MIT

software
development
in the age of Al

Daniel Jackson (with Geoffrey Litt) - Alliances Annual Meeting - May 25, 2023

future of coding with Al?

_LMs author big chunks of complex code

numans rarely write any code themselves from scratch
brogrammers use Al as coding partner & technical advisor
..and novices use Al to create attacks & malware

no, this is not the future! ,
this is the present (at least for some programmers) from Matt Walsh, The End of Programming (2023)

a more radical future?
LLMSs replace (most or all) programmers

Red-blooded PM ‘ AT robot
Human code y, (still human) “‘ i

| | S / code monkey
reviewer 2 ' "‘

why code review
(verification) will
become hot

— MIBEE BACKCHANNEL BUSINESS CULTURE GEAR IDEAS SCIENCE SECURITY

SECURITY OEC 18, 2821 2:54 PM
‘The Internet Is on Fire’

A vulnerability in the Log4j logging framework has security teams scrambling to put in a fix.

affected 93% of enterprise clouds, 40% of businesses
companies didn’t know they were even using Log4J

Log4J incorporated eval, the most dangerous function

. . bug introduced: 2013
given enough eyeballs, all bugs are shallow bug discovered: Nov 2021

“Linus’s Law" [Eric Raymond]

https://en.wikipedia.org/wiki/Software_bug

corrupting the software development pipeline

\ -/A 3
. N

XCODE

'

-~

XcodeGhost (2015)
slow networks in China: local copies popular Reflections on Trusting Trust
4,000 infected apps, including WeChat Ken Thompson (1984)
Sandia/CIA Xcode notes leaked by Snowdon

= I'{l\/ > ¢s > arXiv:2204.06974 R

Computer Science > Machine Learning

(Submitted on 14 Apr 2022]
Planting Undetectable Backdoors in Machine Learning Models

Shafi Goldwasser, Michael P. Kim, Vinod Vaikuntanathan, Or Zamir

Given the computational cost and technical expertise required to train machine learning models, users may delegate the task of learning to a service provider. We
show how a malicious learner can plant an undetectable backdoor into a classifier. On the surface, such a backdoored classifier behaves normally, but in reality, the
learner maintains a mechanism for changing the classification of any input, with anly a slight perturbation. Importantly, without the appropriate "backdoor key", the
mechanism is hidden and cannot be detected by any computationally-bounded observer. We demonstrate two frameworks for planting undetectable backdoors, with
incomparable guarantees.

First, we show how to plant a backdoor in any model, using digital signature schemes. The construction guarantees that given black-box access to the original
model and the backdoared version, it is computationally infeasible to find even a single input where they differ. This property implies that the backdoored model has
generalization error comparable with the original model. Second, we demonstrate how to insert undetectable backdoors in models trained using the Random Fourier
Features (RFF) learning paradigm or in Random ReLU networks. In this construction, undetectability holds against powerful white-box distinguishers: given a
complete description of the network and the training data, no efficient distinguisher can guess whether the model is "clean” or contains a backdoor.

Our construction of undetectable backdoors also sheds light on the related issue of robustness to adversarial examples. In particular, our construction can produce a
classifier that is indistinguishable from an "adversarially robust" classifier, but where every input has an adversarial example! In summary, the existence of
undetectable backdoors represent a significant theoretical roadblock to certifying adversarial robustness.

why LLMs
are imperfect coders
(and how we can help)

"GPT will never replace real programmers”

t just patches together fragments of code it finds on the internet

t doesnt understand the programming language or the APIs deeply
t's prone to slips and random errors

... just like a real programmer

nevertheless, LLMs seem to have fundamental limitations
let’s think about these in the context of programming

can you write a javascript function that takes an integer and turns it into a string, so if you
gave it 1000 it would return "one thousand™?

