
6.895 PCP and Hardness of Approximation MIT, Fall 2010

Lecture 3: Coding Theory

Lecturer: Dana Moshkovitz Scribe: Michael Forbes and Dana Moshkovitz

1 Motivation

In the course we will make heavy use of coding theory. In this lecture we review the basic ideas
and constructions. We start with two motivating examples.

1.1 Noisy Communication

Alice gets a k-bit message x to send to Bob. Unfortunately, the communication channel is
corrupted, and some number of bits may flip. For conceretness, say twenty percent of all bits
sent on the channel may flip. Which bits are flipped is unknown, and different bits may flip
for different messages sent on the channel. Can Alice still send a message that can be reliably
received by Bob? We allow Alice and Bob to make any agreements prior to Alice learning about
her message x. We also allow Alice to send more than k bits on the channel. The redundant
bits can compesate for the bits lost due to corruption.

We will see that Alice can send only n = Θ(k) bits of information about her message, such
that even if twenty percent of those bits are flipped, the mistakes can be detected, and all of
the original k bits can be recovered by Bob!

1.2 Equality Testing

The following example is a classic example from communication complexity. Its setup and ideas
are very useful for understanding PCPs.

Suppose there are two players, Alice and Bob, as well as a verifier. Each player receives a
private k-bit string. Alice’s string is denoted x, and Bob’s string is denoted y. The verifier
interacts with Alice and Bob to answer the question “Is x = y?”. The verifier sends each of
Alice and Bob a question about their strings, and receives back an answer. Given the two
answers, the verifier either declares “equal” or declares “unequal”. We allow all parties to make
any arrnagements prior to receiving the strings. The goal is to minimize the number of bits
transmitted by the verifier and by the players after receiving the strings.

A possible solution is for the verifier to ask each of the players for her/his entire string. This
gives a protocol with Θ(k) bits of communication. This can be shown to be optimal for a
deterministic verifier. A randomized verifier, however, can achieve much lower communication
complexity. The randomized setting is as follows. the verifier has private randomness r, and it
sends questions to Alice and Bob that depend on r. The protocol should satisfy:

• Completeness: x = y =⇒ Prr [verifier declares equal] = 1

• Soundness: x ̸= y =⇒ Prr [verifier declares equal] ≤ 0.9

Note that the 0.9 in the soundness is high, but bounded away from 1. It can be improved to an
arbitrarily small constant by repeating the protocol a sufficient number of times. This increases
the communication complexity only by a constant factor.

1

2We will see how to provide a randomized protocol where the verifier sends Θ(log k) bits, and
Alice and Bob each replies with just one bit!

1.3 Solution to Problems

Both of the above problems can be solved using coding theory.
Let us make some relevant definitions. The space of strings over an alphabet Σ has a natural

distance metric:

Definition 1. For strings x, y ∈ Σn, the Hamming distance is denoted ∆(x, y) = |{i|xi ̸=yi}|
n .

We have the following easy lemma.

Lemma 1.1. ∆ is a metric. That is, it satisfies for every x, y ∈ Σn:

• ∆(x, y) ≥ 0; ∆(x, y) = 0 ⇐⇒ x = y.

• Symmetry: ∆(x, y) = ∆(y, x)

• Triangle Inequality: ∆(x, y) ≤ ∆(x, z) + ∆(z, y)

Let us say a transformation E : Σk → Σn is c-distancing if for every two different strings x ̸=
y ∈ Σn, the transformation maps x and y to points of distance at least c, i.e., ∆(E(x), E(y)) ≥ c.
Thus, no matter how close x and y were originally (as long as x ̸= y), they get mapped to
vastly different strings under the map. Coding theory deals with the understanding and the
construction of distancing transformations. It turns out that c-distancing transformations exist
for constant c (depending on Σ) and n = Θ(k). In particular, one can take c > 2/5 and
Σ = {0, 1}.

