
Daniel Jackson
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, MA

Accenture · India Delivery Center · November 29, 2007

why is
software
so hard?
and what
can we do
about it?

how’s our personal software?

© Daniel Jackson 2007

software warranties, 1987

3

© Daniel Jackson 2007

software warranties, 1987
“Cosmotronic Software Unlimited Inc. does not warrant that the functions contained in the
program will meet your requirements or that the operation of the program will be uninterrupted
or error-free. However, Cosmotronic Software Unlimited Inc. warrants the diskette(s) on which
the program is furnished to be of black color and square shape under normal use for a period of
ninety (90) days from the date of purchase.”

3

© Daniel Jackson 2007

software warranties, 1987
“Cosmotronic Software Unlimited Inc. does not warrant that the functions contained in the
program will meet your requirements or that the operation of the program will be uninterrupted
or error-free. However, Cosmotronic Software Unlimited Inc. warrants the diskette(s) on which
the program is furnished to be of black color and square shape under normal use for a period of
ninety (90) days from the date of purchase.”

“We don't claim Interactive EasyFlow is good for anything ... if you think it is, great, but it's up to
you to decide. If Interactive EasyFlow doesn't work: tough. If you lose a million because
Interactive EasyFlow messes up, it's you that's out of the million, not us. If you don't like this
disclaimer: tough. We reserve the right to do the absolute minimum provided by law, up to and
including nothing. This is basically the same disclaimer that comes with all software packages, but
ours is in plain English and theirs is in legalese.”

ACM Software Engineering Notes, Vol. 12, No. 3, 1987

3

© Daniel Jackson 2007

software warranties, 2007

4

© Daniel Jackson 2007

software warranties, 2007

Apple
“Except for the limited warranty on media ... software is provided “as is”,
 with all faults and without warranty of any kind...”

4

© Daniel Jackson 2007

software warranties, 2007

Apple
“Except for the limited warranty on media ... software is provided “as is”,
 with all faults and without warranty of any kind...”

Google
“as is, with no warranties whatsoever”

4

© Daniel Jackson 2007

software warranties, 2007

Apple
“Except for the limited warranty on media ... software is provided “as is”,
 with all faults and without warranty of any kind...”

Google
“as is, with no warranties whatsoever”

Microsoft
“substantially in accordance with the accompanying materials,
 for a period of 90 days...”

4

© Daniel Jackson 2007

is your PC secure?

typical patch size
‣ 100MB

typical time to download
‣ 10 minutes

average time to infection*
‣ 4 minutes

* [Windows XP, default firewall settings] Unprotected PCs Fall To Hacker Bots In Just Four Minutes
Gregg Keizer; Nov 30, 2004; http://www.techweb.com/wire/security/54201306
From: Security Absurdity: The Complete, Unquestionable, And Total Failure of Information Security
Noam Eppel; http://securityabsurdity.com

5

mailto:gkeizer@ix.netcom.com
mailto:gkeizer@ix.netcom.com
http://www.techweb.com/wire/security/54201306
http://www.techweb.com/wire/security/54201306
http://securityabsurdity.com
http://securityabsurdity.com

© Daniel Jackson 2007

we love our operating systems

6

© Daniel Jackson 2007

we love our operating systems

6

© Daniel Jackson 2007

we love our operating systems

6

© Daniel Jackson 2007

we love our operating systems

6

maybe government’s
doing better?

© Daniel Jackson 2007

US government report, 2006

8

© Daniel Jackson 2007

sample failures

Navy enterprise resource planning
‣ $1B wasted on systems that don’t interoperate

NASA financial systems
‣ after 12 years and $120M spent, on third attempt expected to cost $1B
‣ still cannot produce auditable financial statements

Department of Veterans’ Affairs
‣ supplies not available for patients due to bad inventory control
‣ implementation halted after spending $250M

9

© Daniel Jackson 2007

FBI modernization attempts

reacting to 9/11
‣ had to send photos of suspected hijackers by fax
‣ no PCs for most employees, no secure email for images

Trilogy
‣ new network, thousands of PCs, software system (“VCF”)
‣ contract awarded to SAIC

National Research Council report, 2004
‣ agents can’t take copies of cases into the field
‣ no bookmarking or history to help navigation, no sorting

outcome
‣ $600M later, no system; Sentinel ($425M) planned for 2009

10

maybe critical systems
are better?

