
a structurefordependabilitycases ABZ 2010
Daniel Jackson & Eunsuk Kang
MIT

Funded by National Science Foundation and Northrop Grumman Cybersecurity Research Consortium



why does software fail?



© Daniel Jackson 2010

kemper arena, kansas city, 2007



© Daniel Jackson 2010

kemper arena, 1979



© Daniel Jackson 2010

what happened?

For a common structure... ponding formulas have been derived
and adopted in all structural codes... But when the ponding

formulas were extended to a 4-degree system...
including the long span portals... roof was unstable

Levy & Salvadori, Why Buildings Fall Down



© Daniel Jackson 2010

failure = !awed success story



© Daniel Jackson 2010

Therac 25

AECL fault tree analysis (1983)
did not include software

P(computer selects wrong energy) = 10-11

Leveson & Turner (1993)
race conditions, lack of interlocks, etc



© Daniel Jackson 2010

real reasons for failure?

large attack surface
bug anywhere can undermine entire system

low quality throughout
no defensive design

complex & brittle codebase

no reason for success
no articulation of critical properties

no argument for why they hold



a case-based approach



© Daniel Jackson 2010

A Direct Path to Dependable Software, CACM, March 2009
wordle thanks to Jonathan Feinberg, IBM Research, Cambridge

a paper about dependability cases



© Daniel Jackson 2010

elements of approach

express & prioritize
critical properties Ri

requirements

architect for small 
trusted bases
tb(Ri) = Sj ∪ Dk

design

build components

implementation

Sj ∧ Dk ⇒ Ri ?
does Dk hold ?

analyze case

codej ⇒ Sj ?

analyze code

notation 
for structure
& properties

analysis for
case

analysis for
code



© Daniel Jackson 2010

what I’ll show you today

a diagram notation
from KAOS: property tree

from Problem Frames: machines & domains

a specification idiom
properties, machines, domains as objects

meta-structure becomes simple part of model
behaviour described statically



© Daniel Jackson 2010

structure of a dependability case

M2

D

critical

requirement

M1

elements
requirement
machines
domains

M2

D

critical

requirement

spec of

machine M1

spec of 

machine M2

property of

domain D

M1

dependency
requirements
on specs &

domain properties

M2

D

critical

requirement

spec of

machine M1

spec of 

machine M2

property of

domain D

M1
trusted base

first find properties
then components

M2

D

critical

requirement

spec of

machine M1

spec of 

machine M2

property of

domain D

M1 M2

D

critical

requirement

spec of

machine M1

spec of 

machine M2

property of

domain D

M1



informal examples



© Daniel Jackson 2010

example 1: alarm clock

Most other alarm clock applications choose 

to play the alarms/music via iTunes (via AppleScript). I 
deliberately decided against this... Consider...

• The alarm is set to play a specific song, but the song was 
deleted.

• The alarm is set to play a specific playlist, but you renamed the 
playlist, or deleted it.

• The alarm is set to play a radio station, but the 

internet is down.

• iTunes was recently upgraded, and requires you to 

reagree to the license next time you launch it. The 
alarm application launches it for the alarm...

• You had iTunes set to play to your airTunes speakers, but you 
left your airport card turned off.

• You had the iTunes preference panel open. 
(Which prevents AppleScript from working)

• You had a "Get Info" panel open. (Which also prevents 
AppleScript from working)

From Alarm Clock, http://www.robbiehanson.com/alarmclock/faq.html

... It’s only job is to wake you up in the 
morning, and I believe you'll find that it 
does it’s job perfectly.

http://www.robbiehanson.com/alarmclock/faq.html
http://www.robbiehanson.com/alarmclock/faq.html


© Daniel Jackson 2010

example: alarm clock

From Alarm Clock, http://www.robbiehanson.com/alarmclock/faq.html

iTunes
Alarm

Controller

alarm

goes

o!

request to play 

song 

generated

song

played

Settings

Internet

Basic

Song

Player

Alarm

Controller

alarm

goes

o!

request to play 

song 

generated

song

played

http://www.robbiehanson.com/alarmclock/faq.html
http://www.robbiehanson.com/alarmclock/faq.html


© Daniel Jackson 2010

example: emergency stop

hand pendant with stop button



© Daniel Jackson 2010

emergency stop design

File

System

UI Agent

Hand

Pendant

Beam

Block

Emergency

Stop works

Controller
Event

Queue

Operating

System

Event

   Registration

File

System

UI Agent

Hand

Pendant

Beam

Block

Emergency

Stop works

Controller
Event

Queue

Operating

System

Event

   Registration



© Daniel Jackson 2010

emergency stop (re)design

File

System

UI Agent

Hand

Pendant

Beam

Block

Emergency

Stop works

Controller
Event

Queue

Operating

System

Event

   Registration

Emergency

Stop Unit

File

System

UI Agent

Hand

Pendant

Beam

Block

Emergency

Stop works

Controller
Event

Queue

Operating

System

Event

   Registration

Emergency

Stop Unit



© Daniel Jackson 2010

example: voting

Check-in

Desk

Optical 

Scanner

Election 

O!cial

All cast ballots 

are counted

reports tally 

from scanner 

to public

accurately 

records choice 

on a ballot

computes tally 

based on 

records

gives one 

ballot per 

voter

scanner 

computes tally 

based on 

ballots

Voters

standard design,
relying on scanner

Tabulator
Check-in

Desk
Optical 

Scanner
Voters

Election 

O!cial

All cast ballots 

are counted

Auditor

gives one 

ballot per 

voter

voters checks 

their receipts

independent 

tallies match

auditor checks 

independent 

tallies

computes 

independent 

tally

Scantegrity design,
relying on voters
and 3rd party

tabulators



an example, formally



© Daniel Jackson 2010

"le transfer

From: Jerome H. Saltzer,  David P. Reed and  David D. Clark. End-To-End Arguments In System Design (1984).

