areas where NP -hard problems arise are also diverse: they range
from biology and chemistry to medicine and technology.

So all these NP -hard problems were not going anywhere – in real life people had to solve
them. It became clear that researchers must find ways to cope with NP -hardness. Such
ways included identifying easy special cases of NP -hard problems, designing approximation
algorithms, devising faster exponential-time algorithms: time (1.1)n is much better than 2n and
may even be practical for small enough n’s, or considering heuristics that do reasonably well in
practice.

2 Approximation Algorithms

In this course we will focus on approximations:

Definition 1 (Approximation algorithm). We say that an algorithm A is an α-approximation
algorithm for a maximization problem Π, 0 < α ≤ 1, if for every input x,

α ·Π(x) ≤ A(x) ≤ Π(x).

For minimization problems, A is a c-approximation, c ≥ 1, if

Π(x) ≤ A(x) ≤ c ·Π(x)

For counting/search problems, A is a (α, c)-approximation, 0 < α ≤ 1 ≤ c, if

α ·Π(x) ≤ A(x) ≤ c ·Π(x).

We say that a problem has a “polynomial-time approximation scheme” (PTAS) if it can be
approximated to an arbitrary good precision, (1 ± ϵ) for all ϵ > 0. The running time depends
on ϵ. If the running time depends polynomially on 1/ϵ, we say that it is an FPTAS: “a fully
polynomial-time approximation scheme”.

The approach of designing efficient approximation algorithms has been extremely successful.
It resulted in the development of many new algorithmic methods, such as the Markov chain
Monte-Carlo method (MCMC), linear programming (LP), semi-definite programming (SDP),
spectral techniques, and more. More traditional algorithmic methods, such as greedy algorithms
and divide-and-conquer, are also used.

A few prominent examples of approximation algorithms appear in Table 1.

Problem Approximation Technique Cite

Vertex-Cover 2 combinatorial/LP folklore
Max-3Sat 7

8 random assignment folklore
Set-Cover lnn greedy folklore

Planar euclidean TSP PTAS [?, ?]
Counting perfect matchings FPTAS MCMC [?]

Max-Cut 0.878... SDP [GW95]

Table 1: Notable approximation algorithms



32.1 Example: Approximation Algorithm for Max-3Sat

Next we show the 7
8 -approximation algorithm of Max-3Sat. This algorithm demonstrates an

important technique: the random assignment method.
Input: Clauses C1, . . . , Cm over Boolean variables x1, . . . , xn.

1. Repeat:

2. Pick an assignment to x1, . . . , xn uniformly at random.

3. Until picked an assignment that satisfies at least 7
8 fraction of clauses C1, . . . , Cm.

Lemma 2.1. The expected fraction of clauses a random assignment satisfies is at least 7
8 .

Proof. For 1 ≤ i ≤ m, the probability that Ci is satisfied is exactly 7
8 . The lemma follows from

the linearity of expectation.

Note that Lemma 2.1 immediately implies that there exists an assignment that satisfies at
least 7

8 fraction of the clauses. This can be seen as an instance of the ”Probabilistic Method”
[?], where the existence of an object with a certain property is proved by arguing something
about the probability that a random object has the property. We proceed to showing that, not
only there exists an assignment satisfying 7

8 fraction of the clauses, but such can also be found
efficiently.

Lemma 2.2. The fraction of assignments that satisfy at least 7
8 fraction of the clauses is at

least 1
m+1 .

Proof. Denote the fraction of assignments that satisfy strictly less than 7
8 fraction of the clauses

by p. Since these assignments satisfy a natural number of clauses, this number is at most
(78m− 1

8) clauses. By Lemma 2.1,

p ·
(
7

8
− 1

8m

)
+ (1− p) ≥ 7

8
.

So, p ≤ m
m+1 .

Lemma 2.3. The algorithm will stop after 3(m+ 1) iterations with probability at least 2
3 .

Proof. By Lemma 2.2, the expected running time of the algorithm is m + 1. By Markov’s
inequality, the probability the actual number is more than 3(m+ 1), is at most 1

3 .

3 Hardness of Approximation

3.1 Gap Problems

First let us remove a technical obstacle out of the way: optimization problems are search
problems and not decision problem, while complexity theory is typically better at handling
decision problems. To address this issue, we show that to prove hardness of approximation it is
enough to prove hardness of a certain decision problem:

Lemma 3.1 (From approximation to decision). If it is NP -hard to distinguish whether Π(x) ≥ c
or Π(x) ≤ s, then it is NP -hard to approximate Π to within c/s for a minimization problem,
or s/c for a maximization problem.



4The problem of distinguishing whether Π(x) ≥ c or Π(x) ≤ s is called a gap problem, and we
denote it by Πc,s. This is a kind of a promise problem, i.e., a problem where not all possible
inputs are possible, only inputs that satisfy the promise (here: that Π(x) ≥ c or Π(x) ≤ s).