© Daniel Jackson 2007

runaway cannons

South Africa, October 2007
‣ antiaircraft cannon kills 9 soldiers and injures 14 others
‣ cause not known, but software suspected

http://blog.wired.com/defense/2007/10/robot-cannon-ki.html

12

http://blog.wired.com/defense/2007/10/robot-cannon-ki.html
http://blog.wired.com/defense/2007/10/robot-cannon-ki.html
http://blog.wired.com/defense/2007/10/robot-cannon-ki.html
http://blog.wired.com/defense/2007/10/robot-cannon-ki.html

© Daniel Jackson 2007

air-traffic control
A radar system that was supposed to warn low-flying planes of nearby obstacles was plagued with
problems and fixed nationwide only after a 1997 fatal airplane crash on Guam, according to a
published report. In some cases, programming errors caused the Minimum Safe-Altitude Warning
system not to operate over wide areas, including near busy airports such as those in Chicago and
Dallas-Ft. Worth. In other cases, false alarms were so numerous that air traffic controllers placed
cardboard over warning speakers to silence the noise. The Federal Aviation Administration was
warned about the trouble after a business jet crashed outside Washington in 1994, but it did not take
decisive action to resolve it until after a Korean Air jumbo jet slammed into a hill on approach to
Guam in August 1997, killing 228.
AP, Oct 1999; http://ns.gov.gu/guam/indexmain.html

most aviation deaths from
“controlled flight into terrain”

13

http://ns.gov.gu/guam/indexmain.html
http://ns.gov.gu/guam/indexmain.html

how did we get here?
dtech/dt and criticality creep

© Daniel Jackson 2007

storage costs

magnetic disks, US$/gigabyte

from Frans Kaashoek and Jerome Saltzer, Topics in the Engineering of Computer Systems, to appear.

15

© Daniel Jackson 2007

operating system growth

size in millions of lines of code

from Frans Kaashoek and Jerome Saltzer, Topics in the Engineering of Computer Systems, to appear.

16

© Daniel Jackson 2007

texas A&M bonfire

17

© Daniel Jackson 2007

bonfire history

traditional began in 1928
‣ small bonfire at annual football game

grew in size and complexity each year
‣ in 1990’s required crane to erect

November 18, 1999
‣ collapsed killing 12 people

18

© Daniel Jackson 2007

the collapse

http://www.fayengineering.com/structural.html

19

http://www.fayengineering.com/structural.html
http://www.fayengineering.com/structural.html

fundamental challenges:
context, state space, coupling

© Daniel Jackson 2007

software as system component

a software system is a component
‣ interacts with physical environment
‣ and organizational context of operators & users

sources of defects
‣ < 3% of software failures due to bugs in code
‣ >90% from poor understanding of requirements

consequences
‣ requirements analysis is critical
‣ not just function, also assumptions

21

© Daniel Jackson 2007

environmental assumptions

22

© Daniel Jackson 2007

environmental assumptions

what happened

22

© Daniel Jackson 2007

environmental assumptions

what happened
‣ Airbus A320, Warsaw 1993

22

© Daniel Jackson 2007

environmental assumptions

what happened
‣ Airbus A320, Warsaw 1993
‣ aircraft landed on wet runway

22

© Daniel Jackson 2007

environmental assumptions

what happened
‣ Airbus A320, Warsaw 1993
‣ aircraft landed on wet runway
‣ aquaplaned, so brakes didn’t work

22

© Daniel Jackson 2007

environmental assumptions

what happened
‣ Airbus A320, Warsaw 1993
‣ aircraft landed on wet runway
‣ aquaplaned, so brakes didn’t work
‣ pilot applied reverse thrust, but disabled

