
&concepts
software
Daniel Jackson · Google, Cambridge · May 8, 2012

#1
the good & the bad

adobe acrobat pro

adobe lightroom

hypothesis

weak concepts strong concepts

hard to use intuitive, predictable

a mess to maintain decoupling & localization

unreliable & buggy more dependable

#2
how to do it?

what we’re already doing
thinking & sketching

simulating features

normal design practice
copying good ideas

evaluating products
user feedback

discarding failed designs
“refactoring”

To design something really
well, you have to get it. You
have to really grok what it’s
all about. It takes a
passionate commitment to
really thoroughly understand
something, chew it up, not
just quickly swallow it. Most
people don’t take the time to
do that. --Steve Jobs

what we’re not doing

focusing: what are the concepts?
relating: how are they related to each other?

analyzing: what properties do they have?

being explicit

#3
an approach

alloy: a notation

object-oriented
development

mathematical
logic

software
verification
relational
databases

logic diagrams
(Euler, Venn, Peirce)

ZF set theory

relational calculus
(Tarski)

Z notation

relational model
(Codd)

ER & other data
models

object model
notations (OMT etc)

Unified Modeling
LanguageAlloy Language

Alloy Diagrams

1700

1900

1940

1970

1980

1990

2000

model checking

semantic concepts

atom
indivisible
immutable

uninterpreted

relation
collection of atom tuples

set
collection of atoms
(ie, a unary relation)

graphical syntax

+ one or more
* zero or more
! exactly one
? at most one
omitted = *

A BR
m n

‣ R maps m A’s to each B
‣ R maps each A to n B’s

B

A

A ⊆B

B

A1 A2

A1 ⊆B, A2 ⊆B
A1 ∩ A2 = ∅

Man

Person

Woman
wife

husband ??
??

father

?

mother

?

the alloy analyzer: a model finder

kodkod engine

alloy
formula bounds

boolean
formula

boolean
instance

alloy
instance

translate
formula

translate
instance

SAT
solver

mapping

alloy
command

 alloy front end

elaborate typecheck visualize

visual
output

AP
I

AP
I

i’m my own grandpa

#4
some generic concepts

“style”

Powerpoint

There is no problem in computer science that cannot be solved by
introducing another level of indirection. --David Wheeler

Indesign

Doc

Element

elements

Palette

Swatch

swatches

Colour

value

colour

palette

Name

key

rough edges
› Indesign: can’t tell whether you assigned color or swatch
› CSS: formatting rules aren’t independent

“pseudo style”

Doc

Element

elements

Palette

Swatch

swatches

Colour

value

colour

palette

Name

key

Keynote

“composite”

rough edges
› Lightroom: “collection sets”
› IMAP vs Apple Mail: folder holding message and folder?
› Google docs: collections a bit scary?

Object

Element Group

members+

?

“approval”

Subject

Entry

Review

Userby !

about!
Approval

approvals
!

review

!

rough edges
› your suggestions?

#5
three conceptual models

microsoft word

rough edges
› special role of Normal style, etc
› hidden memory of inherit vs replace with same

the origins of paragraph styles
Bravo-X at Xerox PARC: Tim Mott, Larry Tesler,
Charles Simonyi; first commercialized in Word,
now ubiquitous (Pages, Indesign, Quark,...)

Paragraph Style
style !

Format

formats

Name

Value

name

value

basedOn, next

?

!

!

javascript objects

JS Object

StringFunction

Slot

_slots

!

_value

_property

!

!

...

 gallery.play = function () {
 change(SP.mode.SLIDESHOW);
 gallery.next_photo();
 autoplayTimer = setInterval(autonext, prefs.transitionTime);
 }
 gallery.play.enabled = function () {
 return mode != SP.mode.SLIDESHOW && prefs.enabledModes[SP.mode.SLIDESHOW];
 }

rough edges
› add slots to all objects? is 23 an object?

origins & referrers

referrers & origins

a strategy for XSS and CSRF
browser tracks “origin” of each request

with HTTP request, includes origin as “referrer”
if referrer is not self, server rejects it

critical property
s=origin(r) iff s really is cause of r

<img src="http://mybank.com/transferFunds?
amount=1000&destination=attackersAcct"
width="0" height="0"/>

bank.com

evil.org

client

+CSRF

actual
client

intended
client

http://example.com/app/transferFunds?amount=1500&destinationAccount=attackersAcct#
http://example.com/app/transferFunds?amount=1500&destinationAccount=attackersAcct#
http://example.com/app/transferFunds?amount=1500&destinationAccount=attackersAcct#
http://example.com/app/transferFunds?amount=1500&destinationAccount=attackersAcct#

modeling origins

Request

HTTPEvent

Responseresponse
!