Yes, | can write such a function for you. This function handles numbers up to 9999 for

simplicity:

javascript

const units = ['"',

const teens = [’
ONST tenS - [y

const thousands =

function (num) {
1f (num === 0) return

—

1f (num ===) return

units =
teens
- tens =
st thousands =

function (num)
T (num) return

L (num 10) return

el woxds = '';
_et digit, 1 = O;

while (num > O)

if (1 === 0) {
digit = num % :
words = units[digit];
} else °f (1 === 1) {
digit = num % 1C;
f (digit === 1) {

words = teens[parselInt(num %
} else (
words = tens[digit] + ' ' + words,;
}
} else if (1 === 2) {
digit = num % _
words = units[digit] + ' huncred ' + words;
} else if (1 === 3) {
digit = num % 1C:
words = units[digit] + ' ' + thaousands[1] + ' ' + words;

(num /);

return words.

(1)): // "one thousand"

(1234)); // "one thousand two hundred thirt

> numberToWords(101)
‘'one hundred one’

> numberToWords(100)
‘'one hundred’

> numberToWords(99)
‘ninety nine’

> numberToWords(43)
‘forty three”

> numberToWords(9)
‘nine’

> numberToWords(1001)
‘'one thousand hundred one’
> numberToWords(113)
‘'one hundred eleven’

top predictions you should never make

1. GPT won't ever be able to do that

2. X Is too corrupt to get elected

3. The stock market is going to crash this year

what went wrong?

this code isnt common
a standard coding puzzle, but not in repos or StackOverflow queries

solution lacks nice structure
160 = one hundred and sixty
1600 = sixteen hundrec

when you can't guess, you have to reason
LLM executes in constant time, so can't solve halting problem
so will never be able to do arbitrary program reasoning

GPT-4 benchmarks on coding challenges

Easy Median Hard Overall
passQF k=1|k=95 k=1 k=5 k=1 k=0 |k=1]| k=5
GPT-4 68.2 | 86.4 | 40.0 | 60.0 | 10.7 | 14.3 || 38.0 | 53.0
text-davinci-003 50.0 | 81.8 | 16.0 | 34.0 0.0 3.6 19.0 | 36.0
Codex (code-davinci-002) | 27.3 | 50.0 | 12.0 | 22.0 3.6 3.6 13.0 | 23.0
Human (LeetCode users) 72.2 37.7 7.0 38.2

Table 2: Zero-shot pass@1 and pass@5 accuracies (%) on LeetCode.

From Bubeck et al, 2023
“Number to words” is rated hard in LeetCode

another coding problem for GPT

Bob

Alice

User
Can you write a JavaScript class for me? | want it to maintain a graph between nodes, and
associate a set of items with each node. It should include (1) a method that connects a node

n1to a node n2, (2) a method for associating an item i with a node n, and (3) a boolean
method that takes a node n and an item i and returns true if the node is connected to a node

associlated with the item.

Sure, here is a simple example of how you might implement such a class in JavaScript:

javascript [7) Copy code

():; // Store nodes as keys and items as values

(); // Store nodes as keys and connections as values

oh {
_ ,J“-» H_ () (
this.nodes = new Map(); // Store nodes as keys and items as values

this.edges = new Map(); // Store nodes as keys and connections as value

%L.(nl, n2) {
1if (!'this.edges.has(nl)) this.edges.sct(nl, [1);
this.edges.get(nl).push(n?2);

oclat (n, 1) {
1if (!'this.nodes.has(n)) this.nodes.set(n, new Set());

this.nodes.get(n).add(1i);

if (lthis.nodes.has(n)) return false;

for (let node of this.edges.keys()) {
if (this.edges.get(node).includes(n) && this.nodes.get(node).has(i))

return true;

return false;

> g = new Graph ()

> a = Alice’

> b = "Bob’

> ap = “Alice’s post’

> PP = "‘Bob's post’