Appropriate distancing tranformation solves the two motivating problems we presented. For
the noisy communication example, Alice and Bob agree on a distancing transformation E ahead
of time. Alice then sends E(x) on the noisy channel to Bob. Bob receives a version w of E(x)
with at most twenty percent of the bits flipped, so ∆(w,E(x)) ≤ 1

5 . Now Bob recovers x by
finding the closest E(·) to w. If c > 2

5 , Bob will necessarily recover x. Why? If Bob recovered
x′ ̸= x then ∆(w,E(x′)) ≤ 1

5 , and ∆(E(x′), E(x)) ≤ 2
5 .

For the equality testing example, all parties agree on a distancing transformation E to begin
with. Then, the verifier picks at random i ∈ [n]. The verifier asks Alice about E(x)i, and it
asks Bob about E(y)i. It declares the strings are equal if E(x)i = E(y)i.

If the strings are equal the verifier always declares equality. On the other hand, if the strings
are not equal, by the property of the distancing transformation, the two bits are not equal with
probability at least c. If c ≥ 1

10 , the verifier declares quality with probability at most 0.9.
The verifier sends i to both players, and this requires Θ(logn) bits. If n = Θ(k), then

log n = Θ(log k). Each of the players replies with just one bit!
With these answers in mind, we now give the formal definitions of coding theory.

2 Coding Theory

The basic definition of coding theory is that of a code:

Definition 2. A code is a subset C ⊆ Σn. It is called an (n, k, d)Σ code if:

• |C| = |Σ|k

3• For all x ̸= y ∈ C, ∆(x, y) ≥ d/n

We call

• k the dimension

• n the length

• d the distance

• Σ the alphabet, when omitted we assume Σ = {0, 1}

• d/n the relative distance (often just called “distance”)

• k/n the rate

If E : Σk → Σn is such that E(Σk) = C, then we call E an encoding function of C. An encoding
function maps every possible “message” x ∈ Σk to a codeword of C.

When we construct codes we want to maximize the relative distance as well as the rate, and
we want to minimize the alphabet size.

2.1 Tradeoffs Between Code Parameters

There are various tradeoffs between code parameters. Next we review some of them.
The Singleton bound says that the sum of the relative distance and the rate is, up to an

additive 1
n , at most 1. Thus, if the relative distance is close to 1, the rate must be close to 0,

and vice versa:

Lemma 2.1 (Singleton Bound). For any (n, k, d)Σ code, n ≥ k + d− 1.

Proof. Consider the first k − 1 coordinates of the codewords. As there are |Σ|k codewords,
there must be distinct codewords x ̸= y ∈ C ⊆ Σn, such that x and y agree on the first k − 1
coordinates. However, as ∆(x, y) ≥ d, it must be that there are at least d coordinates in which
x and y disagree. Thus, there must be at least k − 1 + d coordinates. As n is the number of
coordinates, the claim follows.

Any code that meets the singleton bound is called a maximal distance separable (MDS) code.
Later in the lecture we will see such a code.

The Plotkin bound states that the relative distance is at most ≈ 1 − 1
|Σ| . Hence, for the

reltative distance to be close to 1, the alphabet must be sufficiently large:

Lemma 2.2 (Plotkin Bound). For any (n, k, d)Σ code C,

d

n
≤ |C|

|C| − 1

(
1− 1

|Σ|

)
.

Proof. Observe the sum: ∑
x∈C

∑
y∈C

∆(x, y). (1)

By the code distance property, we have a lower bound of |C| (|C| − 1) dn on the sum.

4For every i ∈ [n], and every σ ∈ Σ, let xi,σ be the number of codewords that have σ in their i’th
coordinate. So, for every i ∈ [n],

∑
σ∈Σ xi,σ = |C|. Then, every i contributs 1

n

∑
σ ̸=σ′∈Σ xi,σxi,σ′

to the sum. ∑
σ ̸=σ′∈Σ

xi,σxi,σ′ =

(∑
σ∈Σ

xi,σ

)2

−
∑
σ∈Σ

x2i,σ = |C|2 −
∑
σ∈Σ

x2i,σ.

