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In this lecture we show that under an assumption we refer to as the low degree testing as-
sumption, we have a weak PCP Theorem

NP ⊆ PCP1,0.99[O(log n), (log n)O(1)],

i.e., a PCP Theorem with a poly-logarithmic number of queries.
For this lecture we use a simplified version of the low degree testing assumption. This

simplified version is in fact over-simplified, and, as is, false. However, we use it as a place holder
for the more intricate version of the assumption that is both correct and sufficient for our needs.
More details about the assumptions are in the next section. In the next lectures we formulate
the more intricate version of the assumption, prove its validity, and argue that it indeed suffices
for the weak PCP Theorem.

1 The Low-Degree Testing Assumption

The low degree testing assumption states the existence of a probabilistic verifier that checks
whether a function f : Fm → F is of degree at most d ≪ |F|. The verifier does so by evaluating
the function on only a small number of inputs chosen in a randomized way. We think of f as
given by its table. This is a table with |Fm| entries, one for every x ∈ Fm. At position x we
have f(x). This is the way we usually represent functions for PCP purposes, and it makes sense
when |Fm| is sufficiently small. In PCP contexts, the parameters are chosen so |Fm| ≤ nO(1).

As explained above, for this lecture we use a simplified version of the low degree testing
assumption that is false, and is a placeholder for the true assumption:

Assumption 1.1 (Simplified Low Degree Testing). There is a constant δ > 0, such that given
the table of a function f : Fm → F and a degree d ≤ δ |F|, there is a probabilistic verifier for the
statement “deg f ≤ d”. The verifier is given access to f and to an auxiliary proof and satisfies
the following:

• Completeness: If deg f ≤ d, then there is a proof that the verifier always accepts.

• Soundness: If deg f > d, then for any proof, the verifier accepts with probability at most
1/3.

The verifier uses O(log(|F|m)) random bits. It makes only |F|O(1) queries to f .

The true low degree testing assumption differs from the simplified assumption in that the
soundness condition deg f > d is replaced with a stronger condition. More about the necessity
of this change is in the next lecture.
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22 Road Map

Let us sketch the outline of the proof. We start with the NP -complete problem Circuit-Sat.
The input to this problem is a Boolean circuit over {∧,∨,¬}, and the output is whether the
circuit satisfiable or not. We construct a verifier for Circuit-Sat with perfect completeness
and soundness ≈ 1

2 , whose tests are quadratic equations over GF (2). This verifier makes a
linear number of queries to its proof, and so falls short of proving the PCP theorem we are
after. Nonetheless, it reduces our problem to verifying low degree (here: quadratic) equations.
We then present a protocol for verifying a low degree equation. In the protocol, the verifier
makes only a polylogarithmic number of queries to the proof. This requires the low degree
testing assumption.

3 Quadratic Equations

We construct a verifier for Circuit-Sat, whose tests are quadratic equations. For the proof it
will be convenient to assume that the only gates in the circuit are AND gates where each of
their two inputs may be nagated. Let us call such circuits canonical circuits. Note that the
standard Circuit-Sat problem reduces to the Circuit-Sat problem on canonical circuits, so
we can assume without loss of generality that the circuits are canonical.

Theorem 1. Circuit-Sat on canonical circuits of size n has a verifier V ∈ V[O(log n), O(n)]
with completeness 1 and soundness (12 + ε) for ε = 0.001 that performs tests that are quadratic
equations over GF (2).

Proof. Let C be the input circuit. Suppose C has n wires. First we prove the theorem for
randomness O(n). Then, in the “derandomization” paragraph below, we explain why the ran-
domness can be decreased to O(log n).

The prescribed auxiliary proof contains one bit for each of the n wires in the circuit. The
bit is the value on the wire when the input to the circuit is satisfying. Each quadratic equation
g = 0 with quadratic polynomial g corresponds to a gate as follows:

• An AND gate whose incoming wires are input1, input2, and its output wire is output
corresponds to output− input1 · input2 = 0.

