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why does software fail?
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kemper arena, kansas city, 2007
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kemper arena, 1979
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what happened?

For a common structure... ponding formulas have been derived
and adopted in all structural codes... But when the ponding

formulas were extended to a 4-degree system...
including the long span portals... roof was unstable

Levy & Salvadori, Why Buildings Fall Down
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failure = !awed success story
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Therac 25

AECL fault tree analysis (1983)
did not include software

P(computer selects wrong energy) = 10-11

Leveson & Turner (1993)
race conditions, lack of interlocks, etc
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real reasons for failure?

large attack surface
bug anywhere can undermine entire system

low quality throughout
no defensive design

complex & brittle codebase

no reason for success
no articulation of critical properties

no argument for why they hold



a case-based approach
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A Direct Path to Dependable Software, CACM, March 2009
wordle thanks to Jonathan Feinberg, IBM Research, Cambridge

a paper about dependability cases
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elements of approach

express & prioritize
critical properties Ri

requirements

architect for small 
trusted bases
tb(Ri) = Sj ∪ Dk

design

build components

implementation

Sj ∧ Dk ⇒ Ri ?
does Dk hold ?

analyze case

codej ⇒ Sj ?

analyze code

notation 
for structure
& properties

analysis for
case

analysis for
code
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what I’ll show you today

a diagram notation
from KAOS: property tree

from Problem Frames: machines & domains

a specification idiom
properties, machines, domains as objects

meta-structure becomes simple part of model
behaviour described statically
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structure of a dependability case
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informal examples



© Daniel Jackson 2010

example 1: alarm clock

Most other alarm clock applications choose 

to play the alarms/music via iTunes (via AppleScript). I 
deliberately decided against this... Consider...

• The alarm is set to play a specific song, but the song was 
deleted.

• The alarm is set to play a specific playlist, but you renamed the 
playlist, or deleted it.

• The alarm is set to play a radio station, but the 

internet is down.

• iTunes was recently upgraded, and requires you to 

reagree to the license next time you launch it. The 
alarm application launches it for the alarm...

• You had iTunes set to play to your airTunes speakers, but you 
left your airport card turned off.

• You had the iTunes preference panel open. 
(Which prevents AppleScript from working)

• You had a "Get Info" panel open. (Which also prevents 
AppleScript from working)

From Alarm Clock, http://www.robbiehanson.com/alarmclock/faq.html

... It’s only job is to wake you up in the 
morning, and I believe you'll find that it 
does it’s job perfectly.

http://www.robbiehanson.com/alarmclock/faq.html
http://www.robbiehanson.com/alarmclock/faq.html
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example: alarm clock

From Alarm Clock, http://www.robbiehanson.com/alarmclock/faq.html
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http://www.robbiehanson.com/alarmclock/faq.html
http://www.robbiehanson.com/alarmclock/faq.html
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example: emergency stop

hand pendant with stop button
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emergency stop design
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emergency stop (re)design
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example: voting
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relying on scanner

Tabulator
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tabulators



an example, formally
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"le transfer

From: Jerome H. Saltzer,  David P. Reed and  David D. Clark. End-To-End Arguments In System Design (1984).
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aim

make this precise
syntax & semantics for diagrams
textual form to elaborate in full

support analysis
generate pictures like this!

overlay behaviour on system diagram
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framework (1/6)

module framework

abstract sig Property {}
sig OK in Property {}

abstract sig Domain extends Property {}
abstract sig Machine extends Property {}
abstract sig Requirement extends Property {
 trustedBase: set Domain + Machine
 }
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ftp basics (2/6)
module ftp_shared
open framework

abstract sig Packet {}
sig Block, Hash extends Packet {}
sig File {blocks: set Block, hash: Hash}

fact Hashing {
 all f, f': File | f.hash = f'.hash iff f.blocks = f'.blocks
 }

sig Network extends Domain {inpackets, outpackets: set Packet} {
 all h: Hash & outpackets | h in inpackets or no f: File | f.hash = h
 this in OK iff inpackets = outpackets
 }

sig FileSystem extends Machine {file: File, client: Client} {
 this in OK iff (client.hash = file.hash and client.blocks = file.blocks)
 }

abstract sig Client extends Machine {hash: Hash, blocks: set Block, network: Network}
abstract sig Sender, Receiver extends Client {}
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architectural structure (3/6)

sig FTP_Requirement extends Requirement {
 from, to: FileSystem, sender: Sender, receiver: Receiver, network: Network
 }{
 from != to and no from.file & to.file
 sender = from.client and receiver = to.client
 network = sender.network and network = receiver.network
 }
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version 1: reliable transport (4/6)

module ftp_reliable_transport
open ftp_shared

sig Sender_RT extends Sender {} {
 this in OK iff network.inpackets = blocks
 }

sig Receiver_RT extends Receiver {} {
 this in OK iff network.outpackets = blocks
 }

sig FileTransferReq extends FTP_Requirement {} {
 this in OK iff from.file.blocks = to.file.blocks
 } 

fact {
 FileTransferReq.trustedBase = Sender + Receiver + FileSystem + Network
 }
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analysis (5/6)
module ftp_analysis
open ftp_reliable_transport

check TrustedBaseSuffices {
 FileTransferReq.trustedBase in OK implies FileTransferReq in OK
 } for 3 but exactly 1 Requirement, 2 FileSystem, 2 Client, 1 Network

run AllWorking {
 Property in OK
 }

run WorkingDespiteFailure {
 FileTransferReq in OK
 some Property - OK
 }

run WorkingDespiteBadNetwork {
 FileTransferReq + Client + FileSystem in OK
 Network not in OK
 }
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example: all working
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example: working despite failure
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version 2: end to end (6/6)

module ftp_end_to_end
open ftp_shared

sig Sender_E2E extends Sender {} {
 this in OK iff network.inpackets = blocks + hash
 }

sig Receiver_E2E extends Receiver {receivedHash: Hash} {
 this in OK iff network.outpackets = blocks + receivedHash
 }

sig FileTransferReq extends FTP_Requirement {} {
 this in OK iff (from.file.blocks = to.file.blocks or to.client.receivedHash != to.client.hash)
 } 

fact {
 FileTransferReq.trustedBase = Sender + Receiver + FileSystem
 }
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example: all working
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example: working despite bad net



conclusions
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summary
design for dependability

small trusted bases
for most critical properties

formal method support
to clarify properties

to compose elements of case
to check code against specs

any spec language would do
but some features of Alloy help:
subtypes, visualization, solving
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research avenues

analysis
compute trusted base with unsat core

design
catalog of dependable designs
design transformation rules

case studies
Cambridge, MA voting system

proton therapy
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related work

goal-based approaches
goal-based decomposition [KAOS]

goal-based argument structure [GSN]

module dependency diagrams
uses relation [Parnas]

design structure matrix [Lattix]

problem frames
frame concerns [M. Jackson]

requirements progression [Seater]
architectural frames [Rapanotti et al]
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There probably isn’t a best way to build the 
system, or even any major part of it; much 

more important is to avoid choosing a terrible 
way, and to have a clear division of 
responsibilities among the parts.

Butler Lampson
Hints for computer system design (1983)


