
states, operations
& traces
Daniel Jackson · Lipari Summer School · July 18-22, 2005

self-grandpa, version 2
module examples/grandpa/grandpa2
abstract sig Person {father: lone Man, mother: lone Woman}
sig Man extends Person {wife: lone Woman}
sig Woman extends Person {husband: lone Man}
fact {
 no p: Person | p in p.^(mother+father)
 wife = ~husband
 }
fun grandpas (p: Person): set Person {
 let parent = mother + father + father.wife +mother.husband |
 p.parent.parent & Man }
pred ownGrandpa (p: Person) {p in grandpas (p)}
run ownGrandpa for 4 Person

self-grandpa, solution 1
not suitable for a popular song

self-grandpa, version 3
module examples/grandpa/grandpa2
abstract sig Person {father: lone Man, mother: lone Woman}
sig Man extends Person {wife: lone Woman}
sig Woman extends Person {husband: lone Man}
fact {
 no p: Person | p in p.^(mother+father)
 wife = ~husband
 no wife & *(mother+father).mother
 no husband & *(mother+father).father
 }
fun grandpas (p: Person): set Person {
 let parent = mother + father + father.wife +mother.husband |
 p.parent.parent & Man }
pred ownGrandpa (p: Person) {p in grandpas (p)}
run ownGrandpa for 4 Person

self-grandpa, solution 2

topics for today
idioms for dynamic behaviour

idioms for modelling
› states, operations & invariants
› composite state
› local state
› execution traces

idioms for analysis
› inductive invariants
› algebraic properties
› temporal properties

going slower …
less material for today
opportunity to ask questions about logic/language in context
stupid questions welcome!

example: media management
just look at a few tiny features
› show/hide
› select
› cut/paste

premise
› simple, powerful abstractions make good user interfaces
› no point doing a usability study on an incoherent design

on the benefits of software
I have always wished that my computer would be as easy to use as
my telephone. My wish has come true. I no longer know how to
use my telephone.

--Bjarne Stroustrup

intro to media management

media asset management
applications for organizing photos, fonts, videos, sound tracks, etc
eg, iView Media Pro

demo of IVMP

IVMP model

form: state, op & invariant
sig State {…}

pred op (s, s’: State) {…}

pred inv (s: State) {…}

assert opPreservesInv {
 all s, s’: State | inv (s) and op (s, s’) implies inv (s’)
 }
check opPreservesInv

IVMP state
module examples/assets/assets

sig Catalog {}
sig Asset {}
one sig Undefined {}

sig ApplicationState {
 catalogs: set Catalog,
 catalogState: catalogs -> one CatalogState,
 currentCatalog: catalogs,
 buffer: set Asset }

sig CatalogState {
 assets: set Asset,
 part hidden, showing: set assets,
 selection: set assets + Undefined }

an IVMP invariant
pred appInv (xs: ApplicationState) {
 all cs: xs.catalogs | catalogInv (xs.catalogState[cs])
 }

pred catalogInv (cs: CatalogState) {
 cs.selection = Undefined
 or (some cs.selection and cs.selection in cs.showing)
 }

show/hide ops
pred showSelected (cs, cs': CatalogState) {
 cs.selection != Undefined
 cs'.showing = cs.selection
 cs'.selection = cs.selection
 cs'.assets = cs.assets
 }

pred hideSelected (cs, cs': CatalogState) {
 cs.selection != Undefined
 cs'.hidden = cs.hidden + cs.selection
 cs'.selection = Undefined
 cs'.assets = cs.assets
 }

note: asymmetry, frame conditions

paste op
pred paste (xs, xs': ApplicationState) {
 xs'.catalogs = xs.catalogs
 xs'.currentCatalog = xs.currentCatalog
 let cs = xs.catalogState[xs.currentCatalog], buf = xs.buffer {
 xs'.buffer = buf
 some cs': CatalogState {
 cs'.assets = cs.assets + buf
 cs'.showing = cs.showing + buf
 cs'.selection = buf
 xs'.catalogState = xs.catalogState ++ xs.currentCatalog -> cs'
 }
 }
}

checking invariant
assert PastePreservesInv {
 all xs, xs': ApplicationState |
 appInv (xs) and paste (xs, xs') => appInv (xs')
 }

check PastePreservesInv

counterexample!
sig ApplicationState
 catalogState =
 {ApplicationState_0 -> Catalog_0 -> CatalogState_1,
 ApplicationState_1 -> Catalog_0 -> CatalogState_0}
 buffer = {}

sig CatalogState
 showing =
 {CatalogState_0 -> Asset_0, CatalogState_1 -> Asset_0}
 selection = {CatalogState_1 -> Asset_0}

PastePreservesInv_xs = {ApplicationState_0}
PastePreservesInv_xs' = {ApplicationState_1}
paste0_cs' = {CatalogState_0}
appInv_cs = {Catalog_0}

paste revisited
pred paste (xs, xs': ApplicationState) {
 xs'.catalogs = xs.catalogs
 xs'.currentCatalog = xs.currentCatalog
 let cs = xs.catalogState[xs.currentCatalog], buf = xs.buffer {
 some cs': CatalogState {
 xs'.buffer = buf
 cs'.assets = cs.assets + buf
 cs'.showing = cs.showing + buf
 cs'.selection = if some buf then buf else Undefined
 xs'.catalogState = xs.catalogState ++ xs.currentCatalog -> cs'
 }
 }
}

form: checking inverses
sig State {…}

pred op1 (s, s’: State) {…}

pred op2 (s, s’: State) {…}

assert Inverses {
 all s, s’, s”: State | op1 (s, s’) and op2 (s’, s”) => s = s”
 }
check Inverses

cut/paste
assert CutPaste {
 all xs, xs', xs": ApplicationState |
 (appInv (xs) and cut (xs, xs') and paste (xs', xs")) =>
 sameApplicationState (xs, xs")
 }

check CutPaste for 3 but 2 Asset

counterexample!