By Jensen’s inequality, stating that for a convex function f : ℜ → ℜ (here: f(x) = x2), we have
E [f(x)] ≥ f(E [x]),

1

|Σ|
∑
σ∈Σ

x2i,σ ≥

(
1

|Σ|
∑
σ∈Σ

xi,σ

)2

=
|C|2

|Σ|2
.

Hence, ∑
σ ̸=σ′∈Σ

xi,σxi,σ′ ≤ |C|2
(
1− 1

|Σ|

)
.

By combining this upper bound with the lower bound on the sum (1), we get:

d

n
≤ |C|

|C| − 1

(
1− 1

|Σ|

)
.

2.2 Linear Codes

An important family of codes is that of linear codes. Their extra structure allows for succinct
representation and further applications.

Definition 3. A linear code C with parameters [n, k, d]Σ is a code where Σ is a finite field,
and C is a linear subspace of Σn.

Note that as linear codes are subspaces they can be succinctly described by a basis. The linear
transformation associated with the encoding is given by a matrix referred to as a generating
matrix. Linear codes are invariant under translation of a codeword, which leads to the next
lemma.

Lemma 2.3. The relative distance d/n of a linear code C is

min
0⃗ ̸=x∈C

∆(x, 0⃗).

Proof. Observe that for any three vectors over a finite field, x, y and z, we have ∆(x, y) =
∆(x+z, y+z). Taking these as words in a linear code, we see that x+z and y+z are also words
in the code. Taking z = −x (also in the code, by linearity) we see that ∆(x, y) = ∆(0, y − x).
Note that x ̸= y iff y − x ̸= 0⃗.

We can also use row-reduction to transform a linear code into a normal form. We call an
encoding E : Σk → Σn systematic if it can be expressed as E(x) = x,E′(x), for some map
E′ : Σk → Σn−k.

Lemma 2.4. Any [n, k, d]Σ linear code has a systematic encoding.

5Proof. Observe that the encoding procedure in a linear code can be expressed as a matrix
transformation. That is, the generating matrix G is n × k, and the encoding function is Gx.
Notice that G must have rank at least k, for otherwise the encoding procedure would not be
injective, which was assumed by definition. Thus, we can row-reduce G such that the first k
rows form a k × k identity matrix. The resulting matrix G′ is a systematic code.

For a linear code C ⊆ Σn, we define its dual code to be C⊥, where C⊥ = {w ∈ Σn|∀v ∈
C, ⟨w, v⟩ = 0} and ⟨., .⟩ : Fn × Fn → F is the inner product with respect to the standard
basis. Observe that C⊥ is also a linear subspace. The elements of C⊥ correspond to the linear
equations that elements of C satisfy. A matrix whose rows are a basis to C⊥ is called a parity
check matrix of C. The following lemma tells us that C⊥ also determines C:

Lemma 2.5. Let V be a subspace of Fn. Then (V ⊥)⊥ = V .

Proof. Observe that V ⊆ (V ⊥)⊥ by definition (and this holds in any inner-product space). To
show the equality, we show that they have the same dimension. This can be done by taking a
basis (v1, . . . , vk) of V and considering the map φ : Fn → Fk defined by w 7→ ⟨v1, w⟩, . . . , ⟨vk, w⟩.
By the Rank-Nullity theorem, dim Imφ+ dimKerφ = n. But dim Imφ = k because we chose
a basis of V . So as the kernel of this map is V ⊥, we see that dimV + dim(V ⊥) = n, and so
dimV = dim(V ⊥)⊥. As V ⊆ (V ⊥)⊥, this gives the equality.

3 Constructions of Codes

3.1 Random Codes

Consider the linear code C defined by a random generating matrix, i.e., a matrix that each
of its entries is drawn independently uniformly at random from Σ. This results in, with high
probability, a code with constant rate and constant relative distance:

Theorem 4 (Gilbert-Varshamov). For any 0 < δ < 1 − 1
|Σ| there is α > 0, such that for

sufficiently large n and k = αn, the code C is a [n, k, δn]Σ code with high probability.

That is, a random linear code is extremely likely to be an excellent code, or, put differently,
most linear codes are excellent codes. Still, finding an explicit, concrete linear code that is
known to have good parameters is a very challenging task. In the sequel we survey some basic
constructions of codes; all be useful later. We eventually show how to find efficiently codes with
good parameters.