22

© Daniel Jackson 2007

environmental assumptions

what happened
‣ Airbus A320, Warsaw 1993
‣ aircraft landed on wet runway
‣ aquaplaned, so brakes didn’t work
‣ pilot applied reverse thrust, but disabled

why

22

© Daniel Jackson 2007

environmental assumptions

what happened
‣ Airbus A320, Warsaw 1993
‣ aircraft landed on wet runway
‣ aquaplaned, so brakes didn’t work
‣ pilot applied reverse thrust, but disabled

why

airborne ⇔ disabled

22

© Daniel Jackson 2007

environmental assumptions

what happened
‣ Airbus A320, Warsaw 1993
‣ aircraft landed on wet runway
‣ aquaplaned, so brakes didn’t work
‣ pilot applied reverse thrust, but disabled

why

airborne ⇔ disabled

airborne ⇔ not WheelPulse ⇔ disabled

22

© Daniel Jackson 2007

environmental assumptions

what happened
‣ Airbus A320, Warsaw 1993
‣ aircraft landed on wet runway
‣ aquaplaned, so brakes didn’t work
‣ pilot applied reverse thrust, but disabled

why

airborne ⇔ disabled

airborne ⇔ not WheelPulse ⇔ disabled

22

ENV

© Daniel Jackson 2007

environmental assumptions

what happened
‣ Airbus A320, Warsaw 1993
‣ aircraft landed on wet runway
‣ aquaplaned, so brakes didn’t work
‣ pilot applied reverse thrust, but disabled

why

airborne ⇔ disabled

airborne ⇔ not WheelPulse ⇔ disabled

22

ENV MACHINE

© Daniel Jackson 2007

environmental assumptions

what happened
‣ Airbus A320, Warsaw 1993
‣ aircraft landed on wet runway
‣ aquaplaned, so brakes didn’t work
‣ pilot applied reverse thrust, but disabled

why

airborne ⇔ disabled

airborne ⇔ not WheelPulse ⇔ disabled

22

ENV MACHINE ✓

© Daniel Jackson 2007

environmental assumptions

what happened
‣ Airbus A320, Warsaw 1993
‣ aircraft landed on wet runway
‣ aquaplaned, so brakes didn’t work
‣ pilot applied reverse thrust, but disabled

why

airborne ⇔ disabled

airborne ⇔ not WheelPulse ⇔ disabled

22

ENV MACHINE✗ ✓

© Daniel Jackson 2007

environmental assumptions

what happened
‣ Airbus A320, Warsaw 1993
‣ aircraft landed on wet runway
‣ aquaplaned, so brakes didn’t work
‣ pilot applied reverse thrust, but disabled

why

airborne ⇔ disabled

airborne ⇔ not WheelPulse ⇔ disabled

22

ENV MACHINE✗ ✓

simplified; for full analysis, see Report on the Accident to Airbus A320-211 Aircraft in Warsaw
on 14 September 1993, Main Commission Aircraft Accident Investigation,
http://www.rvs.uni-bielefeld.de/publications/Incidents/DOCS/ComAndRep/Warsaw/warsaw-report.html

© Daniel Jackson 2007

state space complexity

software systems have huge state space
‣ in lifetime, small proportion covered
‣ in testing, hardly any covered

implications
‣ “Program testing can be used to show the
presence of bugs, but never to show their absence!”

‣ often running in uncharted territory

23

*E.W. Dijkstra, Structured programming (EWD268)
http://www.cs.utexas.edu/users/EWD/

http://ewd.cs.utexas.edu.master.com/texis/master/redir/?u=http%3A//www.cs.utexas.edu/users/EWD/transcriptions/EWD02xx/EWD268.html
http://ewd.cs.utexas.edu.master.com/texis/master/redir/?u=http%3A//www.cs.utexas.edu/users/EWD/transcriptions/EWD02xx/EWD268.html
http://www.cs.utexas.edu/users/EWD/
http://www.cs.utexas.edu/users/EWD/

© Daniel Jackson 2007

mechanical watch

state space is actually large
‣ many cogs, many positions

but rotational symmetry
‣ if works in one position,
likely to work in others

likely failure mode
‣ cogs wear down or break

unlikely failure mode
‣ design error causes error at 3:05pm

24

© Daniel Jackson 2007

software watch

extract from Harel’s watch model
‣ states & transitions

many states
‣ some symmetry
‣ but many cases remain

likely failure mode
‣ design flaw in code

unlikely failure mode
‣ code wears out

25

© Daniel Jackson 2007

a fault tree tool

26

© Daniel Jackson 2007

counting structures

suppose you’re building a fault tree analyzer

how many fault trees?
‣ with n nodes, can make nn-2 trees
‣ so for 10 nodes, 108 = 100 million trees
‣ actually much worse – sharing, AND/OR, etc

how about relations?
‣ table with C columns over N elements 2NC values
‣ so database with 3 tables, 3 columns, 3 elements has 281 values!
‣ checking 1 billion/sec, would take about 100 million years

27

© Daniel Jackson 2007

alternative to covering states?

