
Daniel Jackson (with Geoffrey Litt) · Alliances Annual Meeting · May 25, 2023

software
development

in the age of AI

future of coding with AI?
LLMs author big chunks of complex code
humans rarely write any code themselves from scratch
programmers use AI as coding partner & technical advisor
… and novices use AI to create attacks & malware

no, this is not the future!
this is the present (at least for some programmers)

a more radical future?
LLMs replace (most or all) programmers

from Matt Walsh, The End of Programming (2023)

why code review
(verification) will

become hot

affected 93% of enterprise clouds, 40% of businesses
companies didn’t know they were even using Log4J

Log4J incorporated eval, the most dangerous function

bug introduced: 2013
bug discovered: Nov 2021"given enough eyeballs, all bugs are shallow"

“Linus’s Law” [Eric Raymond] ?

https://en.wikipedia.org/wiki/Software_bug

corrupting the software development pipeline

Reflections on Trusting Trust
Ken Thompson (1984)

XcodeGhost (2015)
slow networks in China: local copies popular

4,000 infected apps, including WeChat
Sandia/CIA Xcode notes leaked by Snowdon

why LLMs
are imperfect coders

(and how we can help)

“GPT will never replace real programmers”
It just patches together fragments of code it finds on the internet
It doesn’t understand the programming language or the APIs deeply
It’s prone to slips and random errors

… just like a real programmer

nevertheless, LLMs seem to have fundamental limitations
let’s think about these in the context of programming

> numberToWords(101)
"one hundred one"
> numberToWords(100)
"one hundred"
> numberToWords(99)
"ninety nine"
> numberToWords(43)
"forty three"
> numberToWords(9)
"nine"
> numberToWords(1001)
"one thousand hundred one"
> numberToWords(113)
"one hundred eleven"

top predictions you should never make

3. The stock market is going to crash this year

1. GPT won’t ever be able to do that

2. X is too corrupt to get elected

what went wrong?

this code isn’t common
a standard coding puzzle, but not in repos or StackOverflow queries

solution lacks nice structure
160 = one hundred and sixty
1600 = sixteen hundred

when you can’t guess, you have to reason
LLM executes in constant time, so can’t solve halting problem
so will never be able to do arbitrary program reasoning

From Bubeck et al, 2023
“Number to words” is rated hard in LeetCode

GPT-4 benchmarks on coding challenges

?

?

yes

no

Alice

Bob

post

friend

sees

another coding problem for GPT

> g = new Graph ()
> a = "Alice"
> b = "Bob"
> ap = “Alice’s post"
> bp = “Bob's post"
> g.connect (a, b) // Alice friends Bob
> g.associate (a, ap) // Alice posts
> g.associate (b, bp) // Bob posts
> g.isConnected (b, ap) // can Bob see Alice’s post?
 true
> g.isConnected (a, bp) // can Alice see Bob’s post?
 false

produces code that (correctly) treats node connection as undirected

produces code that (incorrectly) treats node connection as directed

what went wrong?

problem isn’t standard, at least as a graph problem
not many examples of this problem in training set?

problem wording was misleading
“connect n1 to n2” suggested directionality?

LLM only has access to explicit training data
GPT can’t read your mind!

what if we give GPT more domain context?

friends is
symmetric!

and
reflexive!

AI has inherent flaws
so will never replace

programmer
pour yourself a drink

and stop worrying

advances are inevitable
inherent flaws will remain

work on new software
development paradigm

to exploit AI

flaws can be minimized
at this rate of change,

GPT-N will match human

work on new AI
technologies to
overcome flaws

advances in AI will
be amplified

what would this paradigm look like?

familiar forms
exploit reusable ideas and common patterns

domain-specific context
solving problems, not building abstractions

granular structure
break process into smaller, defined tasks

problems and solutions
can’t start from a napkin sketch: need problem structure too

how does great
architecture happen?

When you go to design a house you talk to an
architect first, not an engineer. Why is this?

Because the criteria for what makes a good
building fall outside the domain of engineering.

Similarly, in computer programs, the selection
of the various components must be driven by

the conditions of use.

How is this to be done? By software designers.