3.2 The Long Code

For a (n, k, d)Σ code, an encoding function can be thought of as n functions Σk → Σ, one for
each coordinate in the output. The long code is obtained by taking all possible functions
Σk → Σ. There are |Σ||Σ|k such functions, so n = |Σ||Σ|k , and we associate each coordinate in
{1, . . . , n} with a function f : Σk → Σ. A message x ∈ Σk is encoded by a codeword whose f ’th

position is f(x). The rate of the long code is very poor k/|Σ||Σ|k .
On the other hand, the relative distance is 1 − 1/|Σ|. This is optimal by Lemma 2.2. To

analyze the distance, observe that for x ∈ Σk and for every σ ∈ Σ, a random function f : Σk → Σ
will have f(x) = σ with probability 1

|Σ| . In particular, for y ̸= x ∈ Σk, the probability that

f(x) = f(y) is 1
|Σ| .

6The long code is clearly a non-linear code even when Σ is a finite field, because some of the
functions Σk → Σ are non-linear. Still, the unique structure of the long code will prove to be
useful for our purposes. It will be used when Σk is constant.

3.3 The Hadamard Code

The long code evaluates all distinct functions on the input. The Hadamard Code evaluates
only (homogeneous) linear functions on the input. That is, over a finite field F, the Hadamard
code encodes a vector x ∈ Fk as (⟨a, x⟩)a∈Fk . This makes the Hadamard code a linear code.

One can see that the length is n = |F|k. This corresponds to rate k/ |F|k, which is much better
than that of the long code, but is still quite poor. Thus, the Hadamard code is useful mainly
in application where |F|k is sufficiently small.

The distance of the Hadamard code is still optimal 1 − 1/ |F|: Given x ̸= y, find an index i
where xi ̸= yi. Then, if we condition on all of the indices in a that are not i, the probability that
⟨a, x⟩ = ⟨a, y⟩ boils down to this last unconditioned index, which is distributed evenly. Thus,
the probability of equality is 1/ |F|.

An alternative view of the Hadamrd encoding is that it interperts its message x ∈ Fk as
defining a (homogeneous) linear function lx : Fk → Fn with lx(a) = ⟨a, x⟩. The encoding is then
an evaluation of the function lx on all points a ∈ Fk. This viewpoint is very useful, and also
leads naturally into other codes.

3.4 Reed-Solomon (RS) Codes

Reed-Solomon codes generalize Hadamard codes in a natural way. Instead of treating the input
as a (homogeneous) linear form, we can consider the input c ∈ Fk as representing a univariate
polynomial of bounded degree, pc : F → F, where pc(t) =

∑k−1
i=0 cit

i. A codeword will be the
evaluation of pc on all points t ∈ F. This yields n = |F|, so that the rate is k/ |F|. If k = Θ(|F|),
this finally yields constant rate!

Further, we can see that Reed-Solomon is a linear code, as by definition, for any c, c′ ∈ Fk,
for any α, β, t ∈ F we have: αpc(t) + βpc′(t) = (αpc + βpc′)(t).

Thus, to examine the distance we only need to look at the distance of a codeword from the
zero codeword. Recalling that a non-zero univariate polynomial of degree at most k − 1 has at
most k − 1 roots, we see that the relative distance of the code is least 1− (k − 1)/ |F|.

Reed-Solomon codes are MDS codes — that is, they meet the singleton bound and have
an optimal relative distance to rate tradeoff (see Lemma 2.1). Reed Solomon codes are also
extremely useful in practice, and are even used in CD-ROM’s and later technologies. The big
disadvantage of Reed-Solomon codes is that their alphabet size is as large as their length.

3.5 Reed-Muller Codes

The Reed-Muller Codes generalize the Reed-Solomon codes to the multivariate case. At the
same time they generalize the Hadamard code to larger degrees.

The input to the encoding is interpreted as a polynomial in m variables of degree at most r.
The output is the evaluation of this polynomial on all points in the space Fm, so the length is
n = Fm.

