
idioms of logical modelling
Daniel Jackson · MIT
SBMF/ICGT · Natal · Sept 20, 2006

introduction

premises
software development needs
› simple, expressive and precise notations
› deep and automatic analyses
… especially in early stages

!e first principle is that you must not
fool yourself, and you are the easiest
person to fool.
--Richard P. Feynman

desiderata
syntax: flexible and easy to use
› eg, declarations & navigations like OMT, Syntropy, etc

semantics: simple and uniform
› eg, relational logic like Z

analysis: fully automatic and interactive
› eg, symbolic model checking like SMV

transatlantic alloy

Oxford, home of Z

Pittsburgh, home of SMV

alloy project

version language analysis sample case study

Nitpick (1995) relational calculus
subset of Z

relation
enumeration

IPv6 routing

Alloy 1 (1999) + navigation exps
quantifiers

WalkSAT, DP intentional
naming

Alloy 2 (2001) + relational ops
higher arity

Chaff, Berkmin
symmetry, sharing

key management,
Unison filesync

Alloy 3 (2004) + subtyping,
overloading

+ atomization
(bad)

Mondex
electronic purse

Alloy 4 (2007) + imperative
features

sparse matrices
better sharing

scope-complete analysis
observations about analyzing designs
› most assertions are wrong
› most flaws have small counterexamples

testing:
a few cases of arbitrary size

scope-complete:
all cases within small scope

pure logic modelling

traditional approach
built-in notions
› state, invariant, operation, trace

standard idiom
› a fixed view of software systems

examples
› state-invariant-operation (Z, B, VDM, OCL)
› state-update-formula (SMV, Murphi)
› state-guarded command-formula (SPIN)
› heap-stack-if-while (Pathfinder, Bandera)

pure logic modelling
suppose we had
› no built-in notions
› no fixed idiom

what might the language look like?
what idioms could we express?
how naturally could we simulate standard idioms?

everything’s a relation
Alloy uses relations for
› all datatypes -- even sets, scalars and tuples
› structures in space and time

key operator is dot join
› for taking components of a structure
› for indexing into a collection
› for resolving indirection

s0

c0 c1

c c

s0

c0 c2

c c

nexts

s.c

s.next

s.next.cs.c s.next.c

relations from Z to A
scalar tuple binding

function relation setsequence

is a
Z

tuple

function

scalar set

relation

sequence

Alloy

everything’s a constraint
no special syntax or semantics for state machines

use constraints for describing
› subtypes & classification
› declarations & multiplicity
› invariants, operations & traces
› assertions, including temporal
› equivalence under refactoring

s0 s1 s2

init (s0)

op (s0,s1) op (s1,s2)

bad (s2)

an example: hotel locking

hotel locking
recodable locks (since 1980)
› new guest gets a different key
› lock is ‘recoded’ to new key
› last guest can no longer enter

how does it work?
› locks are standalone, not wired

a recodable locking scheme
from US patent 4511946; many other similar schemes

k0

k1

card & lock have two keys
if both match, door opens k0

k1

k0

k1

k1

k2

if first card key matches
second door key, door opens

and lock is recoded k1

k2

k0

k1

challenge
model this scheme
LOCKS() -- locking mechanism
GUESTS() -- how guests and hotel staff are supposed to behave

formulate a requirement
SAFE() -- only guest who owns a room can enter it

check
LOCKS() and GUESTS() implies SAFE() ??

elements of alloy

alloy in 3 slides
signatures
› provide classification hierarchy for sets
› composite structure of objects
› local name space for relations
› incremental development

relational logic
› unusually simple and uniform
› generalized join

facts, predicates and assertions
› simple packaging of constraints

signatures & fields
sig A {}
-- introduces a set of atoms called A

sig B extends A {}
-- introduces a subset B of A

sig C extends A {}
-- introduces a subset C of A disjoint from B

sig A {f: B}
-- introduces a binary relation from A to B called f

sig A {f: B->C}
-- introduces a ternary relation from A to B to C called f

relational operators

p + q {t | t ∈ p ∨ t ∈ q}
p - q {t | t ∈ p ∧ t ∉ q}
p & q {t | t ∈ p ∧ t ∈ q}
p -> q {(p1, … pn,q1, … qm) | (p1, … pn) ∈ p ∧ (q1, … qm) ∈ q
p . q {(p1, … pn-1,q2, … qm) | (p1, … pn) ∈ p ∧ (pn, q2, … qm) ∈ q}
p in q {(p1, … pn) ∈ p} ⊆ {(q1, … qn) ∈ q}
p = q {(p1, … pn) ∈ p} = {(q1, … qn) ∈ q}

eg, given sig A {f: B->C}
some expressions and their types:
a.f: B->C
f.c: A->B
b.(a.f): set C

constraints & commands
fact {F}
-- establishes formula F, as an assumption

pred P () {Fp}
-- declares predicate P; invocation equivalent to inlining Fp

assert A () {Fa}
-- declares assertion A, claiming that formula Fa is valid

run P
-- instructs analyzer to find instance satisfying facts and Fp

check A
-- instructs analyzer to find instance satisfying facts and not Fa

a parade of idioms

object model, OCL style
sig Room, Guest, Key {}
sig Card {}
sig StaffCard extends Card {key: Key}
sig GuestCard extends Card {ck1, ck2: Key}