3.2 Probabilistic Checking of Proofs

Perhaps surprisingly, in 1991 it was discovered that the problem of proving hardness of approx-
imation is intimately related to a deep question about checking of proofs [FGL+96]:

“Can any mathematical proof be written in a form that can be checked probabilis-
tically by making only a constant number of queries to the proof?”

This question is quite counter-intuitive: the proofs we are used to are sequential by definition;
each proposition follows from the previous propositions. There is no way to verify correctness
without checking every logical transition in the proof: it is possible that only one transition is
false for the theorem to be false. It is possible for just one clause to be false for the formula not
to be satisfied.

The question raises a revolutionary idea: proofs that are not sequential! That is, proofs that
consist of many local tests, without apparent order between them, and most of the tests would
be false if the theorem is false, not just one!

The very thought that such proofs can exist came from the extensive research of the notion
of proofs that was conducted in theoretical computer science starting the 80’s. This research
centered around the ideas of interactive proofs (IP), proof systems where the randomized verifier
makes polynomially-many rounds of interaction with the prover, and multi-prover interactive
proofs (MIP), proof systems where the randomized verifier interacts with more than one prover,
and the provers cannot communicate after seeing the verifier’s questions.

The new notion was called probabilistic checking of proofs (PCP) [AS98]. It coincides with
the notion of multi-prover interactive proofs if there is only one round of interaction between
the verifier and the provers. This is because querying a proof can be simulated by sending each
query to a different prover. Since the provers cannot communicate, the answer to each query
depends only on the relevant query, and not on the other queries.

A better name for the new notion might have been local checking of proofs: proofs that
can be checked locally, by reading only a constant number of their symbols. Such proofs are
necessarily also probabilistic, since deterministically locally checkable proofs are simply constant-
sized proofs.

Let us make the appropriate definitions:

Definition 2 (Probabilistic verifier). A probabilistic verifier is a probabilistic polynomial time
Turing machine V that is given input x, |x| = n, and oracle access to a proof π over alphabet
Σ.

1. We denote by r(n) the maximal number of random bits that V uses on inputs of size n.

2. We denote by q(n) the maximal number of queries that V uses on inputs of size n.

We denote by V π(x,w) the output of V on input x, oracle access to π, and randomness w.
We denote by V[r, q]Σ that set of all probabilistic verifiers with randomness r and number of

queries q to proofs over alphabet Σ. We omit Σ if Σ is the binary alphabet.



5Notice that a probabilistic verifier with randomness r and running time t can be simulated
by a deterministic verifier than runs in time 2r · t. The randomness allows lower running time
and lower query complexity.

Note that a verifier with randomness r and q queries effectively accesses at most 2r ·q locations
in the proof. Thus, we can use 2r · q as a bound on the length of the proof, and 2r · q · log |Σ|
as a bound on the length of the proof in bits.

Definition 3 (Probabilistic verification). We say that a language L has a probabilistic verifier
with completeness c and soundness error s, if there is a probabilistic verifier V that satisfies:

• Completeness: For all x ∈ L, there exists a proof π, such that

Pr
w∈{0,1}r

[V π(x,w) = 1] ≥ c.

• Soundness: For all x /∈ L, for any proof π,

Pr
w∈{0,1}r

[V π(x,w) = 1] ≤ s.

If V ∈ V[r, q]Σ, we say that L ∈ PCPc,s[r, q]Σ (“PCP” is “Probabilistically Checkable Proofs”).

If c = 1 we say that the verifier has perfect completeness. Mostly, we will refer to verifiers
with perfect completeness, or almost-perfect completeness, 1− δ for small δ > 0, since these are
more natural: if the proof is correct we usually want the verifier to always, or almost always,
accept.

We typically want the soundness error to be as small as possible. Soundness error 0, or error
smaller than 1/2r, corresponds to a deterministic verifier, and such cannot be local. However,
arbitrarily small soundness error ε, as well error that goes to 0 with n (“sub-constant error”),
is achievable. The soundness error for problems that are not in P is at least 1

|Σ|q (see exercise).

Thus the soundness error can get small, provided that the alphabet or the number of queries
increase. Larger alphabet can be converted to a large number of queries and binary alphabet in
a straightforward way (see exercise), but this is not true vice-versa: given a verifier with many
queries over a small alphabet, it is not immediate to get a verifier with larger alphabet, but
fewer queries.

A verifier for an NP language that is not in P must perform at least two queries. In fact,
any verifier can be efficiently transformed to a verifier that makes only two queries. The new
verifier may need a non-binary alphabet, and, more importantly, its soundness error may be
much larger than the soundness error of the original verifier. (see exercise)

3.3 The Connection Between Hardness of Approximation and Probabilistic
Checking of Proofs

Lemma 3.2 (Probabilistic checking is equivalent to hardness of approximation). Max-3Sat1,s

is NP -hard for some s < 1 if and only if 3Sat ∈ PCP1,s′ [O(log n), O(1)] for some s′ < 1.