To analyze the distance, we first need the Schwartz-Zippel lemma:

7Theorem 5 (Schwartz-Zippel Lemma). Let f ∈ F[x1, . . . , xm] be an m-variate polynomial of
degree at most r that is not identically zero. Then

Pr
x∈Fm

[f(x) = 0] ≤ r/|F|

Proof. Observe that for m = 1 this is the usual bound on the number of roots of a univariate
polynomial. We assume r < |F| as otherwise the result is trivial. For m > 1 we reduce to the
m = 1 case. First we need the following lemma.

Lemma 3.1. Let f ∈ F[x1, . . . , xm] be an m-variate polynomial of degree at most r < |F| that
is not identically zero. Then there exists y ∈ Fm, where f(y) ̸= 0.

Proof. We do via contradiction, so assume f(y) = 0 for all y. Consider all ways to assign
x1, . . . , xi to elements in F, for all 0 ≤ i ≤ n. Call these partial assignments. The partial
assignments naturally form a tree. Further, each partial assignment induces a polynomial on
the rest of the variables. Clearly, any assignment that assigns all of the variables induces the
zero element upon assignment, as per assumption. Further, the assignment that assigns none
of the variables (that is, i = 0) leaves the polynomial unchanged.

Thus, any traversal down the tree necessary reaches a partial assignment a1, . . . , ai0−1 that
induces a non-zero polynomial, but where any further assignment (of xi0) induces the zero
polynomial in the rest of the variables. One can think of this as having a polynomial g in
the field F(xi0+1, . . . , xm) (the field of rational functions in the variables xi0+1, . . . , xm) in the
variable xi0 . Further, this polynomial is non-zero, but evaluates to zero at |F| points — one point
for each possible assignment of xi0 . Notice that g was induced from f , so deg g ≤ deg f ≤ r.
But this is a contradiction as a non-zero, univariate polynomial of degree at most r < |F| cannot
evaluate to zero on |F| points. (End of Lemma 3.1)

The above lemma shows that f must be non-zero somewhere, and we now bootstrap this to
show that f must be non-zero on a noticeable fraction of the points. Assume without loss of
generality that f is of degree exactly r. Thus, we can decompose f into f = f=r + f<r, where
f=r is a degree r homogeneous polynomial that is not identically zero, and deg f<r < r. By the
above lemma, there is some point y where f=r(y) ̸= 0. As f=r is homogeneous, f (⃗0) = 0, so
y ̸= 0.

Therefore, we can now partition the space Fm into the lines lx = {x+ ty|t ∈ F} with direction
y. This partition is possible as y ̸= 0. Observe that there are |Fm−1| lines. Further, when we
restrict f to a line lx, we see that f(x+ ty) = f=r(x+ ty)+f<r(x+ ty) is a degree r polynomial,
where the coefficient of tr is exactly f=r(y) ̸= 0. Thus, f |lx is a non-zero univariate polynomial
of degree exactly r, and hence has at most r roots. So on each line, f evaluates at most r/|F|
fraction of the line to zero, and overall evaluates at most r/ |F| fraction of Fm to 0.

Remark 3.1. The Schwartz-Zippel lemma is tight, with respect to its probability. For, we can
consider any univariate polynomial with r distinct roots.

We can now return to Reed-Muller codes. Just as with Reed-Solomon codes, Reed-Muller
codes are linear. Thus, analyzing the distance of the code amounts to analyzing the distance of
a codeword from the zero codeword. The Schwartz-Zippel Lemma gives us that the distance is
1−r/|F|, just like the distance of Reed-Solomon codes. There are

(
m+r
m

)
monomials of degree at

most r, so the dimension is k =
(
m+r
m

)
, and thus the rate is

(
m+r
m

)
/|Fm|. For m = 1 we get the

Reed-Solomon code. When m > 1, yet m = Θ(1), and r = Θ(|F|), the rate is constant, and the

8alphabet F is much smaller than the length. This remedies the disadvantage of Reed-Solomon
code, at the expense of a somewhat worse rate.

