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We have developed a new undergraduate programming course, which has so far been
taught three times. This paper explains the motivations of the course, describes its con-
tent and organization, and reports on our experiences to date. The key innovations of
the course are: an emphasis on design and the transition from problem to solution;
separation of concepts into three programming paradigms; the use of non-trivial case
studies to motivate concepts; and early introduction of current technologies. The re-
sult is a course that differs both from traditional programming courses (because of its
emphasis on design and project work) and from many software engineering courses
(because of its emphasis on product over process).

1 Context

The undergraduate curriculum in computer science and electrical engineering at MIT
has been completely redesigned in the last few years. As part of this redesign, we de-
veloped a new ‘foundation course’ in programming, Elements of Software Construction.
This course, which is referred to in MIT style by its number, 6.005, is one of several elec-
tive ‘foundation courses’ that students take, usually as sophomores, after completing at
least one of the new ‘core courses’ (6.01 and 6.02) that introduce fundamental concepts
in both electrical engineering and computer science. The other foundation courses in
computer science are introductions to computer architecture (6.004) and algorithms
(6.006).

The design of 6.005 posed many challenges. First and foremost, it follows in the
footsteps of two remarkable courses, 6.001: Structure and Interpretation of Computer
Programs [2] and 6.170: Laboratory in Software Engineering [10], both of which were
mandatory for computer science students in the old curriculum. Any material in those
courses that does not appear in 6.005 is thus perceived as dropped from the curriculum.
Moreover, both courses have inspired advocates and admirers over many years who are
suspicious of any new course with a different intellectual agenda.

Second, 6.005 serves multiple audiences with different backgrounds, interests and
aspirations. Although the course is designed for students in Electrical Engineering and
Computer Science, about a third of the class comes from other departments. Some in-
coming students have hardly programmed at all; their exposure is limited to some small
Python programs they wrote in 6.01. Others have programmed extensively in multiple
languages. Our emphasis on design models requires the ability to think abstractly, but
most students enter the course with minimal mathematical sophistication. The institute
imposes a requirement on all freshmen of two calculus courses, which makes it hard for
a departmental curriculum to find space for other areas of mathematics. Consequently,



our department’s own math courses (6.041, 6.042) must serve multiple areas, and the
basic concepts that are most useful in a software engineering course — propositional
and predicate logic, structural induction, graphs and relations, etc — are covered only in
one (6.042), and even then not every time the course is offered. As a foundation course,
6.005 must inculcate big ideas of lasting value, but must also, as the main programming
course, teach the basic skills that students need for summer jobs, subsequent courses,
and, for many, a career in software engineering.

Third, the very nature of programming presents an educational dilemma. There
seems to be a mismatch between theory and practice. Our most mature and most el-
egant theories (of data abstraction, specification, verification, types, etc) seem to be
disconnected from the daily practice of programming, where the difficulties lie less
with small semantic details and more with the challenges of understanding and piec-
ing together large, unwieldy (and poorly understood) libraries. Students, moreover, are
eager to become familiar with common technologies (such as user interface toolkits,
networking libraries, web languages, etc), which might be seen as taking space — both
temporal and intellectual — from more fundamental topics.

2 Course Philosophy

Our course design rests on three fundamental premises. These premises comprise our
response to the challenges just described, and our vision of what a foundational pro-
gramming course should be.

Theory and practice together. We believe that the dichotomy between theory and
practice is a false one. Teaching practical tools and techniques without a sound concep-
tual basis is building on sand. Students who learn how to use software technologies in a
vacuum rarely come to grips with them in any fundamental way. They become mired in
irrelevant details, and are unable to identify the key differentiators between technolo-
gies or designs. They are prone to develop poor habits, building exclusively by trial-
and-error, and never fully understanding the limitations of their own inventions. On
the other hand, theory without practice is likely to be misdirected. Unless concepts are
applied to realistic examples, students find it hard to see their relevance, and emphasis
will tend be placed not on the ideas that are most valuable but on those that are most
readily formalized, or that provide the best fodder for exam questions.