Embedded
Request

Redirect
Response

!

embeds

!

Client

EndPoint

Server

from, to, origin !

causes !

define basic concepts

abstract sig HTTPEvent {from, to, origin: EndPoint}
abstract sig EndPoint { causes: set HTTPEvent }
 { causes = {e: HTTPEvent - Embedded | e.from = this} + causes.embeds }

sig Client, Server extends EndPoint {}
sig Request extends HTTPEvent { response: Response }
 { from in Client and to in Server }
sig Response extends HTTPEvent { embeds: set Embedded }
 { from in Server and to in Client }
sig Embedded extends Request {}
fact {Embedded = Response.embeds}
sig Redirect extends Response { }
fact RequestResponse {
 response in Request one -> one Response
 all r: Request | r.from = r.response.to and r.to = r.response.from
 }

define origin tracking

fact Origin {
 // for a redirect, origin is same as request, else server
 all r: Request | r.response.origin =
 (r.response in Redirect implies r.origin else r.response.from)
 // embedded requests have the same origin as the response
 all r: Response, e: r.embeds | e.origin = r.origin
 // requests that are not embedded come from the client
 all r: Request - Embedded | r.origin = r.from
 }

pred appliesSOP (s: Server) {
 // request is only accepted if origin is server itself or sender
 all r: Request | r.to = s implies r.origin = r.to or r.origin = r.from
 }

does the policy work?

check {
 no server: Server, attacker: Server - server {
 // no direct request to attacker
 no r: Request | r.to = attacker and r.origin in Client
 // trusted server obeys origin policy
 server.appliesSOP
 // and attacker still gets request through
 some r: attacker.causes | r.to = server
 }
 } for 6 but 1 Client, 2 Server

counterexample!

Towards a Formal Foundation of Web Security [2010]
Akhawe, Barth, Lam, Mitchell & Song

generic model of web security
HTTP, certificates, cookies, script contexts

about 2,000 lines of Alloy

applied to 5 case studies
in each, found vulnerabilities

2 known, 3 unknown

http://www.adambarth.com/
http://www.adambarth.com/
http://www.peifung.com/pflam/Home.html
http://www.peifung.com/pflam/Home.html
http://cs.stanford.edu/people/jcm/
http://cs.stanford.edu/people/jcm/
http://www.cs.berkeley.edu/~dawnsong
http://www.cs.berkeley.edu/~dawnsong

more examples: alloy.mit.edu

#6
anti-patterns

non-uniformity
members of set have different properties or behaviors

eg: in Photoshop, base layer is different

coupling
concepts are not independent

eg: in OS X, folder view vs. network access
eg: in CSS, element position vs. wrap around

over-generalization
distinct concepts merged

eg: in mail clients, trashed messages have no deletion date

unity of purpose?

Conceptual integrity is the most important consideration in system
design. It is better to have a system omit certain anomalous features
and improvements, but to reflect one set of design ideas, than to have

one that contains many good but independent and uncoordinated
ideas.

-- Fred Brooks, 1975

thank you!

squander

public class Sudoku {
 private int [][] grid = new int [9][9];

@Ensures ({
 "all row in {0..8} | this.grid[row][int] = {1..9}",
 "all col in {0..8} | this.grid[int][col] = {1..9}",
 "all r , c in {0, 1, 2} |
 this.grid[{r∗3..r∗3+2}][{c∗3..c∗3+2] = {1..9}"
 })
@Modifies("this.grid[int].elems | _<2> = 0")
public void solve() { Squander.exe(this); }

public static void main(String[] args) {
 Sudoku s = new Sudoku();
 s.grid[0][3] = 1; ...; s.grid[8][8] = 5;
 s.solve();
 System.out.println(s);
 }

performance

 0

 20

 40

 60

 80

 100

ti
m

e
[s

]

N=16 N=28 N=32 N=34 N=36 N=68

Backtracking
tSAT
tKodkod
tSquander

n-queens

hamiltonian path, none hamiltonian path, some

Rubicon specs

it "user included in list of users" do
 user = Factory(:user)
 get :index
 assigns[:users].should include user
end

RSpec test

it "all users included in list of users" do
 User.forall do |user|
 get :index
 assigns[:users].should include(user)
 end
end

Rubicon spec

Fat Free CRM

prototype Apache analyzer