> g.connect (a, b) // Alice friends Bob

> g.associate (a, ap) // Alice posts

> g.associate (b, bp) // Bob posts

> g.isConnected (b, ap) // can Bob see Alice’s post?
lrue

> g.iIsConnected (a, bp) // can Alice see Bob’s post?
false

User
Can you write a JavaScript class for me? | want it to maintain a graph between nodes, and

associate a set of items with each node. It should include (1) a method that connects a node
n1to a node n2, (2) a method for associating anitemi with a node n, and (3) a boolean

wr‘ne that takes a node nand an item i and returns true if the node is connected to a node

associated with the item.

produces code that (incorrectly) treats node connection as directed

Can you write a JavaScript class for me? | want it to maintain a graph between nodes, and
associate a set of items with each node. It should include (1) a method for connecting one
node to another, (2) a method for associating an item with a node, and (3) a boolean method

that takes a node and an item and returns true if the node is connected to a node associated

with the item.

produces code that (correctly) treats node connection as undirected

what went wrong?

problem isn't standard, at least as a graph problem
not many examples of this problem in training set?

problem wording was misleading
“connect nl to n2" suggested directionality?

LLM only has access to explicit training data
GPT can't read your mind!

what if we give GPT more domain context?

Can you write me a Javascript class to implement the friend concept in a social media a
should track who is friends with who, and which posts someone has written, and then al

op? It

OW

access to a post to a user if it was written by one of the user's friends. There should be (1) a

method to make one user a friend of another, (2) a method to record that a user wrote a
and (3) a method that returns true if a user can access a post.

Certainly! Here's an example of a JavaScript class that implements the friend concept in a

social media app as you described:

javascript

post,

riend(username, friendUsername) {
if (this.users.has(username) && this.users.has(friendUsername)) {

(username) const user chis.users. (username);

Lt (! .users.has(username)) { . S o
this. users. sot (username, { const friend = this.users. (friendUsername);
riencs: new (). " .
osts: new Set(), user.friends.add(friendUsername);

friends is
symmetric!

friend.friends.add(username);

{username, friendUsername) <
- (tnhils.users. (username) 8& LS.USers. (friendUsername})
const user = Lhis.users. (usexrname) ;
const friend = | LuUsers. (friendUsexrname);

user.friends. (friendUsername) ;

friend.friends. (username) ; | Ccess (username, pOStId) {

if (this.users.has(username) && this.posts.has(postlId)) {

3
}

(username, postld) {

Lf (thie. users. hae(username)) (const postAuthor = this.posts. (postld);
const user = this,users.yget(username),)
user.writtenPosts. (postId); lf (pOStAUthO —_—— Username) {
‘ .posts.set(postId, username); . Elr](j
return true; // User can access thelr own post .
reflexive!

(username, postId) (
fhls.users. (username) R& this.posts. (postId)) { COHSt user = nh‘S.USGIS. (username).
const postAuthor = this.posts. (postId): g
1T (postAuthor username) {

return user.friends.has(postAuthor);

return true; // User can access their own post

} }
const user = this.users. (username);
return user.friends. (postAuther);
) return false;
return false;
}

Al has inherent flaws
so will never replace
programmer

pour yourself a drink
and stop worrying

work on new software
development paradigm
to exploit Al

advances in Al will

be amplified

advances are inevitable
inherent flaws will remain

flaws can be minimized work on new Al
at this rate of change, technologies to

GPT-N will match human overcome flaws

what would this paradigm look like?

familiar forms
exploit reusable ideas and common patterns

domain-specific context
solving problems, not building abstractions

granular structure
break process into smaller, defined tasks

problems and solutions
can't start from a napkin sketch: need problem structure too

how does great
architecture happen?

When you go to design a house you talk to an
architect first, not an engineer. Why is this?

Because the criteria for what makes a good
building fall outside the domain of engineering.

Similarly, in computer programs, the selection
of the various components must be driven by
the conditions of use.

How is this to be done? By software designers.