• If input1 [or input2] is negated, we replace it by (1− input1) [or (1− input2)].

• If the output is also the output of the circuit, we replace output by 1 (in fact, by (1− 0 ·
output), so all polynomials depend on three wires: the two input wires and the output
wire).

Denote the quadratic polynomials corresponding to the gates by g1, g2, g3, . . . The verifier picks
a uniformly random subset I of the gates, and checks that

∑
i∈I gi = 0.

There are 2n subsets the verifier may choose, and so it uses n random bits. The verifier makes
at most n queries.

If C is satisfiable, for the prescribed proof, V accepts with probability 1.
Assume C is not satisfiable. Fix some Boolean value for every wire. The equation corre-

sponding to at least one of the gates does not hold; let us denote it by i0. Now observe the test
by the verifier. The choice of the uniformly random subset can be seen as a two-step process:
(1) Pick uniformly at random a subset of all the gates but i0; (2) Decide uniformly at random



3whether to add i0 to the subset. The sum over the subset in (1) is either 0 or 1. Assume without
loss of generality that is 1. The total sum is 0 and the verifier accepts exactly when i0 is added
to the subset in (2). This happens with probability 1/2. Hence, the soundness error is 1/2.

Derandomization: Below we describe a collection of O(n) subsets of gates on which the
completeness and soundness arguments above go through (in fact, the soundness error increases
slightly from 1

2 to 1
2 + ε). To pick a subset from the collection the verifier needs only O(log n)

random bits.
The completeness argument will go through no matter which collection of subsets is chosen.

For the soundness argument to go through, the collection should satisfy the following: if there
is a gate whose quadratic polynomial evaluates to 1 rather than to 0, the sum over a random
subset from the collection is 1 with probability at least (12 − ε).

To construct the collection we use the generating matrix G of a binary linear code with
distance (12 − ε). For every x ̸= 0⃗, the codeword Gx has at least (12 − ε) fraction of ones. Think
of the columns of G as corresponding to the gates, and of its rows as corresponding to the
possible subsets. The (i, j) entry is 1 if the i’th subset contains the j’th gate. Think of a vector
x as giving for each gate the value of its corresponding quadratic polynomial. The vector Gx
indicates the result of the sum for each subset. The vector Gx having at least (12 − ε) fraction
of ones corresponds to the verifier rejecting with probability at least (12 − ε).

We take G with Θ(n) rows, corresponding to Θ(n) subsets. Such can be found by running
the algorithm in Theorem 7 of the coding theory notes.

4 The Structure of the Verifier

Next we construct a verifier that given a system of quadratic equations over GF (2), and oracle
access to a proof, makes only a poly-logarithmic number of queries to the proof, and yet:

• Completeness: If there is an assignment to the variables that satisfies all equations, then
there is a proof that makes the verifier to always accept.

• Soundness: If no assignment to the variables satisfies more than (1/2− ε) fraction of the
equations, then the verifier accepts with probability at most max {d/ |F| , 1/3}.

The verifier uses only logarithmic randomness. This gives the desired PCP Theorem, using
Theorem 1.

The first idea is to ask the prover to encode the assignment to the variables x1, . . . , xn.
We use a systematic encoding of (a slight variant of) the Reed-Muller code. This means that a
codeword is the table of a low degree polynomial, and the first entries of the table are x1, . . . , xn.
This is often referred to as a “low-degree extension”. The verifier uses the low degree testing
assumption to verify that the table is indeed a low degree polynomial. The verifier then applies
a protocol called the “Sum-Check” protocol, to be described. This protocol checks an equation
is satisfied using only poly-logarithmic number of queries, i.e., without even going over the entire
equation! It does so by querying additional proof supplied by the prover (poly-logarithmically
many).