Design as the focus. We believe that the central intellectual challenge of programming
is design: grappling with the vagueness and complexity of engineering by articulating
a clear problem, inventing the key elements of a solution, and assembling and evalu-
ating an embodiment. Design problems, unlike algorithmic problems, do not tend to
have easily comparable solutions, so recognizing different metrics and making appro-
priate tradeoffs between them is essential. In industrial practice, design is central; the
best software systems are distinguished by their designs, and development failures are
inevitably due to design-level problems (whether in formulating requirements, struc-
turing the implementation, or specifying components). In addition to being the most
important skill for students to acquire, design is also perhaps the hardest. The ability to
complete the code of a specified procedure comes easily to most students, and seems



to need little tutoring. But the ability to articulate the essence of a problem, to invent
robust and appropriate abstractions, to recognize tradeoffs, and — perhaps most impor-
tantly — the recognition of the value of simplicity (and the extraordinary effort needed
to achieve it) come far less easily. Focusing on design is attractive for another reason
too: while some of the skills imparted in a programming course are rather specialized,
design skills are applicable in many fields.

Software is multifaceted. To handle the variety of problems that arise in practice, an
engineer needs to be comfortable with multiple paradigms — and with the idea that
different problems sometimes need very different approaches. In many curricula, the
introductory programming course presents a single view of programming that tries
to unify all programs in a single paradigm. Classic examples are formal-methods-in-
spired courses in which programs take an imperative form and are obtained by refining
specifications; functional programming courses (in languages such as ML, Scheme and
Haskell) that emphasize type structure and control of side-effects, and courses (such as
6170) that view programming as the invention and elaboration of abstract types. These
approaches have the great advantage of focus and clarity, and, can be balanced by other
courses with different perspectives. But in a curriculum that requires just one program-
ming course, we believe it is important to expose students to multiple paradigms. 6.005
is structured into three segments, each covering a single paradigm, and each basic con-
cept is introduced in one of the segments. An alternative is to present a similar collec-
tion of concepts in a mix-and-match approach (using design patterns, for example). In
our opinion, this is an opportunity missed; the world views that underlie the concepts
go by unnoticed, and the concepts themselves are harder to explain in the larger con-
text. For example, in 6.005 the idea of inductive invariants is introduced in the context
of state machine programs, and revisited later when discussing datatype representa-
tions and object models (where in other courses it may be introduced for the first time,
in a far more complicated setting). As another example, immutability is introduced in
the context of recursive datatypes and functions, where it is much easier to understand
and appreciate than in the more typical context of full blown object-oriented programs.

3 Course Structure

The course is organized into three segments, each corresponding to a paradigm. For
each paradigm, we teach students how to articulate the problem to be solved (in a suit-
able lightweight modeling notation) and then how to implement a solution, using a col-
lection of design patterns that capture the typical expertise of developers versed in that
paradigm. Each paradigm has the following components:
A series of six 80-minute lectures, organized around a single substantive case study
(discussed below) and smaller examples, starting from problem modeling and mov-
ing to design patterns and finally implementation details. There were also supple-
mentary lectures on topics that did not fit neatly into a paradigm: a lecture on testing
and one on debugging; a lecture on usability; a lecture on concurrency; and 3 lectures
introducing Java and illustrating how to work with the Eclipse environment.



A case study illustrating the key ideas, notations and patterns. The students attempt
these by themselves in advance of their presentation in class. We call these assign-
ments ‘explorations’; their purpose is to help students appreciate each problem be-
fore we show a solution, and to give them at least one other solution (namely their
own) to compare with ours.

A project in which students work in groups of three on a software development from
problem formulation through design to implementation and testing. The projects are
loosely specified; in our experience, the disadvantage of not being able to test student
solutions automatically is far outweighed by the advantage of giving them the experi-
ence of more open-ended problem solving. The last project was slightly more ambi-
tious than the others, and prizes were awarded to the best solutions.