“reliability growth modelling”
‣ determine operational profile
‣ pick random inputs weighted by profile

how long to test for?
‣ for probability of failure on demand (pfd) of 0.001
‣ with 99% confidence
‣ need about 6,600 demands without failure
‣ rises dramatically if failures have occurred

implication
‣ need huge number of tests for high confidence

28

© Daniel Jackson 2007

coupling

what is coupling?
‣ when components of a system affect each other
‣ damages reliability, makes changes hard

physical components
‣ coupled in simple and predictable ways

software components
‣ coupled in complex and
unpredictable ways

29

© Daniel Jackson 2007

USS Yorktown, 1997

what happened
‣ bad data entered into spreadsheet
‣ divide-by-zero crashes application
‣ entire network went down
‣ ship dead in water for 3 hours

Government Computer News / July 13, 1998
Software glitches leave Navy Smart Ship dead in the water
Gregory Slabodkin, http://www.gcn.com/print/17_17/33727-1.html

30

http://www.gcn.com/print/17_17/33727-1.html
http://www.gcn.com/print/17_17/33727-1.html

© Daniel Jackson 2007

dependences between DLLs
‣ disciplined layering

why IE killed Netscape?
‣ spaghetti code in both
‣ but IE3 rebuilt from scratch

dependences in internet explorer

31

graph from http://www.spinellis.gr/blog/20031003
for Netscape story see:
Competing on Internet Time: Lessons From Netscape & Its Battle with Microsoft
by Michael A. Cusumano and David B. Yoffie

http://www.spinellis.gr/blog/20031003/index.html
http://www.spinellis.gr/blog/20031003/index.html
http://www.amazon.com/exec/obidos/search-handle-url/105-3951269-9022014?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Michael%20A.%20Cusumano
http://www.amazon.com/exec/obidos/search-handle-url/105-3951269-9022014?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Michael%20A.%20Cusumano
http://www.amazon.com/exec/obidos/search-handle-url/105-3951269-9022014?%5Fencoding=UTF8&search-type=ss&index=books&field-author=David%20B.%20Yoffie
http://www.amazon.com/exec/obidos/search-handle-url/105-3951269-9022014?%5Fencoding=UTF8&search-type=ss&index=books&field-author=David%20B.%20Yoffie

what can we do?
now and future

© Daniel Jackson 2007

taming software

33

today future

requirements pay attention to context
explicit modelling

designations & de!nitions
end-to-end arguments

state space
simplicity

automated testing model-based exploration

decoupling
safe languages

data abstraction
dependence diagrams

dependency
management

© Daniel Jackson 2007

construct a context diagram
‣ all flows in and out of the system
‣ all users, operators, stakeholders

description before invention
‣ analyze existing business process first

pay attention to context

34

© Daniel Jackson 2007

explicit modelling

construct lightweight, precise models
‣ object models are most useful

35

User

Faculty Staffassistant

Group members

leaders

approves

© Daniel Jackson 2007

designations & definitions

be clear about the meaning of terms
‣ designations: connect requirements to the world
‣ definitions: new terms from old ones

example
‣ a designation: shelved(b): book b is on a shelf in the library
‣ a definition: shelved(b) = owned(b) and not onLoan(b)

recommended reading
Software Requirements and Specifications:
A Lexicon of Principles, Practices and Prejudices.
Michael Jackson. Addison Wesley, 1995.