4 Operations on Codes

We saw that Reed-Solomon codes meet the Singleton bound, i.e., have an optimal relative
distance to rate tradeoff. However, there was a drawback because Reed-Solomon codes require
a large alphabet. One might hope that there is a way to modify Reed-Solomon codes into
binary codes while retaining their relative distance and rate. In general, one can ask: can we
take codes that some of their parameters are desirable and some are lacking, and transform
them into codes where all parameters are desirable? will see two operations and examine their
properties.

4.1 Concatenation of Codes

This operation is motivated by the question of how to reduce the alphabet size. While this
operation is called “concatenation”, it can also be thought of as composition of two codes: the
first code has large alphabet, and the second code has small alphabet and small dimension.
Concatenation replaces each alphabet symbol of a codeword of the first code with its encoding
using the second code.

Definition 6. Let A be a code with parameters (N,K,D)Σk and encoding function E, and B
be a code with parameters (n, k, d)Σ and encoding function F . Define φ : (Σk)K → ΣnN by

E(x1, . . . , xK) = (e1, . . . , eN) ⇒ φ(x1, . . . , xK) = (F (e1), . . . , F (eN)).

Define E ⋄ F : ΣkK → ΣnN to be the encoding function derived from φ via the identification of
(Σk)K with ΣkK . Call the resulting code A ⋄ B, the concatenation of A and B. Call A the
outer code, and call B the inner code.

Lemma 4.1. Let A be a code with parameters (N,K,D)Σk and encoding function E, and B
be a code with parameters (n, k, d)Σ and encoding function F . Then A ⋄B is a (nN, kK, dD)Σ
code. Moreover, if A and B (as well as E and F) are linear, then so is A ⋄B.

Proof. The dimension, length, and alphabet parameters of the concatenated code, as well as
linearity, are clear. We now examine the distance. Consider x ̸= y ∈ (Σk)K , which we use
instead of ΣkK . Then observe that via the properties of A, at least D/N fraction of symbols (in
Σk) in E(x) differ from E(y). Thus, when we apply the encoding F to each of these differing
symbols (thought now of as sequences of k symbols in Σ), we get a fraction of d/n differing
symbols over Σ. Thus, we see that overall there are at at least dD/(nN) fraction of differing
symbols.

As an example, we consider RS⋄Hadamard, where we have a Reed-Solomon outer code and
a Hadamard inner code. Even though the Hadamard code does not have a good rate, the
contribution of its length to the total length is moderate, as it is only used for encoding of
relatively short messages. Consider the Reed-Solomon code with parameters [qk, d + 1, 1 −
d/qk]F

qk
. The Hadamard code over Fq has parameters [qk, k, 1 − 1/q]Fq . Thus, by the above,

the concatenation has parameters [q2k, (d+1)k, (1− d/qk)(1− 1/q)]Fq . In particular, if we take

9d = ϵqk for 0 < ϵ < 1, we get a code with parameters [q2k, ϵkqk, 1 − 1/q − ϵ]Fq . This gives a
roughly-quadratic length encoding with a near optimal relative distance over small alphabets.

Using code concatenation, we can find in polynomial time in the length n codes with constant
rate and constant relative distance over any constant alphabet Σ:

Theorem 7. For any constant alphabet Σ, for any 0 < δ < 1 − 1
|Σ| , there is α > 0, such that

for sufficiently large n, one can find an explicit [n, αn, δn]-code in time polynomial in n.

Proof. Let δ = δ1·δ2 where δ2 < 1− 1
|Σ| . Reed-Solomon code is a [n1, k1 = (1−δ1)n1, δ1n1]{1,...,n1}

code.
Let k2 = log n1/ log |Σ|. Obtain a [n2, k2, δ2n2]Σ code with n2 = Θ(k2) and δ2 = Θ(1) by a

brute-force search. Note that: (1) By Theorem 4, there is such a code; (2) The time complexity

of the search is Θ(|Σ|n2) = Θ(|Σ|Θ(k2)) = n
Θ(1)
1 .

Concatenate the two codes to obtain a [n1n2, k1k2, δ1δ2n1n2]Σ code. Note that the rate
k1k2/n1n2 is constant, and the relative distance is δ.