ReceiverSender

Sender

File System
Network

Recipient

File System

File 

transported 

correctly

ReceiverSender

Sender

File System
Network

Recipient

File System

File 

transported 

correctly

read OK
convey

OK

write

OK

send

OK

receive

OK

ReceiverSender

Sender

File System
Network

Recipient

File System

transported 

correctly or 

report failure

read OK
write

OK

send 

hash OK

receive

hash OK

standard design end-to-end design



© Daniel Jackson 2010

aim

make this precise
syntax & semantics for diagrams
textual form to elaborate in full

support analysis
generate pictures like this!

overlay behaviour on system diagram



© Daniel Jackson 2010

framework (1/6)

module framework

abstract sig Property {}
sig OK in Property {}

abstract sig Domain extends Property {}
abstract sig Machine extends Property {}
abstract sig Requirement extends Property {
 trustedBase: set Domain + Machine
 }



© Daniel Jackson 2010

ftp basics (2/6)
module ftp_shared
open framework

abstract sig Packet {}
sig Block, Hash extends Packet {}
sig File {blocks: set Block, hash: Hash}

fact Hashing {
 all f, f': File | f.hash = f'.hash iff f.blocks = f'.blocks
 }

sig Network extends Domain {inpackets, outpackets: set Packet} {
 all h: Hash & outpackets | h in inpackets or no f: File | f.hash = h
 this in OK iff inpackets = outpackets
 }

sig FileSystem extends Machine {file: File, client: Client} {
 this in OK iff (client.hash = file.hash and client.blocks = file.blocks)
 }

abstract sig Client extends Machine {hash: Hash, blocks: set Block, network: Network}
abstract sig Sender, Receiver extends Client {}



© Daniel Jackson 2010

architectural structure (3/6)

sig FTP_Requirement extends Requirement {
 from, to: FileSystem, sender: Sender, receiver: Receiver, network: Network
 }{
 from != to and no from.file & to.file
 sender = from.client and receiver = to.client
 network = sender.network and network = receiver.network
 }



© Daniel Jackson 2010

version 1: reliable transport (4/6)

module ftp_reliable_transport
open ftp_shared

sig Sender_RT extends Sender {} {
 this in OK iff network.inpackets = blocks
 }

sig Receiver_RT extends Receiver {} {
 this in OK iff network.outpackets = blocks
 }

sig FileTransferReq extends FTP_Requirement {} {
 this in OK iff from.file.blocks = to.file.blocks
 } 

fact {
 FileTransferReq.trustedBase = Sender + Receiver + FileSystem + Network
 }



© Daniel Jackson 2010

analysis (5/6)
module ftp_analysis
open ftp_reliable_transport

check TrustedBaseSuffices {
 FileTransferReq.trustedBase in OK implies FileTransferReq in OK
 } for 3 but exactly 1 Requirement, 2 FileSystem, 2 Client, 1 Network

run AllWorking {
 Property in OK
 }

run WorkingDespiteFailure {
 FileTransferReq in OK
 some Property - OK
 }

run WorkingDespiteBadNetwork {
 FileTransferReq + Client + FileSystem in OK
 Network not in OK
 }



© Daniel Jackson 2010

example: all working



© Daniel Jackson 2010

example: working despite failure



© Daniel Jackson 2010

version 2: end to end (6/6)

module ftp_end_to_end
open ftp_shared

sig Sender_E2E extends Sender {} {
 this in OK iff network.inpackets = blocks + hash
 }

sig Receiver_E2E extends Receiver {receivedHash: Hash} {
 this in OK iff network.outpackets = blocks + receivedHash
 }

sig FileTransferReq extends FTP_Requirement {} {
 this in OK iff (from.file.blocks = to.file.blocks or to.client.receivedHash != to.client.hash)
 } 

fact {
 FileTransferReq.trustedBase = Sender + Receiver + FileSystem
 }



© Daniel Jackson 2010

example: all working



© Daniel Jackson 2010

example: working despite bad net



conclusions



© Daniel Jackson 2010

summary
design for dependability

small trusted bases
for most critical properties

formal method support
to clarify properties

to compose elements of case
to check code against specs

any spec language would do
but some features of Alloy help:
subtypes, visualization, solving



© Daniel Jackson 2010

research avenues

analysis
compute trusted base with unsat core

design
catalog of dependable designs
design transformation rules

case studies
Cambridge, MA voting system

proton therapy



© Daniel Jackson 2010

related work

goal-based approaches
goal-based decomposition [KAOS]

goal-based argument structure [GSN]

module dependency diagrams
uses relation [Parnas]

design structure matrix [Lattix]

problem frames
frame concerns [M. Jackson]

requirements progression [Seater]
architectural frames [Rapanotti et al]



© Daniel Jackson 2010

There probably isn’t a best way to build the 
system, or even any major part of it; much 

more important is to avoid choosing a terrible 
way, and to have a clear division of 
responsibilities among the parts.

Butler Lampson
Hints for computer system design (1983)