Mitchell Kapor, A Software Design Manifesto (1996)

Mont Saint Michel (1450–1521) MIT (Bosworth, 1916) Stata Center (Gehry, 2004)

19791977

patterns
for software

what would software patterns look like?

user-facing
driven by the user’s needs
(for Alexander, patterns resolve conflicts)

cross-application
not specific, widely reusable
(not just this church, or even all churches)

independent & composable
no coupling to other patterns
(less important to Alexander)

session

comment

favoriteupvote

karma

post

concept Upvote

purpose rank items by popularity

Michael Polanyi (1891-1976)

principle after series of upvotes
of items, the items are ranked by
their number of upvotes

concept Upvote

purpose rank items by popularity

principle after series of upvotes
of items, the items are ranked by
their number of upvotes

concept Reaction

purpose send reactions to author

principle when user selects
reaction, it’s shown to the author
(often in aggregated form)

concept Recommendation

purpose use prior likes to recommend

principle user’s likes lead to ranking
of kinds of items, determining which
items are recommended

concept Upvote

state
by: Vote -> one User
for: Vote -> one Item
Upvote, Downvote: set Vote
rank: Item -> one Int

actions
upvote (u: User, i: Item)
downvote (u: User, i: Item)
unvote (u: User, i: Item)

downvote (i: Item, u: User)
 // no v: Downvote | v.for = i and v.by = u
 // remove {v: Upvote | v.for = i and v.by = u}
 // add {v: Downvote | v.for = i and v.by = u}
 // update i.rank …

DownvoteUpvote

Vote

User

Post

by

Vote

Item
for

Int rank

purpose rank items by popularity

principle after series of upvotes
of items, the items are ranked by
their number of upvotes

related concepts
Rating, Recommendation, Reaction, …

design variants
downvote as unvote

use age in ranking
weigh downvotes more
various identity tactics

freezing old posts known issues
high votes can promote old content

feedback favors early upvotes
upvoting encourages echo chamber

preventing double votes
typical uses

social media posts
comments on articles

Q&A responses

often used with
Karma, Auth, …

concept: Upvote

a concept catalog entry

post

reply

user

comment

karma

upvote

app is composition of concepts

progress in
concept design

case studies
over 100 familiar apps from Adobe, Apple, Google, Microsoft, etc
over 100 concepts described and discussed

a language of concepts
how to structure concepts
how to achieve independence
how to compose concepts

concept design principles
actionable principles
applied to examples to diagnosing UX flaws
strategies for great design (esp. synergy)

essenceofsoftware.com

concepts at Palantir

concepts integrated into ontology
leaders bootstrapped by writing initial concepts
now about 150 concepts so far
exploiting existing documents

concepts read and written
January 2023: no regular users
April 2023: 280 regular users (cf. 1500 for Employee)

concepts go beyond engineering
products offer user-facing concept inventories
concepts used in marketing; IP lawyers interested too

concepts empower PMs
new career path: PMs given ownership of concepts

anticipated impacts
cataloging key assets & avoiding rework
aligning concepts across products
aligning marketing/design/engineering

Wilczynski et al, arxiv.org/abs/2304.14975

building apps by gluing together pre-built concepts (Santiago Perez De Rosso)

{
 "name": "topmovie",
 "usedConcepts": {
 "movie": {}.
 "authentication": {},
 "upvote": {}
 },
 "routes": [
 { "path": "", "component": "landing" },
 { "path": "/top", "component": "top-movies" }
]
}

configuring app as composition of existing concepts

https://deja-vu-platform.com/

concepts in software design education (with Arvind Satyanarayan)

concepts & GPT:
some early experiments

software
designer

AI agent

application code

concept libraryglue code
catalog of concepts

problem & design variants

repository of concept
design knowledge

a concept design partner (with Geoffrey Litt)

a concept design tutor (with Geoffrey Litt)

conclusions

LLMs are amazing but imperfect coders

they’ll never be perfect, so don’t wait: make them work now

keys to success: patterns, domain focus, granular method

a promising approach: software concepts

aside: AI forces you to articulate (as designer & teacher!)

concept design forum
forum.softwareconcepts.io

newsletter
essenceofsoftware.com/subscribe

blog posts, tutorials, case studies
essenceofsoftware.com

be in touch!
dnj@mit.edu

mailto:dnj@mit.edu