4.2 Tensor Product

In this section we see an operation whose purpose is to increase the dimension of a code. Suppose
we have a code with desireable tradeoffs between code parameters, but with very few codewords.
Such could be obtained by an expensive brute-force search among all possible codes. We want
to obtain a code with similar tradeoffs, but higher dimension. The operation we show is called
tensor product or direct product of two codes. The new encoding interprets the message as a
matrix, uses the first code to encode the rows of the matrix, and then uses the second code to
encode the resulting columns. If, for instance, both codes had dimension k, the new code has
the much higher dimension k2.

Definition 8. For i ∈ {1, 2}, suppose Ci is a code with parameters [ni, ki, di]Σ and a linear
encoding function Ei : Σ

ki → Σni. Consider the following encoding function E1⊗E2 : Σ
k1×k2 →

Σn1×n2, defined by the map: x1,1 · · · x1,k2
...

. . .
...

xk1,1 · · · xk1,k2

 7→

 y1,1 · · · · · · y1,n2

...
. . .

. . .
...

yk1,1 · · · · · · yk1,n2

 7→


z1,1 · · · · · · z1,n2

...
. . .

. . .
...

...
. . .

. . .
...

zn1,1 · · · · · · zn1,n2


where E1(xi,1, . . . , xi,k2) = (yi,1, . . . , yi,n2), and E2(y1,i, . . . , yk1,i) = (z1,i, . . . , zn1,i).

Call the code that this encoding function induces the tensor product of C1 and C2, denoted
C1 ⊗ C2.

If we tensor a code with itself m times, we denote this C⊗m.

Lemma 4.2. For i ∈ {1, 2}, suppose Ci is a code with parameters (ni, ki, di)Σ and encoding
function Ei : Σ

ki → Σni. Then C1 ⊗ C2 is a (n1n2, k1k2, d1d2)Σ code.

Proof. All of the parameters are clear except for the distance parameter. Suppose we have two
k1 × k2 matrices over Σ. Call the matrices formed from X in the encoding process of C1 × C2

to be X ′ and X ′′, and similarly for Y . If X ̸= Y , then there is some i such that row i in X and
Y differ. Thus, the row i in X ′ and Y ′ must have at least d1 differences by properties of C1.
Thus, we then see that X ′ and Y ′ have at least d1 columns in which they differ. Thus, we see
that in X ′′ and Y ′′, there are at least d1 columns that differ by d2 coordinates. Thus, there are
at least d1d2 differences total.

10The operation of a tensor product is a linear algebra operation. Given y ∈ Fn and z ∈ Fm,
their tensor product is the vector y ⊗ z ∈ Fn×m where the (i, j)-th coordinate has value yizj .
The vector y⊗ z is conveiently interpreted as an n×m matrix over F. All its rows are multiples
of z, and all the columns are multiples of y.

The tensor product of C1 and C2 consists of the matrices with rows from C1 and columns
from C2:

Lemma 4.3. C1 ⊗ C2 = span {y ⊗ z | y ∈ C1, z ∈ C2}.

Proof. Without loss of generality, E1 and E2 are systematic. The containment ⊇ follows from
the definition, since every y⊗z for y ∈ C1, z ∈ C2 is a codeword. Let us prove the containment⊆:
For every i ∈ [k2], j ∈ [k1], let ∆i,j be the k2×k1 matrix whose (i, j) entry is 1, and all its other
entries are 0. Then, {(E1 ⊗ E2)(∆i,j)}i,j forms a basis to C1 ⊗ C2. Let y = (y1, . . . , yn1) ∈ C1

be the E1 encoding of the message which is 0 on all coordinates except for the j’th which is
1. Let z = (z1, . . . , zn2) ∈ C2 be the E2 encoding of the message which is 0 on all coordinates
except for the i’th which is 1. The columns of (E1 ⊗ E2)(∆i,j) are percisely y1z, . . . , yn1z. I.e.,
(E1 ⊗ E2)(∆i,j) = y ⊗ z.