36

© Daniel Jackson 2007

end-to-end arguments

does machine deliver right dose?
‣ code + physical plant + human operators

37

TM
Treatment
Manager

DB
Prescription
Database

GUI
Interface

Therapist

Patient
HW

Beam
Equipment

Messages on
Network

selection

query dose
query list

set equipmentdose

read id msg
send list msg

send id msg
read list msg

4/20/07

name

would be perfect
without error

dose < |interpret(set
equipment - max error)

patient is correctly
selected

name = selection

id is interpreted and sent

selection.map = (send id msg).id

message are transmitted
authentically

(send id msg).id
= (read id msg).id

(send list msg).value
= (read list msg).value

queries reflects db

(query dose).result
= ((query dose).request).doses
(query list).result = names

id from message is
sent to db

(query dose).request
= (read msg).id

queried dose is used to
set equipment

(query dose).result
= interpret(set equipment)

dose delivery

(names.name).doses
= dose +/- margin

max error is within
safe margin

interpret(margin)
> max error

interpretation reflects db

~map = (read list msg).value

list info is sent

(query list).result
= (send list msg).value

© Daniel Jackson 2007

simplicity
“I gave desperate warnings against the obscurity, the complexity, and over-
ambition of the new design, but my warnings went unheeded. I conclude that
there are two ways of constructing a software design: One way is to make it so
simple there are obviously no deficiencies and the other way is to make it so
complicated that there are no obvious deficiencies”
 Tony Hoare, Turing Award Lecture, 1980

 “Simplicity does not precede complexity, but follows it”
 Alan Perlis

38

© Daniel Jackson 2007

automated testing
write your tests so they can be automated
exploit code to generate as many tests as you can

39

© Daniel Jackson 2007

simulating 200 years of sunlight

can we do this for software?

40

© Daniel Jackson 2007

model-based exploration with alloy

testing the Galileo fault tree analyzer
‣ used by NASA on space station
‣ generated 250,000 trees (all 4-event)
‣ found 8 faults (tool), 3 (spec), 3 (oracle)

Mondex smartcard
‣ developed by NatWest Bank
‣ formal specification by Logica UK Ltd
‣ analysis with Alloy by Tahina Ramananandro
‣ all scenarios in scope of 5 (cards, users, etc)

41

K. Sullivan, J. Yang, D. Coppit, S. Khurshid, D. Jackson
Improving Software Assurance by Bounded Exhaustive Testing
International Symposium on Software Testing and Analysis, 2004

kodkod engine

alloy
formula bounds

boolean
formula

boolean
instance

alloy
instance

translate
formula

translate
instance

SAT
solver

mapping

alloy
command

 alloy front end

elaborate typecheck visualize

visual
output

AP
I

AP
I

© Daniel Jackson 2007

achieving decoupling

for system architects
‣ choose a safe language: Java, not C++

for programmers
‣ use real data abstractions, not just objects
‣ all fields should be private

for designers, programmers, testers
‣ construct a dependence diagram
‣ identify dependency liabilities
‣ focus testing on module interactions

42

javax.swing
(listeners)

javax.swing
(components)

JList

Person

AddressBookAddressBook
Window

ListDataListener

PersonEditor

modelview

© Daniel Jackson 2007

learning about dependences

from Parnas’s classic paper, 1979

43

David L. Parnas. Designing software for ease of extension and contraction.
IEEE Transactions on Software Engineering, SE-5, 2 (1979)

© Daniel Jackson 2007

dependency management

controlling dependences
‣ tool extracts dependences from code
‣ checks conformance to architecture

44

Lattix’s LDM

and process matters too...

© Daniel Jackson 2007

the importance of process

NOAA weather satellite at Lockheed Martin, September 2003

46

© Daniel Jackson 2007

a fault tree

47

NOAA N-Prime Mishap Investigation, Final Report
NASA, September 2004

© Daniel Jackson 2007

conclusions

three challenges of software
‣ requirements, state space complexity, coupling

powerful tools we have today
‣ models, test-case generation, dependency diagrams

in the future
‣ end-to-end cases
‣ model-based analysis and code generation
‣ automated dependency management

48

© Daniel Jackson 2007

for more information

modelling and analysis with Alloy
‣ Software Abstractions, MIT Press, 2006

on requirements
‣ Software Requirements and Specifications:

A Lexicon of Principles, Practices and Prejudices.
Michael Jackson. Addison Wesley, 1995.

on decoupling
‣ Designing software for ease of extension and contraction.

David Parnas. IEEE Transactions on Software Engineering, SE-5, 2 (1979).

on programming
‣ Programming Pearls. Jon Bentley. Addison Wesley, 1989.
‣ Effective Java. Joshua Bloch. Addison Wesley, 2001

49

