
relational logic
for software design
Daniel Jackson · Lipari Summer School · July 18-22, 2005

what these lectures are about
how to model & analyze software abstractions

focus on engineering, not research
› language, idioms, examples
› not semantics, types, algorithms

what I assume you know
› basic set theory & logic

schedule
› Tuesday: Logic & language
›Wednesday: State, operations & traces
›!ursday: Events & environment

my story

formative experiences
programmer at Logica UK (1984-86)
› worked on systems for London Underground
› became passionate advocate of formal methods
› joined Sesame: internal advocacy group

formal methods (esp. JSP/D and VDM)
› a solution to the software crisis!

software blueprints?

what I learned in grad school
Larch approach wasn’t yet practical
› algebraic specs hard to read and write
› automation elusive

so, for my doctorate, focused on checking code
› but hoped to come back to world of design

when I finished in 1992
› Ken McMillan’s SMV: automation
› Spivey et al’s Z: elegant, clear expression

bridging the atlantic?

Oxford, home of Z

Pittsburgh, home of SMV

the alloy project, 1994-2005
Nitpick [1995]
› a relational subset of Z (Tarski’s RC: binary relations, no ∀∃)
› analysis: enumeration of relations + symmetry

Alloy 1.0 [1999]
› language: object modelling (set-valued ‘navigation’ exprs, ∀∃)
› analysis: WalkSAT, then Davis-Putnam

Alloy 2.0 [2001]
› language: relational logic (arbitrary arity, scalar ∀∃)
› analysis: Chaff, Berkmin

Alloy 3.0 [2004]
› added castless subtypes & overloading

perspective

model checking for software?
is software like hardware?
› simple spec, complex realization
› a few, subtle & catastrophic bugs
› cost to fix dwarfs cost of detection

so analyze designs to find subtle bugs

software is very different
› complex specs, simple realization
› failure from complexity, not bugs
› cost to fix is usually low

so analyze designs to explore abstractions

software abstractions
software is built on abstractions

pick good ones, and you get
› clean interfaces (they’re simple and fit well)
› a more useable system (they’re the user’s concepts)
› maintainable code (they match the problem)

pick bad ones, and you get
› a mess that gets worse over time
› the only refactoring that works is starting over
› special cases, hard to use

why struggle with abstractions?
I conclude there are two ways of constructing a software design:
One way is to make it so simple there are obviously no deficiencies
and the other way is to make it so complicated that there are no
obvious deficiencies.

-- Tony Hoare [Turing Award Lecture, 1980]

why explore details?
To design something really well, you have to get it. You have to
really grok what it's all about. It takes a passionate commitment to
really thoroughly understand something, chew it up, not just
quickly swallow it. Most people don't take the time to do that.

-- Steve Jobs [Wired Interview, Issue 4.02, Feb 1996]

why analyze?
!e first principle is that you must not fool yourself,
and you are the easiest person to fool

-- Richard P. Feynman

alloy demo

what we didn’t do
incrementality
› didn’t write a long model and then analyze it

low burden
› no test cases, lemmas or tactics

concrete feedback
› no false alarms, easy to diagnose

key ideas

#1: everything’s a relation
Alloy uses relations for
› all datatypes -- even sets, scalars and tuples
› structures in space and time

key operator is dot join
› for taking components of a structure
› for indexing into a collection
› for resolving indirection style

format

PARA1 STYLE1

FMT1

style.format

#2: pure logic
no special syntax or semantics for state machines

use constraints for describing
› subtypes & classification
› declarations & multiplicity
› invariants, operations & traces
› and for assertions, including temporal
› equivalence under refactoring

s0 s1 s2

init (s0)

op (s0,s1) op (s1,s2)

bad (s2)

#3: counterexamples & scope
observations about analyzing designs
› most assertions are wrong
› most flaws have small counterexamples

testing:
a few cases of arbitrary size

scope-complete:
all cases within small scope

#4: analysis by SAT
SAT, the quintessential hard problem (Cook, 1971)
› SAT is hard, so reduce SAT to your problem

SAT, the universal constraint solver (Kautz, Selman et al 1990’s)
› SAT is easy, so reduce your problem to SAT
› solvers: Chaff (Malik), Berkmin (Goldberg), many others

Eugene GoldbergStephen Cook

experience with alloy

alloy case studies at MIT
many small case studies
› intentional naming [Balakrishnan+]
› Chord peer-to-peer lookup [Kaashoek+]
› Unison file sync [Pierce+]
› distributed key management
› beam scheduling for proton therapy

typically
› 100-1000 lines of Alloy
› analysis in 10 secs - 1 hour
› 3-20 person-days of work

sample alloy applications
in industry
› animating requirements (Venkatesh, Tata)
› military simulation (Hashii, Northtrop Grumman)
› role-based access control (Zao, BBN)
› generating network configurations (Narain, Telcordia)

in research
› exploring design of switching systems (Zave, AT&T)
› checking semantic web ontologies (Jin Song Dong)
› reference model for ODP (Naumenko)
› checking refinements (Bolton, Oxford)
› security features (Pincus, MSR)

alloy in education
courses using Alloy at Michigan State (Laura Dillon), Imperial
College (Michael Huth), National University of Singapore (Jin
Song Dong), University of Iowa (Cesare Tinelli), Queen's
University (Juergen Dingel), University of Waterloo (Joanne
Atlee), Worcester Polytechnic (Kathi Fisler), University of
Wisconsin (Somesh Jha), University of California at Irvine (David
Rosenblum), Kansas State University (John Hatcliff and Matt
Dwyer), University of Southern California (Nenad Medvidovic),
Georgia Tech (Colin Potts), Politecnico di Milano (Carlo Ghezzi),
Rochester Institute of Technology (Michael Lutz), University of
Auckland (John Hamer, Jing Sun), Stevens Institute (David
Naumann), USC (David Wilczynski)

your homework for today

homework: handshaking
Paul Halmos’s handshaking problem
› Alice and Bob invite four couples for dinner. When they arrive,

they shake hands. Nobody shakes their own or spouse’s hand.
After some handshaking, Alice asks how many hands each
person has shaken. All the answers are different. How many
hands has Bob shaken?

solution
module examples/handshake/handshake
sig Person {spouse: Person, shaken: set Person}
fact {
 no (iden + spouse) & shaken
 shaken = ~shaken
 spouse = ~spouse
 no iden & spouse
 }

pred solve () {
 some Alice: Person |
 no disj a,b: Person - Alice | #a.shaken = #b.shaken
 }

run solve for exactly 10 Person

your task
find the solution by running Alloy

look at the different visualizations

see what happens if you delete some facts

extra slides

why not model with code?
nothing, so long as
› you’re prepared to start again
› you like reading other people’s code
› you like writing test cases

kent beck on design notation
Another strength of design with pictures is speed. In the time it
would take you to code one design, you can compare and contrast
three designs using pictures. !e trouble with pictures, however,
is that they can't give you concrete feedback. !e XP strategy is
that anyone can design with pictures all they want, but as soon as
a question is raised that can be answered with code, the designers
must turn to code for the answer.
!e pictures aren’t saved.

Kent Beck
Extreme Programming Explained, 1999