45 Low-Degree Extension

Let δ > 0 be a parameter (this parameter will later determine the soundness error of the
sum check protocol). Let h and m be parameters that satisfy n = hm. We take h = log n,
m = log n/ log log n. Let F be a finite field of characteristic 2 and size |F| = m(h− 1)/δ. Pick
some canonical set H ⊂ F with |H| = h. We think of Hm as a sub-cube of Fm. We note that
|Fm| = |Hm| ·Θ((m/δ)m). For m = log n/ log log n and δ ≥ 1/mO(1), |Fm| ≤ nO(1).

Pick some canonical identification of Hm with the set [n]. With this identification, the
assignment to x1, . . . , xn, which can be thought of as a function [n] → {0, 1}, can also be
thought of as a function f : Hm → {0, 1}. We now use the following lemma:

Lemma 5.1 (Low Degree Extension). Let F be any field. Let H ⊆ F be a set of size h. Then
any function f : Hm → F can be uniquely extended to a function f̄ : Fm → F, where f̄ is is an
m-variate polynomial with individual degree at most h − 1 in each variable. We call f̄ the low
degree extension of f .

We note that the total degree of the low degree extension is d
.
= m(h− 1), and we chose the

finite field so d ≤ δ |F|. Note that a low degree extension is a systematic encoding of the variant
of the Reed-Muller code that considers polynomials with bounded individual degrees, rather
than bounded total degree. The individual degree bound is used to guarantee the uniqueness
of the low degree extension, and is not important to the PCP construction.

6 A Protocol Using Sum Check

The verifier picks a random quadratic equation test, and verifies its satisfaction.
Assume that the quadratic equation is of the form:

n∑
0≤i<j

pi,jxixj = C

where pi,j , C are in GF (2) and arithmetic is over GF (2). In the general case, there may be
terms of the form pixi, but for notational simplicity we ignore them. Incorporating them back
to the protocol is fairly straightforward.

Let a : [n] → {0, 1} denote the assignment to the variables x1, . . . , xn. Using the identification
of [n] with Hm, we can write the equation as follows:∑

y,z∈Hm

py,za(y)a(z) = C.

Let us define φ : H2m → {0, 1} to be:

φ(y, z)
.
= py,za(y)a(z).

In this notation we wish to verify that: ∑
x∈H2m

φ(x) = C.

Using low degree extension, and now carrying out arithmetic over F, this is the same as:∑
x∈H2m

φ̄(x) = C.



5φ̄ is a 2m-variate polynomial of degree at most 2m(h − 1) over the finite field F. We used the
characteristic 2 of the field F to ensure arithmetic over {0, 1} is as before.

Standard verification of the equality takes
∣∣H2m

∣∣ ≤ nO(1) queries to φ̄. The sum check
protocol performs the verification using only 2m · |H| queries to φ̄ and to an additional auxiliary
proof. For our choice of parameters, |H| = log n, m = log n/ log log n, so this is less than (log n)2

queries. The sum-check protocol relies on the low degree of φ̄, and on the low degree testing
assumption.

The final protocol using the sum check protocol is as follows:

1. The prover specifies:

(a) A table A : Fm → F that is supposed to be the low degree extension ā.

(b) For every quadratic equation test, indexed by r, a table Φr : Fm → F that is supposed
to be the low degree extension of φr associated with the equation.

(c) The auxiliary proof required for the sum check protocol.

2. The verifier verifies A is of degree at most d.

3. The verifier picks r at random.

4. The verifier verifies Φr is of degree at most d.

5. The verifier verifies that ∑
x∈H2m

Φr(x) = C

by performing the sum check protocol.

6. The verifier verifies that Φr(y, x) = py,zA(y)A(z) by picking at random y, z ∈ Fm and
checking that

Φr(y, z)
.
= py,zA(y)A(z).

7. The verifier accepts iff it accepts in all steps.

When the system of quadratic equations is satisfiable, and the proofs are as prescribed, the
verifier always accepts. When the system of quadratic equations is not satisfiable, at least one
of the conditions the verifier attempts to verify fails. In this case, no matter which condition it
is, the verifier would accept with probability at most max {d/ |F| , 1/3} [we will show this is the
soundness error of the sum check protocol as well].