One or more project work sessions, in which teams met in the lecture room and
worked on their projects with teaching assistants and faculty at hand to provide help
if needed. In the first two offerings of the course, we found that teams had difficulty
finding time to get together and projects were often delayed. By using standard class
times for these sessions, we were able to relieve teams of some of their scheduling
burden and encourage early starts on projects.

A laboratory, in which students worked individually on a tightly scripted series of
small tasks to learn the basic tools and technologies they would require in their proj-
ect work — for example, how to use network sockets, or how to set up and execute
unit tests with JUnit. The purpose of these laboratories was to give students the skills
and basic familiarity they needed as efficiently as possible, minimizing the amount
of time and effort devoted to ideas that have little long-term value. Undergraduates
(many of whom had taken the course previously) were hired as laboratory assistants
to help students complete their tasks.

Weekly 50-minute recitations led by graduate student teaching assistants. Typically,
a few concrete problems were presented and worked on by the students and then dis-
cussed. The teaching assistants were also available for office hours and project work
sessions (see below).

A problem set consisting of five or ten small problems, each involving constructing a
small model or writing some code. These, along with the recitations, were an innova-
tion of the third offering of the course, after we realized that students needed some
warming up to become comfortable with new ideas, techniques and notations before
applying them in projects.

4  Lecturing Strategies

Although most of the learning in the class happens in the projects, we believe that lec-
tures are important, as a means of conveying basic notions and illustrating how to tackle
problems. We attempt to motivate all concepts and techniques with concrete examples.
We start with a practical problem; explain why it’s hard and interesting; show a solution;
and only then attempt to set the solution in a more general and abstract context. The
idea of structuring the course around substantive case studies reflects in part the influ-
ence of our predecessor 6.001, which showed students components of a runtime system



(such as a metacircular evaluator, assembler, and garbage collector). Our case studies
are taken from applications further afield from computer science, because we felt this
would engage a wider group of students, and because it offered the opportunity to show
how to grapple with less well-defined and more open-ended problems. Our use of ex-
plorations reflects our pedagogical realization that the easiest way to convince students
that a problem is hard and interesting is to give them a chance to solve it themselves
first; we found that otherwise it is very hard to convey the excitement of a challenging
problem.

Beyond the case studies, we use a variety of smaller examples. Even with these, we
have tried to adhere to some basic principles to ensure that they are motivating and
educational:

Clarity. Each example should have a clear purpose (usually in illustrating one or more

difficulties, concepts or techniques), and should be — as much as possible — free of

distractions and unnecessary complexity.

Realism. It is necessary but not sufficient that an example reflect real problems that

arise in engineering practice. It should be entirely free of contrivances, so that the

student can recognize it as a real problem.

Pragmatics. The solution should be developed pragmatically, so that students can see

what an engineer might do in real work. It should not be idealized, with more effort

and polish than is achievable at reasonable cost in practice, nor should it fail to meet
typical standards. In short, it should be capable of presentation without apologies of
any sort.

This last point raises a dilemma with respect to ‘clever’ solutions. Obviously, we strive
to show our students solutions that are not only practical but also elegant and surpris-
ing. In this way, an example can also be a vehicle to illustrate a clever idea or pattern that
is incidental to the problem being solved. But if the solution is too clever, students may
be distracted, or discouraged by the thought that they could never have invented such
a solution themselves.

In addition to showing examples of good solutions, we try to show bad solutions for
contrast, but we have not included as many of these as we would have liked. Most often,
they are fragmentary solutions that are presented as strawmen along the path to a final
solution. We realize that it would be preferable to show more than one complete solu-
tion, and explain why one (or more) is better than the others.

