éﬂl UCTURE
ENDABIL
ASES S st

Funded by National Science Foundation and Northrop Grumman Cybersecurity Research Consortium

why does software fail?

kemper arena, kansas city, 2007

© Daniel Jackson 2010

kemper arena, 1979

what happened?

48 Ponding of a Flat Roof

For a common structure... ponding formulas have been derived
and adopted in all structural codes... But when the ponding
formulas were extended to a 4-degree system...
including the long span portals... roof was unstable

Levy & Salvadori, Why Buildings Fall Down

failure = flawed success story

*

of Architecture. | -

|
|
O\
} {
!
I

b1
ik

t | ,§
. } ¢
LR R

|

1
|
|
1

Ri
Rl

i & &
[| 4 - i
X‘ 1tdh At | o,
oz S 7 i {
T } e p

I

Y

Y.
[

it I
~ KARIO SALVAD

i EHEEA

I |

Therac 25

did not include software
P(computer selects wrong energy) = 10"

race conditions, lack of interlocks, etc

real reasons for failure?

large attack surface
bug anywhere can undermine entire system

low quality throughout
no defensive design
complex & brittle codebase

no reason for success
no articulation of critical properties
no argument for why they hold

a case-based approach

a paper about dependability cases

S 5 >
s e @ high
% % quaI| y provide " _>\ : industry safety "g"_ @) programming Ig :;sslble
simple @= orocess approaches produced ® gt (g enough S d I = = static COSt standards
good value : & p defects within 2a v effort better effective 5 eve Opers S Cﬁ
E perhaps § o usuall important risk tOOIS
c'?mponents 20O approachem,re o 2 however S y Y sound
certl ication ¢ S ems dependable
g 2 ; < c rltl c al claims criteria = hand S
£t E proof 3 strong 2 I even
g_ I I t data operatipg DFOGram report
(7]
: d p d ~0Ne propertles . design
product P°EE% years [l - complexity deCOUPhng study henefits @ € ' high—component &3 reqUIrements

:'mrl)hc'ty|_ . d're“tesw.t!:olutng““" especially © £ functions™"
5 teeve case assumptlons property Q=J 8 bugs fallure

isyst

;£ S

z 8 g time thUIar database argu t

language a0 wor ‘33 2 fallureS par " == argumen

might code f 2 @ ey pasices S often S D ¢
- g = .E decisions system's S > s
2 + large rather - x .. much y = > E
= = 3 article establish E GJ g
g S . -

A Direct Path to Dependable Software, CACM, March 2009
wordle thanks to Jonathan Feinberg, IBM Research, Cambridge

elements of approach

express & prioritize
critical properties R;
notation
for structure
& properties
architect for small [

analysis for
case

trusted bases Si A D= R;?
tb(Ri) = Sj u D« does Dy hold ?

analysis for

: code
build components

© Daniel Jackson 2010

what I'll show you today

from KAOS: property tree
from Problem Frames: machines & domains

broperties, machines, domains as objects
meta-structure becomes simple part of model
behaviour described statically

structure of a dependability case

spec of
machine M1

spec of
machine M2

SENETS
requirement
machines
domains

dependency
requirements
on specs &
domain properties

trusted base
first find properties
then components

informal examples

example 1: alarm clock

... It’s only job is to wake you up in the
morning, and I believe you'll find that it
does it’s job perfectly.

lime Alarm

Source: | [y Library

Song

Grieg: Halling (Morwegian Balazs S
Grieg: Melodie, Op. 38

Grieg: Hallirs

Grieg: Cano

Grieg:

Grieg: Walzer,

Grieg:

Grieg: Halling (Norwegian Balazs
Grieg: Volksweise (Folk £ Balazs
(Srimny: Flesoie. OIne SRR Ralars Srokolav

Q,

WV Use Easy Wake
Detfault Alarm

V| Enable Alarm | Cancel) |

Most other alarm clock applications choose

to play the alarms/music via 1Tunes (via AppleScript). I
deliberately decided against this... Consider...

The alarm is set to play a specific song, but the SOI1g WaS

deleted.