Mitchell Kapor, A Software Design Manifesto (1996)

Leo =T =%\\-2T

Mont Saint Michel (1450-1521) MIT (Bosworth, 1916) Stata Center (Gehry, 2004)

The
A Pattern Language Timeless Way of

Christopher Alexander
Sara Ishikawa - Murray Silverstein

e . Christopher Alexander
Max Jacobson - Ingrid Fiksdahl-King

Shlomo Angel

1977 1979

180 WINDOW PLACE **

A
"ﬁ‘

c W ‘4,—‘ : W\
! '/<
*-"" £ ie
v [
. B |
.
.l

. . . this pattern helps complete the arrangement of the windows
given Dy ENTRANCE ROOM (130), ZEN VIEW (I34), LIGHT ON
TWO SIDES OF EVERY ROOM (159Q), STREET WINDOWS (164).
According to the pattern, at least one of the windows In each

room needs to be shaped in such a way as to increase its useful-
ness as a space,

B

Everybody loves window seats, bay windows, and big

windows with low sills and comfortable chairs drawn up
to them.

patterns

for software

what would software patterns look like?

user-facing
driven by the user's needs
(for Alexander, patterns resolve conflicts)

cross-application
not specific, widely reusable
(not just this church, or even all churches)

independent & composable
no coupling to other patterns
(less important to Alexander)

A Jackson structured programming (wikipedia.org) post session

106 points by haakonhr 63 days ago | hide | past | favorite | 69 commel..

upvote favorite

a uamennunvlas 63 days ago [-]

, , yu might find helpful an annotated version [0] of Hoare's explanation of JSP that I edited for a Michael Jackson festschrift
user: danielnicholas

created: 63 days ago ' 1'd point to these ideas as worth knowing:

karma: 11 ing problem that involves traversing «) ‘uctures can be solved very systematically. HTDP addresses this class,
UuL pases vue suruciure viny on input structure; JSP synthesized | comment IL.

- The karma 1e archetypal problems that, however you code, can't be pushed under the rug—most notably structure clashes—and just recognizing
them

- Coroutines (or code transformation) let you structure code more cleanly when you need to read or write more than one structure. It's why real
iterators (with yield), which offer a limited form of this, are (in my view) better than Java-style iterators with a next method.

- The idea of viewing a system as a collection of asynchronous processes (Ch. 11 in the JSP book, which |ater became JSD) with a long-running process
for each real-world entity. This was a notable contrast to OOP, and led to a strategy (seeing a resurgence with event storming for DDD) that began with

events rather than objects.

[0] https://groups.csail.mit.edu/sdg/pubs/2009/hoare-jsp-3-29-09...

A ob-nix 63 days ago [-]

... this brings back memories! In the late eighties I, as a teenager, found a Jackson Struct. Pr. book at the town library. I remember I was
amazed at the text and wondered why I hadn't heard about the method before.

If I remember correctly did the book clearly point out backtracking as a standard method, while mentioning that most languages lacked that, so
it had to be implemented manually.

A CraigJPerry 63 days ago [-]
This is referenced(1) as a core inspiration in the preface to "How to Design Programs” but i never researched it further because i‘ve found the “design

racrirnac! asmnnrascih ilm lREAN A e nratdyvy oalid in rasl 1ifa mralhlarmm e

concept Upvote

purpose rank items by popularity

principle after series of upvotes
of items, the items are ranked by
their number of upvotes

Ly

“~
,

-

- .

3

: :
- .

e /

-

'

R

.