generating an instance
pred show () {}
run show

state/operation, Z style
sig Room, Guest {}
sig State {
 owns: Room -> Guest
 }
pred checkin (s, s': State, r: Room, g: Guest) {
 s'.owns = s.owns + r -> g
 }

run checkin

no special interpretation for ‘ mark

checking an invariant
pred NoDoubleBooking (s: State) {
 s.owns : Room -> lone Guest
 }

assert CheckinOK {
 all s, s': State, r: Room, g: Guest |
 NoDoubleBooking (s) and checkin (s, s', r, g)
 implies NoDoubleBooking (s')
 }

check CheckinOK for 3 but 2 State

no metalanguage for theorems

counterexample!

sig State {owns: Room -> Guest}

default visualization

visualization
after ‘projecting’

State
can project any type

implicit precondition, Z style
pred checkin (s, s': State, r: Room, g: Guest) {
 no r.(s.owns)
 s'.owns = s.owns + r -> g
 } no e means e is empty relation

no counterexample ⇒ valid? no!

analyzer says:
No counterexample found: CheckinOK is
valid within the specified scope. (00:02)

growing the state, Z style
sig State {
 owns: Room -> Guest
 }

sig State1 extends State {
 issued: set Card
 }

pred checkin1 (s, s': State1, r: Room, g: Guest, c: Card) {
 checkin (s, s’, r, g)
 c not in s.issued
 s'.issued = s.issued + c
 }

unlike Z schema: semantic, not syntactic
can add defined component like this:
sig State2 extends State1 {empty: set Room}
 empty = {r: Room | no r.owns}
 }
fact {State2 = State1}

reachability, BMC style
module traces
open util/ordering [State]
sig Room, Guest {}
sig State {owns: Room -> Guest}

pred init (s: State) {no s.owns}
pred checkin (s, s': State, r: Room, g: Guest) {s'.owns = s.owns + r -> g}

fact traces {
 init (first())
 all s: State - last () |
 some r: Room, g: Guest | checkin (s, next(s), r, g)
 }
assert NoDoubleBooking {
 all s: State | s.owns : Room -> lone Guest
 }
check NoDoubleBooking

order states with library module

constrain order to satisfy ops

an assertion over reachable states

counterexample trace
operation names don’t appear:
they’re not objects, just names

for constraints

objects with local state
sig Key, Time {}
sig Card {k1, k2: Key}

sig Room {
 k1, k2: Key one -> Time
 }

pred enter (r: Room, c: Card, t, t': Time) {
 c.k1 = r.k2.t
 k1.t' = k1.t ++ r -> c.k1
 k2.t' = k2.t ++ r -> c.k2
 }

mutable component has Time column

f.t is field f at time t

signatures define local namespaces;
overloading resolved automatically

events as objects
sig Key, Time {}
sig Card {k1, k2: Key}
sig Room {k1, k2: Key one -> Time}
sig Guest {cards: Card -> Time}

abstract sig HotelEvent {
 pre, post: Time,
 guest: Guest
 }

abstract sig RoomCardEvent extends HotelEvent { room: Room, card: Card }

abstract sig Enter extends RoomCardEvent { } { card in guest.cards.pre }

sig NormalEnter extends Enter { } { card.k1 = room.k1.pre }

sig RecodeEnter extends Enter { } {
 card.k1 = room.k2.pre
 k1.post = k1.pre ++ room -> card.k1
 k2.post = k2.pre ++ room -> card.k2
 }

like Z’s schema components
and Java’s instance variables,

fields of signatures are free variables
in extending signature

object model for events

Reiter’s frame conditions
in declarative models
› unmentioned ≠ unchanged

Ray Reiter’s scheme
› add ‘explanation closure axioms’

if field f changed, then event e happened

See: Alex Borgida, John Mylopoulos and Raymond Reiter.
On the Frame Problem in Procedure Specifications.
IEEE Transactions on Software Engineering, 21:10 (October 1995), pp. 785-798.

s

s s'
unchanged
old value
new value

frame conditions, Reiter style

fact Traces {
 all t: Time - last () | let t' = next (t) |
 some e: HotelEvent {
 e.pre = t and e.post = t'
 k1.t = k1.t' and k2.t = k2.t' or e in RecodeEnter
 issued.t = issued.t' and cards.t = cards.t' or e in Checkin
 owns.t = owns.t' or e in Checkin + Checkout
 }
 }

if k1 or k2 changed, then
RecodeEnter must have happened

a safety assertion
safety condition
› if an enter event occurs,

then the guest who enters is an occupant

assert NoBadEntry {
 all e: Enter | e.guest in e.room.owns.(e.pre)
 }

this assertion is about events, and is not
expressible in purely state-based formalisms

counterexample!

problem: can reenter room after checkout

a relaxed safety assertion
safety condition
› if an enter event occurs, and the room is occupied,

then the guest who enters is an occupant

assert NoBadEntry {
 all e: Enter | let owners = e.r.owns.(e.pre) |
 some owners => e.g in owners
 }

counterexample!