Presenting code in lecture is challenging. Like many of our colleagues, we have found
that showing slides (made in Powerpoint or Keynote) has mostly detrimental effects,
making the lecture less interactive, and encouraging the lecturer to speed through ma-
terial without explaining it carefully. On the other hand, we find the challenge of orga-
nizing material into slides (and especially choosing good titles) very helpful. We there-
fore generally prepare slides in advance of lectures, deliver the material on a traditional
blackboard, and issue the slides online in lieu of lecture notes. When a case study calls
for showing code samples longer than a few lines, we have found it too tedious to write
the code on the board. In these situations, we either project the code on a screen above
the blackboard, or we hand it out on paper. Students like to have the slides on paper
during the lecture so they can write on them directly; this then allows the code to be



included in the paper slides. We are not sure if this is a good idea, and have sometimes
used instead a separate handout for code that allows a program to be shown in full on
several sheets of paper.

Engaging students in a large lecture class is hard. We try to avoid long monologues;
we ask frequent questions and we have students work with partners on small problems
during lecture. We have found that just introducing one or two such problems into each
lecture, each taking less than ten minutes (including ensuing discussion), is very pro-
ductive. Not only does it seem to keep students alert and interested, but it also has on
several occasions revealed to us our own gross misapprehensions of the students’ level
of understanding.

Lecture attendance in our department is quite low: typically 30-60% for a class in
which attendance is not mandatory. We have made some effort to meet with groups of
students to try and understand why this is so. We suspected that we were not succeed-
ing in making lectures as effective as they might be, and that students find they learn
better by other means. Although we could undoubtedly improve our lecturing, this ap-
pears not to be the main issue. Students who don't attend lecture invariably tell us that
they know it damages their understanding, and that their attempts to learn the material
from notes are not very productive. The students who attend lectures are usually the
stronger ones, and they are the same students who attend recitation and take advan-
tage of teaching assistant office hours. In the end of term course evaluation, we asked
the students about their lecture attendance: amusingly, we got no usable data from this
because it seems that the students who don't attend lecture likewise don’t complete
surveys.

In one of our meetings, some students told us that this didn’t surprise them: that
students either are motivated (and will take advantage of every learning opportunity the
course offers) or are not (and will skip anything that is not mandatory). They felt that
our efforts to increase lecture attendance were misguided, and that we should focus all
our attention on the students who attend, not the ones who do not. This seems to be
a harsh attitude, but it may be the most productive. At the very least, this interchange
made us wonder whether some of our challenges lie beyond the particular course being
taught.

5 The Paradigms

The course teaches three paradigms, which correspond very roughly to traditional im-
perative programming, functional programming, and object-oriented programming.
Each paradigm, however, is intended to be more focused and conceptually coherent
than a traditional course. The first paradigm, for example, ignores data structures en-
tirely and focuses on states and transitions; the second covers algebraic datatypes and
functions, and never considers mutation; the third treats the essence of object-oriented
programming as computing over a relational heap.



5.1  State Machine Programming

Programs are viewed as state machines that interact with the outside world through
discrete events. Machines are modeled using a simple transition diagram notation with
a semantics based on CSP (machines synchronize by sharing events, and may perform
non-shared events independently, and the behavior of a machine is represented as a
trace set, ignoring the complexities of refusals) and a syntax based on Statecharts (with
hierarchical nesting of states and parallel combination). Basic patterns for implement-
ing state machines in Java are named and explained — such as Object as Machine in
which a Java heap object represents a state machine, with a method for each event — as
well as some more complex patterns — such as Object as State [the Gang of Four State
pattern6] in which each state is represented by an object.

An alternative view of machines as grammars is then presented, and we teach an
elementary form of the JSP method [9, 4] for synthesizing code from regular grammars.
Aside from its benefit in software engineering, this material is also important because
no other required course teaches basic notions of grammars, regular languages, regular
expressions, parsing, and so on.

The case study is a ‘midi-piano’ that allows tunes to be played on a computer key-
board using Java’s built-in MIDI library, and recorded and played back. A small but
instructive complication is that an understanding of how the keyboard generates key
repeats is needed; we model these and design a simple machine to absorb them. A big-
ger complication arises from the requirement that it be possible to record keys pressed
during playback, so that recordings can be layered. Our solution uses an event queue to
merge key presses and playback events, which is read by a single thread thus sequential-
izing the main functionality of the program.