Michael Polanyi (1891-1976)

concept Upvote concept Reaction concept Recommendation

purpose rank items by popularity purpose send reactions to author purpose use prior likes to recommend

principle after series of upvotes principle when user selects principle user’s likes lead to ranking
of items, the items are ranked by reaction, 1t’s shown to the author of kinds of items, determining which
their number of upvotes (often in aggregated form) 1tems are recommended

This is homework and I'm having a

are the definitions of the objects: Toaay ~

o Daniel | think we should organize a
sig Library {

patrons : set Person, software concepts forum.

on_shelves : set Book, +
} S

concept Upvote

purpose rank items by popularity

principle after series of upvotes
of items, the items are ranked by
their number of upvotes

state

by: Vote -> one User

for: Vote -> one Item
Upvote, Downvote: set Vote
rank: Item -> one Int

actions

upvote (u: User, 1: Item)
downvote (u: User, 1: Item)
unvote (u: User, 1: Item)

Item
for
Vote
A \
by User
Upvote Downvote

downvote (i: Item, u: User)
// nov: Downvote | v.for= 1and v.by =u

// remove {v: Upvote | v.for=1and v.by =

u}

// add {v: Downvote | v.for=1and v.by = u}

// updatei.rank ...

design variants
downvote as unvote
use age in ranking
weigh downvotes more
various identity tactics
freezing old posts

typical uses
social media posts
comments on articles
Q&A responses

a concept catalog entry

concept: Upvote

related concepts
Rating, Recommendation, Reaction, ...

\%

often used with
Karma, Auth, ...

known issues
high votes can promote old content
feedback favors early upvotes
upvoting encourages echo chamber
preventing double votes

app is composition of concepts

karma

.~ reply

\

N
\3 \

comment

progress in
concept design

case studies
over 100 familiar apps from Adobe, Apple, Google, Microsoft, etc
over 100 concepts described and discussed

a language of concepts

now to structure concepts
now to achieve independence
now to compose concepts

concept design principles

actionable principles

applied to examples to diagnosing UX flaws
strategies for great design (esp. synergy)

essenceofsoftware.com

concepts at Palantir

Wilczynski et al, arxiv.org/abs/2304.14975

Object Explorer m

Object View "add to
list" screenshot

#ee List App UX Vision
b

Object Explorer Lists
Screenshot

Lists

B Lists Literature Review

Gotham Search Lists

Results
Knowledge
Management

Browser

concepts integrated into ontology

leaders bootstrapped by writing initial concepts
now about 150 concepts so far

exploiting existing documents

concepts read and written

January 2023: no regular users
April 2023: 280 regular users (ct. 1500 for Employee)

concepts go beyond engineering
products offer user-facing concept inventories
concepts used in marketing; IP lawyers interested too

concepts empower PMs
new career path: PMs given ownership of concepts

anticipated impacts

cataloging key assets & avoiding rework
aligning concepts across products
aligning marketing/design/engineering

building apps by gluing together pre-built concepts (Santiago Perez De Rosso)

. T,

V- S & 2 £ ¢
Eﬁéggcégéﬁgﬁ 2 5

S 5 z 2 I BT & EF E g e

Concept/App 2 58 &3 375 g SR J% = 'E
Authentication 1 N 1 1 1 1 1 N B N e . 12 13
Authorization 1 N W 2 B B a1 1 1 |1 12 13
Chat 0 0 0 O 1 0 0 0O 0 O 0 0 1 1
Comment 1 0 1 O 0 0 0 o 1 0 1 1 5 5
Event 0 0 0 0O 0 0 1 1 0 1 1 0 4 4
Follow 0 0 0 O 0 0 0 o 0 0 0 1 1 1
Geolocation 0 o o0 O 0 0 0 1 1 0 1 1 4 4
Group 1 0 0 0O 2 1 '3 1 0 1 1 0 7 10
Label 0 0 0 0O 0 0 0 o0 1 0 1 1 3 3
Match 0 0 0 O 0 O O o 1 0 0 0 1 1
Passkey o o0 o o0 O o0 2 0 0 O 0 0 1 2
Property B eSS 2 2 B2 2 2 1 1232
Ranking 0 0 0 0O 0 1 O o 0 o0 0 O 1 1
Rating 1 0 4 1 1 0O O 0 0 0 0 1 5 8
Schedule 0 0 0 O 0 O 0 o 1 0 0 0 1 1
Scoring 0 0 0 0O 0 1 2 o 0 0 o0 2 3 5
Task 0 1 0 0O 0 0 1 o 0 0 0 0 2 2
Transfer 0 1 0 0O 0 0 0 0o 0 1 0 0 2 2