‘guest in the middle attack’

constraining the environment
after checking in, guest immediately enters room:

fact NoIntervening {
 all c: CheckinEvent |
 some e: EnterEvent {
 e.pre = c.post
 e.room = c.room
 e.guest = c.guest
 }
 }

conclusions

how to be safe in a hotel
don’t let the bellboy open your door!
› must open it yourself to satisfy NoIntervening

pluralistic modelling
Alloy supports a wide range of idioms and styles

good for teaching
› what you see is what you get
› simple underlying logic
› all analysis is model finding

good for research
› can experiment easily with new idioms

good for practice
› can tailor idiom to the problem
› example: Jazayeri’s model of Apple’s Bonjour

 mentioned ‘two states ago’

hotel locking case study
contributions in my book from
› Martin Gogolla (OCL)
› Jim Woodcock (Z)
› Peter Gorm Larsen and John Fitzgerald (VDM)
› Michael Butler (B)
chapter available at http://softwareabstractions.org/

recently also by Tobias Nipkow in Isabelle
› proves safety for weaker (localized) condition
› shows equivalence of trace- and state-based models

acknowledgments
current students
& collaborators

who’ve worked on Alloy
Greg Dennis

Derek Rayside
Robert Seater

Mana Taghdiri
Emina Torlak

Jonathan Edwards
Vincent Yeung

former students
who’ve worked on Alloy

Sarfraz Khurshid
Mandana Vaziri
Ilya Shlyakhter

Manu Sridharan
Sam Daitch
Andrew Yip
Ning Song

Edmond Lau
Jesse Pavel

Ian Schechter
Li-kuo Lin

Joseph Cohen
Uriel Schafer

Arturo Arizpe

for more info
alloy.mit.edu
› downloads, papers, tutorial

alloy@mit.edu
› questions about Alloy
› send us a challenge

dnj@mit.edu
› happy to hear from you!

mit.edu/people/emina/kodkod.html
› Alloy as an API

Software Abstractions
› MIT Press, March 2006
› discount available to ICGT/SBMF

spare slides: evaluation of Alloy

alloy case studies at MIT
many small case studies
› intentional naming [Balakrishnan+]
› Chord peer-to-peer lookup [Kaashoek+]
› Unison file sync [Pierce+]
› distributed key management
› beam scheduling for proton therapy
› Mondex electronic purse

typically
› 100-1000 lines of Alloy
› analysis in 10 secs - 1 hour
› 3-20 person-days of work

some alloy applications
in industry
› animating requirements (Venkatesh, Tata)
› military simulation (Hashii, Northtrop Grumman)
› role-based access control (Zao, BBN)
› generating network configurations (Narain, Telcordia)

in research
› exploring design of switching systems (Zave, AT&T)
› checking semantic web ontologies (Jin Song Dong)
› enterprise modelling (Wegmann, EPFL)
› checking refinements (Bolton, Oxford)
› security features (Pincus, MSR)

alloy in education
courses using Alloy at Michigan State (Laura Dillon), Imperial College
(Michael Huth), National University of Singapore (Jin Song Dong),
University of Iowa (Cesare Tinelli), Queen's University (Juergen
Dingel), University of Waterloo (Joanne Atlee), Worcester Polytechnic
(Kathi Fisler), University of Wisconsin (Somesh Jha), University of
California at Irvine (David Rosenblum), Kansas State University (John
Hatcliff and Matt Dwyer), University of Southern California (Nenad
Medvidovic), Georgia Tech (Colin Potts), Politecnico di Milano (Carlo
Ghezzi), Rochester Institute of Technology (Michael Lutz), University
of Auckland (John Hamer, Jing Sun), Stevens Institute (David
Naumann), USC (David Wilczynski)

good things
conceptual simplicity and minimalism
› very little to learn
› WYSIWYG: no special semantics (eg, for state machines)
› expressive declarations

high-level notation
› constraints -- can build up incrementally
› relations flexible and powerful
› much more succinct than most model checking notations

automatic analysis
› no lemmas, tactics, etc
› counterexamples are never spurious
› visualization a big help
› can do many kinds of analysis: refinement, BMC, etc

bad things
relations aren’t a panacea
› sequences are awkward
› treatment of integers limited

limitations of logic
› recursive functions hard to express
› sometimes, want iteration and mutation

limitations of language
› module system doesn’t offer real encapsulation

limitations of tool
› tuned to generating instances (hard) rather than

checking instances (easy)

alloy analyzer architecture

alloy analyzer

alloy
formula

scope

boolean
formula

boolean
instance

alloy
instance

translate
formula

translate
instance

SAT
solver

mapping

performance (unsat)
unsatisfiable

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10

scope

ti
m

e
 (

se
cs

)

performance (sat)
satisfiable

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

scope

ti
m

e
 (

se
cs

)