Other lecture examples included a client that downloads and parses weather infor-
mation (to illustrate Java basics), a toy traffic light system (to illustrate inductive invari-
ants), a stock quoting widget with RTF and HTML output (to illustrate modularity and
module dependences), and a console program that poses quiz questions and tallies the
score (to illustrate JSP).

The project is to build a downloading client for a BitTorrent-like system, in which
segments of a file are obtained (via HT'TP) from multiple servers, with locations given
by manifest files that are themselves stored in a distributed fashion. The manifests give
alternative servers to be used if a request times out. We required that the client offer an
API that satisfies the Java Stream interface, which causes a nasty complication since it
requires that (in JSP terminology) the machine be ‘inverted’ with respect to the input.
One might argue that this complication is self-inflicted, since it would be far less painful
in a language other than Java that offered iterators (such as CLU or Ruby) or coroutines.
It is nevertheless an instructive problem to solve.

5.2 Symbolic Programming

Computation is viewed as the application of functions to symbolic values. We start with
the notion of recursive, algebraic datatypes, and model tuples, options, variants, lists
and trees as simple ML-style datatype declarations. Recursive functions are defined by



cases on the datatypes. Creation of corresponding Java classes is then explained us-
ing patterns — which we give names such as Variant as Class — based on Felleisen and
Friedman’s book [5]. Standard Gang of Four patterns for implementing functions over
datatypes (such as Interpreter and Visitor) are shown. The idea of data abstraction is
approached through representation independence, by remarking on the significance
of the equals sign in datatype declarations. Representation invariants and abstraction
functions are introduced, which students are encouraged to ‘implement’ using repCheck
and toString methods. Structural induction is motivated by the need to reason about
rep invariants and the problem of defining a good unit test suite.

The case study is a Sudoku player that works by translation to SAT. Fortuitously, a
very basic DPLL solver using only unit propagation and case splitting is sufficient to
solve standard Sudoku puzzles in a few seconds. The basic clause and literal datatypes
gave nice opportunities to discuss questions of representation and encapsulation, and
to illustrate more complex patterns (such as Factory Method and Facade). This example
demonstrates well the advantages of immutability; writing the solver using mutable
clauses is far harder, and the obvious implementations will perform far worse (because
they cannot exploit sharing and thus perform unnecessary copying). Students found
this case study the hardest; many were not familiar with the idea of backtracking search
and had trouble grasping it.

In this segment of the course, we also give a lecture on how to avoid debugging (us-
ing assertions, modular development with unit testing, code reviews, etc) and strategies
for doing it if all else fails. A lecture on ‘little languages’ (inspired by 6.001) shows how
to represent (and play!) Pachelbel’s canon using a simple language of musical construc-
tors and combinators. Students find this exciting, despite the ugliness of representing
higher-order functions in Java.

The project is to build a player for ABC [1], an ASCII notation for music that is al-
most as expressive as traditional staff notation. We identified a subset of the ABC lan-
guage that was sufficient to allow many online files to be played, especially of folk melo-
dies (although unfortunately not the second movement of Beethoven’s 7th [3] which
required a number of small features missing from our subset, such as ties, slurs, grace
notes, and broken rhythms). Building this program amounts to building a compiler for
a rather rich expression language, and reinforced students’ skills not only in datatypes
and functions, but also in JSP and state machines (for the lexing and parsing).

5.3 Relational Programming

Computation is viewed as reading and writing a data store represented as a collection
of relations, either implemented as a relational database, or as the heap of an object-
oriented program in which each field of each class is viewed as a binary relation. This
perspective more honestly reflects the reality of most object-oriented programs, in
which objects are not values of a mutable datatype but are nodes in a graph, and in
which methods are not simple mutators of local state but rather may cause changes to
ripple through the graph. Although layering is desirable, dependences are often cyclic,
and objects form patterns with complex interactions.