1

"name": "topmovie",
"usedConcepts": {
"movie": {}.
"authentication": {},
"upvote": {}
¥
"routes": |
{ "path": "", "component": "landing" },
{ "path": "/top", "component": "top-movies" }
|
J

configuring app as composition of existing concepts

https://deja-vu-platform.com/

concepts in software design education (with Arvind Satyanarayan)

61040 Fall 2022 Schedule Assignments Recitation/Studio Hours Reading Group Resources Instructors Class Guide

Assignment 3: Fritter Converge

Due Oct 2, 2022 11:59 PM

Overview. In your remaining individual assignments, you'll design and implement Fritter, your own version of Twitter. Fritter won't have
the breadth of functionality or the scalability of Twitter itself, but it will be a coherent and polished product that is complete enough to

demonstrate your novel design ideas convincingly.

 Design your concepts. Starting with the concept ideas from your previous assignment, select your favorite concepts, and figure out
how they will work together. You might want to think about a variety of user scenarios, and what they suggest about the connections
between the concepts (in terms of synchronization and shared object references). As you do this, you can adjust the concepts in any
way you please: combine or split concepts; and include additional concepts that you did not mention there, whether known or
invented. As you consider the detailed design of each concept, and how the concepts will fit together, you'll anticipate problems that
you had not previously considered. You should fix all the problems that you anticipate (at least as much as possible). During this

process, you may want to construct additional sketches.
e Design your user interface. When you are satisfied that you have a plausible design, you'll construct wireframes for the app. Doing

this may reveal additional problems, so don't be surprised if you have to go back and modify your concepts.

concepts & GPT:
some early experiments

&

repository of concept
design knowledge

\/

catalog of concepts
problem & design variants

software
designer

©

Al agent

%

glue code

application code

concept library

S 09

©
&

a concept design partner (with Geoffrey Litt)

Please share your app idea with me.
| want to design an app that matches people with potential cofounders for starting a company.

Great! To better understand your app, can you please provide more information about the following:
1. Target audience

2. Problem being solved
3. Possible features

1. People (students, researchers, employees) who want to start a company but need to find cofounders

2. It's hard to find great people with the right skills to start a company

3. I'm thinking you can make a profile, browse a catalog of possible people, specify what you're looking for, and match with relevant
candidates. Then maybe you can do some light messaging or maybe you just switch to email for that part.

Thanks for the information! Now, think about the concepts that might be present in your application. Try to list them out.

| don't know... maybe:

- User profiles
- Voting on other users

Good start! Based on your app idea, | would suggest considering the following concepts in addition to what you've mentioned:
- User authentication (sign up, log in)

- Search and filtering (for finding potential cofounders)

- Matching algorithm (for suggesting cofounders)

You might also want to refine the voting concept, since it's not clear how it would be helpful in this context. It could be replaced with
something like endorsements or recommendations from other users.

Please let me know if you agree with these suggestions and if you'd like to add or remove any concepts.

a concept design tutor (with Geoffrey Litt)

ConceptBot

Upvoting

Operational Principle

State

Authentication

Operational Principle

State

About

Operational Principle

Upvote is a concept that helps manage user upvotes and downvotes on items, like on

Hacker News. What might be an operational principle for upvote?

Your answer...

Submit (38-)

conclusions

LLMs are amazing but imperfect coders

they’|l never be perfect, so don't wait: make them work now
keys to success: patterns, domain focus, granular method
a promising approach: software concepts

aside: Al forces you to articulate (as designer & teacher!)

blog posts, tutorials, case studies
essenceofsoftware.com

newsletter
essenceofsoftware.com/subscribe

concept design forum
forum.softwareconcepts.io

be in touch!

dnj@mit.edu

mailto:dnj@mit.edu