The alarm is set to play a specific playlist, but you renamed the
playlist, or deleted it.

The alarm is set to play a radio StatiOIl, but the
internet 1s down.

iTunes was recently upgraded, and requires you to
reagree to the license next time you launch it. The

alarm application launches it for the alarm...
You had iTunes set to play to your airTunes speakers, but you
left your airport card turned off.

You had the iTunes preference panel open.

(Which prevents AppleScript from working)
You had a "Get Info" panel open. (Which also prevents
AppleScript from working)

From Alarm Clock, http://www.robbiehanson.com/alarmclock/fag.html

http://www.robbiehanson.com/alarmclock/faq.html
http://www.robbiehanson.com/alarmclock/faq.html

example: alarm clock

alarm
goes
off
request to play song
song played
generated
AT iTunes Settings alarm
Controller goes

Internet |
request to play sonG
R >ong played
generated
Alarm E?)ZIC
Controller 9
Player

© Daniel Jacksdn! 2010

http://www.robbiehanson.com/alarmclock/faq.html
http://www.robbiehanson.com/alarmclock/faq.html

example: emergency stop

hand pendant with stop button

emergency stop design

Emergency
Stop works

Hand Event Beam
Pendant Registration Block

Controller

File Operating

System

© Daniel Jackson 2010

emergency stop (re)design

Emergency
Stop works

Emergency
Stop Unit

Hand Event Beam
Pendant Registration Block
Ul Agent Event Controller
g Queue
e — e —
File Operating
System System

© Daniel Jackson 2010

example: voting

All cast ballots
are counted

scanner
computes tally
based on
ballots

standard design,
relying on scanner

gives one
ballot per
voter

accurately
records choice
on a ballot

computes tally
based on
records

reports tally
from scanner
to public

Check-in
Desk

Election
Official

Optical

Voters
Scanner

All cast ballots
are counted

independent
tallies match

Scantegrity design,
relying on voters
and 3rd party
tabulators

gives one
ballot per
voter

auditor checks
independent
tallies

computes
independent
tally

voters checks
their receipts

Election

Optical

Check=-in Voters

Desk Scanner Tabulator Auditor

Official

© Daniel Jackson 2010

an example, formally

file transfer

transported
correctly or
report failure

File
transported
correctly

Network

m read OK

Recipient
File System

\/
receive
OK
\
“ Sender I Receiver Sender Receijver

standard design end-to-end design

Sender
File System

Sender Network Recipient
File System File System

receive
hash OK

send
hash OK

From: Jerome H. Saltzer, David P. Reed and David D. Clark. End-To-End Arguments In System Design (1984).

© Daniel Jackson 2010

alm

make this precise
syntax & semantics for diagrams
textual form to elaborate in full

support analysis
generate pictures like this!
overlay behaviour on system diagram

framework (1/6)

module framework

Property

abstract sig Property {}
sig OKin Property {}

in extends

extends

abstract sig Domain extends Property {}
abstract sig Machine extends Property {} °

abstract sig Requirement extends Property {
trustedBase: set Domain + Machine

}

extends

Domain Machine

© Daniel Jackson 2010

ftp basics (2/6)

module ftp_shared
open framework

abstract sig Packet {}
sig Block, Hash extends Packet {}
sig File {blocks: set Block, hash: Hash}

fact Hashing {
allf, f': File | f.hash =f'.hash iff f.blocks = f'.blocks
}

sig Network extends Domain {inpackets, outpackets: set Packet} {
all h: Hash & outpackets | hininpackets or no f: File | f.hash=h
this in OK iff inpackets = outpackets

}

sig FileSystem extends Machine {file: File, client: Client} {
this in OKiff (client.hash =file.hash and client.blocks = file.blocks)

}

abstract sig Client extends Machine {hash: Hash, blocks: set Block, network: Network}
abstract sig Sender, Receiver extends Client {} |

ackson 2010

architectural structure (3/6)

sig FTP_Requirement extends Requirement {
from, to: FileSystem, sender: Sender, receiver: Receiver, network: Network