The idea of relational state and relational invariants is introduced at the problem level
with object models, using the semantics of Alloy [8] and the diagrammatic syntax of
OMT [11], to represent the underlying conceptual structure of a program. Implemen-
tation is presented as transformations from object models to Java code, using patterns
that are widely used but not usually named, such as Relation as Field (which maps a
relation in the object model to a field of a class) and Relation as Hashmap (which maps
a relation to a hash map in a singleton object). The Model View Controller pattern is
explained, along with the concurrency model of user interface toolkits such as Swing,
and supporting patterns such as Composite (for the view hierarchy) and Observer (for
widget listeners). Implementation of an object model as a relational database is shown,
with queries and updates expressed in SQL.

The special concerns of mutable types are explained, such as representation exposure
and abstract aliasing, and how to implement equality; we also explain how storage leaks
arise in Java. We also give a special lecture on usability, covering basic design principles
(such as learnability, visibility, efficiency and simplicity), iterative design, sketching and
paper prototyping, and user testing. Although we did not require that the students use
these techniques in their projects, some of them did so voluntarily. The subject of user
interfaces also gives an opportunity to return to the subject of concurrency, where we
give a brief comparison of shared-memory and message-passing paradigms, and again
advocate the use of message-passing with blocking queues as the preferred pattern.

The case study is the design and implementation of a simple photo organizer that
offers the ability to display photos as an array of thumbnails and organize them into
collections (as found in Apple iPhoto, Google Picasa, Adobe Lightroom, Microsoft Ex-
pression Media, etc). This problem illustrates the value (and subtlety) of conceptual
modeling — how to determine what a collection is, for example, and what should hap-
pen when a photo appearing in multiple, nested collections is deleted from one — and
presents non-trivial challenges in user interface implementation. In fact, in our own
solution we struggled to get a particular Swing component to refresh at the expected
time; Swing in general is not an easy thing to master. The backing store for this applica-
tion is easy to design — perhaps too easy — so it puts little pressure on the object model
transformation patterns.

The project is to build an instant messaging system. Students design the features
(such as buddy lists, chatrooms, conversations and status indicators), the user interface
of the client, and the protocol between the client and server. Since this is the final proj-
ect, students are given a little more time and are encouraged to compete for prizes for
best design, best new feature, etc. Despite having barely three weeks from start to end,
this project is quite challenging, and involves networking, graphical user interfaces, and
concurrency (both in client and server). All teams achieve a basic working system, many
incorporate whacky features (such as the ability to type Latex at one end and see for-
matted PDF at the other), and the user interfaces are often quite polished. One team
even finished a beta version early enough to conduct user testing before making a final
round of changes. As a frivolous rejoinder to our efforts to encourage code reuse, sev-
eral teams added the ability to play the midi-piano from the first case study over an IM
channel.



6 Discussion and Reflections

Overall, our impressions of how well the course has fared are positive. We believe that
we have achieved our goal of making the course design-centric while still ensuring that
students get adequate practice in nuts-and-bolts programming. The inclusion of an ar-
ray of practical technologies seems to have given the students an essential ‘cultural lit-
eracy’ without diluting the conceptual content of the course.

Whether we have succeeded in our goal of fusing theory and practice is not clear.
On the one hand, students report (in anonymous course evaluations) that they enjoyed
the projects and explorations and learned a lot from them, and several told us that the
course had changed the way they approach problems. On the other hand, problem sets
were unpopular, and many students complained that they were too open-ended. More-
over, the teaching assistants reported that, despite the many examples in class and reci-
tations, and practice in problem sets, many students were still unable even in the final
project to construct well-formed models (eg, of state machines) that captured essential
properties at an appropriate level of abstraction. We suspect that the kind of abstract
thinking and focusing that modeling requires cannot be taught without a much greater
investment of time and effort than is possible in a course such as 6.005. Perhaps what is
needed is a discrete math course as a prerequisite that focuses on modeling (in the style,
for example, of CMU’s Models of Software Systems [7]).

The teamwork experience seems to have been a good one for most students. In the
third offering of the courses, we introduced a team-building exercise for the final proj-
ect. Some students were skeptical but others reported that it was useful. We plan to
move the exercise earlier in the term so that it precedes the first team project.