7 The Sum Check Protocol

The sum check protocol uses the idea of “equality testing by comparing on a random point”
that we already used above. The additional idea is to use the recursive structure of the sum∑

u∈Hl φ(u). We can put this sum in the root of an |F|-ary tree. Each of its children will contain
the sum

∑
u1∈Hl−1 φ(u0, u1) for some u1 ∈ F. This is again a sum of the form

∑
u∈Hl φu0(u1) for

the low degree polynomial φu0 : Fl−1 → F defined by φu0(u1) = φ(u0, u1). Each of the children
will have |F| children of its own defined similarly, and so forth, for l + 1 levels. The protocol
verifies the original sum by going down the tree. It requires a number of queries proportional
to the depth of the tree, rather than to its size!



6Theorem 2 (Sum Check Protocol). Let φ : Fl → F be a polynomial of total degree at most
d given by its table. Under the low degree testing assumption, for H ⊆ F, with |H| = h, and
C ∈ F, the identity ∑

u∈Hl

φ(u) = C

can be checked using lh queries to φ and to an auxiliary proof. The verifier uses O(l log |F|) ran-
dom bits, has perfect completeness and soundness max {d/ |F| , 1/3} (where 1/3 is the soundness
in the low degree testing assumption).

Proof. For i = 0, . . . , l, we define the partial sum functions:

gi(x1, . . . , xi) :=
∑

ai+1,...,al∈H
φ(x1, . . . , xi, ai+1 . . . , . . . , al) (1)

Observe that the testing
∑

u∈Hl φ(u) = C is equivalent to testing if:

1. g0 ≡ C.

2. gl ≡ φ.

3. gi(x1, . . . , xi) =
∑

a∈H gi+1(x1, . . . , xi, a) for i = 0, . . . , l.

With this in mind, the proof system is the list of functions Gi : Fi → F, where Gi is supposed
to be gi. The functions are given by their tables. The test will be

1. Using the low degree testing assumption, verify that all Gi’s are of degree at most d.

2. Verify that G0 ≡ C.

3. Verify that Gl ≡ φ by picking x ∈ Fl uniformly at random, and checking that Gl(x) =
φ(x).

4. Verify thatGi(x1, . . . , xi) =
∑

a∈H Gi+1(x1, . . . , xi, a) for i = 0, . . . , l, by picking x1, . . . , xl ∈
F uniformly at random, and checking that the identity holds for them.

5. If all the checks were verified, accept. Otherwise, reject.

Clearly, the number of queries is O(lh). Further, the randomness is O(l log |F|) and the
verifier has perfect completeness, i.e., accepts with probability 1 if the Gi’s are indeed the gi’s,
and

∑
u∈Hl φ(u) = C.

We now turn to soundness. If G0 ≡ C, Gl = φ and Gi = gi for all i, then
∑

u∈Hl φ(u) = C.
Let us enumerate the possible cases when

∑
u∈Hl φ(u) ̸= C:

1. G0 ̸≡ C. In this case the verifier always rejects.

2. Gl ̸= φ. In this case, by the Schwartz-Zippel lemma, the verifier rejects with probability
at least 1− d/|F|.

3. There is a Gi that is not of degree at most d. By the low degree testing assumption, in
this case, the verifier rejects with probability at least 2/3.



74. All Gj ’s are of degree at most d, but there is i with Gi ̸= gi. Let i be the largest such
that Gi ̸= gi. The verifier tests:

Gi(x1, . . . , xi)
?
=

∑
a∈H

Gi+1(x1, . . . , xi, a)

=
∑
a∈H

gi+1(x1, . . . , xi, a)

= gi(x1, . . . , xi)

By Schwartz-Zippel, Gi(x1, . . . , xi) ̸= gi(x1, . . . , xi), and hence the verifier rejects, with
probability at least 1− d/ |F|.

Overall, when
∑

u∈Hl φ(u) ̸= C, the verifier accepts with probability at most max {d/ |F| , 1/3}.