H

from '=to and no from.file & to.file
sender =from.client and receiver = to.client
network = sender.network and network = receiver.network

}

© Daniel Jackson 2010

version 1: reliable transport (4/6)

module ftp_reliable_transport
open ftp_shared

sig Sender_RT extends Sender {} {
this in OK iff network.inpackets = blocks

}

sig Receiver_RT extends Receiver {} {
this in OK iff network.outpackets = blocks

}

sig FileTransferReq extends FTP_Requirement {} {
this in OK iff from.file.blocks = to.file.blocks

}

fact {
FileTransferReq.trustedBase = Sender + Receiver + FileSystem + Network

}

© Daniel Jackson 2010

analysis (5/6)

module ftp_analysis
open ftp_reliable_transport

check TrustedBaseSuffices {
FileTransferReq.trustedBase in OK implies FileTransferReq in OK
} for 3 but exactly 1 Requirement, 2 FileSystem, 2 Client, 1 Network

run AllWorking {
Property in OK

}

run WorkingDespiteFailure {
FileTransferReqin OK
some Property - OK

}

run WorkingDespiteBadNetwork {
FileTransferReq + Client + FileSystem in OK
Network not in OK

}

© Daniel Jackson 2010

example: all working

@ransfe r@

FileSystem1

F1
blocks: BO, B1

Sender RT
blocks: BO, B1

FileSystemO

Receiver RT
blocks: BO, Bl

Network

inpackets: BO, B1
outpackets: BO, B1

© Daniel Jackson 2010

F2
blocks: BO, B1

example: working despite failure

@ransfer@

FileSystem1 FileSystemO

FO . F1
/blocks: BO, B1 / sender_RT feEEer L /blocks: BO, B1 /

Network
outpackets: B1

© Daniel Jackson 2010

version 2: end to end (6/6)

module ftp_end_to_end
open ftp_shared

sig Sender_E2E extends Sender {} {
this in OK iff network.inpackets = blocks + hash

}

sig Receiver_E2E extends Receiver {receivedHash: Hash} {
this in OK iff network.outpackets = blocks + receivedHash

}

sig FileTransferReq extends FTP_Requirement {} {
this in OK iff (from.file.blocks = to.file.blocks or to.client.receivedHash !=to.client.hash)

}

fact {
FileTransferReq.trustedBase = Sender + Receiver + FileSystem

}

© Daniel Jackson 2010

example: all working

@'ransfe r@

FileSystem1
FileO Sender E2E
blocks: BO, B1 blocks: BO, B1
hash: H hash: H

FileSystemO

Receiver_E2E
blocks: BO, B1
hash: H
receivedHash: H

Filel
blocks: BO, B1
hash: H

Network

inpackets: BO, B1, H
outpackets: BO, B1, H

© Daniel Jackson 2010

example: working despite bad net

@I’ransfe r@

FileSystem1 FileSystemO

Receiver_E2E

FileO Sender_E2E blocks: BO Filel
blocks: B1 blocks: B1 hash: .HO blocks: BO
hash: H1 hash: H1 ' hash: HO

receivedHash: H1

Network
inpackets: B1, H1
outpackets: BO, H1

© Daniel Jackson 2010

conclusions

summary

design for dependability
small trusted bases
for most critical properties

formal method support
to clarify properties
to compose elements of case
to check code against specs

any spec language would do
but some features of Alloy help:
subtypes, visualization, solving

research avenues

compute trusted base with unsat core

catalog of dependable designs
design transformation rules

Cambridge, MA voting system
broton therapy

related work

goal-based approaches
goal-based decomposition [KAOS]
goal-based argument structure [GSN]

module dependency diagrams
uses relation [Parnas]|
design structure matrix [Lattix]|

problem frames
frame concerns [M. Jackson]
requirements progression [Seater]|
architectural frames [Rapanotti et al]

There probably isn’t a best way to build the
system, or even any major part of it; much
more important is to avoid choosing a terrible
way, and to have a clear division of
responsibilities among the parts.

Butler Lampson
Hints for computer system design (1983)