In the first offering of the course, we had students work in pairs on six projects. This
worked well, perhaps because of a small class with a pioneering spirit. In the second of-
fering, which was much larger — 160 students rather than 25 — we paired the students
up randomly (but without repetitions). This was a disaster: two-person teams are far too
fragile, and many teams failed because the partners were not compatible or because one
was uncooperative. We also made the mistake of thinking that all the classwork could
be project-based. In the third offering, we reduced the number of projects by half and
introduced individual problem sets and explorations. We augmented team mentoring
with conventional weekly recitations, which not only helped the students but also gave
the teaching assistants a more substantive pedagogical role.

Diversity of programming experience in incoming students remains a problem.
About 80% of the incoming students have already programmed in Java in high school;
the remaining 20% find the class very hard. In three versions of the course, we have
tried three ways to bring these students up to speed: special labs, self-study with graded
exercises, and a series of special lectures at the start. None of these solve the problem,
perhaps because they all address knowledge of the programming language rather than
the fundamentals of programming, which cannot be acquired overnight.

In contrast, our perennial concern at MIT that we will fail to get through to hackers
(who come in thinking that software engineering has nothing to offer, and that sheer
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willpower can overcome any programming problem) was assuaged, as suggested by this
(not atypical) comment:
I had experience in C++, Python, Objective-C, Java, and various web-re-
lated languages and mark-up languages. I started a software company over
the summer... The amazing aspect of this course is that it made me realize
how much of programming I didn’t know—there is a great difference between
knowing languages and knowing how to program. So, I plan to go back and
rewrite much of the code written over the summer to increase modularity and
maintainability.

We are generally happy with the multi-paradigm nature of the course, especially
in the way it allows us to focus more deeply on fundamental concepts when they are
more cleanly separated. The state machine paradigm is the least popular with students,
perhaps because it seems least novel to them, or because they are more familiar (and
motivated by) information-centric than control-centric applications. Of the projects,
the instant messaging system is by far the most popular; many liked the ABC player,
but some disliked it for the parsing component. Contrary to expectation, not a single
student complained about the lack of a game as a project, which had been a mainstay of
earlier software engineering courses at MIT.

Until this point, we have not discussed our choice of Java as a programming language,
in part because we believe that the choice of language in programming courses is a less
important issue than often claimed. We chose Java for its libraries (Swing, collections,
networking, etc), tool support (Eclipse, JUnit, Javadoc, etc) and industrial use. Since
our students use Python in their core courses, we thought it important for them to see
a different language in 6.005, and in particular to be exposed to static typing and inter-
faces. We are of the opinion (along, it seems, with many in the object-oriented program-
ming community) that inheritance is usually a mistake, so we emphasize interfaces over
subclassing. Java is a powerful language and thus in a sense well suited to presenting
multiple paradigms, but at the same time it has become complicated and unwieldy, and
we are cognizant of the fact that using Java eliminates some of the aesthetic satisfac-
tion that is experienced when programming in a more succinct and elegant language.
Nothing, it seems, is easy in Java (consider what you need to know just to read a file),
and unfortunately some aspects of the language design (such as the lack of iterators
as found in Ruby or CLU, and the awkwardness of exceptions) militate against good
programming practice. Amusingly (but sadly) students sometimes revel in complexity;
in the course evaluations, several students mentioned the Visitor pattern as one of the
highlights of the course, blissfully unaware that visitors are needed only because Java
lacks pattern-matching.
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paradigm state machines functional relational
models S;?;f;iaags recursive datatypes object models

sample patterns

Machine as Object
State as Object
Stream Synthesis

Variant as Class
Interpreter
Visitor

Relation as Map
Subset as Subclass
Observer

case study

Midi Piano

SAT-based Sudoku

Photo Organizer

team project

Peer-to-peer
Downloader

ABC Music Player

IM Client & Server

sample ideas

atomic events
interleaving
invariants

inductive types
data abstraction
rep invariants

mutable objects
heap invariants
interface decoupling

Course structure with sample patterns and ideas.
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