Proof. (i) Suppose Max-3Sat1,s is NP -hard for some s < 1. Let us construct a probabilistic
verifier V for 3Sat with completeness 1 and soundness error s.

Input: a formula φ.



61. Apply the reduction from 3Sat to Max-3Sat1,s, to transform the formula φ to clauses
C1, . . . , Cm over variables x1, . . . , xn.

2. The proof is interpreted as an assignment to x1, . . . , xn.

3. Verification: Pick a random i ∈ m, and check that Ci is satisfied.

Note that V uses O(log n) random bits to make three queries.
If φ is satisfiable, then there exists an assignment to x1, . . . , xn that satisfies all C1, . . . , Cm,

and makes the verifier accept with probability 1.
If φ is not satisfiable, then any assignment to x1, . . . , xn satisfies at most s fraction of

C1, . . . , Cm. Thus, V accepts with probability at most s.
(ii) Suppose that 3Sat ∈ PCP1,s[O(log n), O(1)] for some s < 1. Let us show a reduction

from 3Sat to Max-3Sat1,s′ for some s′ < 1:

1. Let V be the probabilistic verifier for 3Sat. Note that V can be converted to a new
verifier V ′ whose tests are of the form (x∧y∧ z) where x, y, z are either variables or their
negations. The completeness of V ′ will remain 1 and the soundness error might increase
to some other constant s′. The randomness of V ′ will remain O(log n) (although may be
slightly larger than the randomness of V ).

2. The reduction will produce all the 2O(logn) = nO(1) clauses/tests that V ′ produces.

Note that the reduction is efficient.

Note that the verifier we construct from a Max-3Sat1,s NP -hardness uses its randomness
only to decide which test to make out of nO(1) possible tests. It does not use the randomness for
generating the tests (because the reduction to Max-3Sat1,s is deterministic) or for performing
the tests. Without loss of generality, the randomness is never used by the verifier for performing
the tests, because whatever computational power r random bits buys one, it can be simulated
in 2r time. In our case the randomness is r = O(log n), and any randomized computation can
be simulated in polynomial time.

Lemma 3.2 is phrased for Max-3Sat1,s but it could be made more general. The completeness
could have been replaced by any c < 1 (as long as the completeness of the verifier is changed
accordingly). The problem Max-3Sat could have been replaced by any constraint satisfaction
problem in which the constraints are rich enough to express any possible Boolean function, e.g.,
general CSP, quadratic equations over the finite field GF (2), etc.

The connection between probabilistic checking and hardness of approximation drew attention
to the question of whether NP has PCP s, and by 1992, the question was already answered
positively:

Theorem 4 (The PCP Theorem [AS98, ALM+98]). NP ⊆ PCP1, 1
2
[O(log n), O(1)].

Under plausible complexity assumptions, the randomness must be Ω(logn) (see exercise). An
interesting question is what is the constant in the Ω. This corresponds to the exponent of n
in the number of possible constraints. The answer is that the constant can be 1, and the best
randomness known is log n+O(log log n).

Corollary 3.3. The following follow from Theorem 4:

1. Two queries: There are a fixed s < 1 and a fixed alphabet Σ, such that NP ⊆ PCP1,s[O(log n), 2]Σ.



72. Low error: For any fixed ϵ > 0, there is q = q(ϵ), such that NP ⊆ PCP1,ϵ[O(log n), q].

Proof. In exercise!

It turns out that two queries and low error can be achieved simultaneously, but this is harder
to prove. We will eventually prove:

Theorem 5 (Strong PCP Theorem [Raz98]). For any fixed ϵ > 0, there is an alphabet Σ (whose
size depends on ϵ), such that NP ⊆ PCP1,ϵ[O(log n), 2]Σ.

This theorem1 is the basis of (almost?) all optimal hardness of approximation results.

References

[AGHP92] N. Alon, O. Goldreich, J. H̊astad, and R. Peralta. Simple constructions of almost k-
wise independent random variables. Random Structures and Algorithms, 3:289–304,
1992. Addendum: Random Structures and Algorithms 4:119-120, 1993.

[ALM+98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and
the hardness of approximation problems. Journal of the ACM, 45(3):501–555, 1998.

[AS98] S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization of
NP. Journal of the ACM, 45(1):70–122, 1998.

[FGL+96] U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Interactive proofs and
the hardness of approximating cliques. Journal of the ACM, 43(2):268–292, 1996.

[GW95] M. Goemans and D. Williamson. Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of the ACM,
42(6):1115–1145, 1995.

[Raz98] R. Raz. A parallel repetition theorem. In SIAM Journal on Computing, volume 27,
pages 763–803, 1998.

1in fact, in its stronger form, enforcing the tests to be projection tests: for any ϵ > 0, for sufficiently large
alphabets, Label-Cover1,ϵ is NP -hard.