problem: old buffer is lost

state equivalence, revisited
pred sameApplicationState (xs, xs': ApplicationState) {
 xs'.catalogs = xs.catalogs
 all c: xs.catalogs |
 sameCatalogState (c.(xs.catalogState), c.(xs'.catalogState))
 xs'.currentCatalog = xs.currentCatalog
 /* xs'.buffer = xs.buffer */
 }

paste/cut
assert PasteCut {
 all xs, xs', xs": ApplicationState |
 (appInv (xs) and paste (xs, xs') and cut (xs', xs")) =>
 sameApplicationState (xs, xs")
 }

check PasteCut for 3 but 2 Asset

counterexample!

two problems: selection lost & pasting of hidden asset

paste revisited, again
pred paste (xs, xs': ApplicationState) {
 xs'.catalogs = xs.catalogs
 xs'.currentCatalog = xs.currentCatalog
 let cs = xs.catalogState[xs.currentCatalog], buf = xs.buffer {
 some cs': CatalogState {
 xs'.buffer = buf
 cs'.assets = cs.assets + buf
 cs'.showing = cs.showing + (buf - cs.assets)
 cs'.selection = if some buf then buf - cs.assets else Undefined
 xs'.catalogState = xs.catalogState ++ xs.currentCatalog -> cs'
 }
 }
}

lessons
like many design problems
› seems trivial at first
› but getting it right is hard

local state & traces:
leader election model

form: local state
sig Time {…}
sig X {}
sig Object {
 static: X,
 dynamic: X -> Time
 }

pred op (t, t’: Time, o: Object) {
 o.dynamic.t’ = x’
 all o’: Object - o | o’.dynamic.t’ = o’.dynamic.t
or
 dynamic.t’ = dynamic.t ++ o->x’
 }

leader election in a ring
problem
› elect a leader
› processes in a ring
› distinguished only by ID

Chang & Roberts
› each process passes its ID to the right (say)
› on receipt of an ID i

i > my ID: pass it on
i < my ID: drop it
i = my ID: elect myself leader

state: topology & process state
module examples/election/election
open util/ordering[Time] as to -- import library module for time order
open util/ordering[Process] as po -- ordering on process ids

sig Time {}
sig Process {
 succ: Process, -- successor in ring
 toSend: Process -> Time, -- pool of ids to send at time t
 elected: set Time -- times at which elected leader
 }

fact ring {
 all p: Process | Process in p.^succ -- constrain succ so it’s a ring
 }

initialization
initially, each process is ready to send its own ID

pred init (t: Time) {
 all p: Process | p.toSend.t = p
 }

transition step
pred step (t, t': Time, p: Process) {
 let from = p.toSend, to = p.succ.toSend |
 some id: from.t {
 from.t' = from.t - id
 to.t' = to.t + (id - po/prevs(p.succ))
 }
 }

p.succp

p.succ.toSendp.toSend

id

turning transitions into traces
fact traces {
 init (to/first ())
 all t: Time - to/last() | let t' = to/next (t) |
 all p: Process |
 step (t, t', p) or step (t, t', succ.p) or skip (t, t', p)
 }

pred skip (t, t': Time, p: Process) {
 p.toSend.t = p.toSend.t'
 }

defining election
define elected with a fact
› no process elected in first time instant
› processes elected at t are those that got their own ID at t

fact defineElected {
 no elected.to/first()
 all t: Time - to/first()|
 elected.t = {p: Process | p in p.toSend.t - p.toSend.(to/prev(t))}
 }

alternatively, update elected in step
› but this is better separation of concerns

simulation
pred show () {
 some elected
 }
run show for 3 but 4 Time

checking
assert AtMostOneElected {
 lone elected.Time
 }
check AtMostOneElected for 5 Process, 10 Time

demo

machine diameter

scoping the trace length
‘small scope hypothesis’
› most bugs have counterexamples in small scopes

but is this really plausible for trace length?
› scope (Time) bounds number of steps in trace
› maybe trace is too short to reach interesting states

can mitigate this problem
› for small models
› using ideas from Biere et al
› hardwired in BMC, but directly expressible in Alloy logic

defining diameter
idea: set trace length to diameter

definition
› diameter (M) is smallest k such that

 every state can be reached in k steps from initial state

0 2 3 4

7 1 3 5

6 5 4 6

approximating diameter

suppose ∄ loopless path of length k
› then diameter < k

can use analyzer to find k :

pred loopless () {
no disj t, t': Time | toSend.t = toSend.t'
}

run loopless for 12 Time, 3 Process -- instance found
run loopless for 13 Time, 3 Process -- no instance found

approximated diameter grows fast
› for 5 Process, computed diameter is 33

homework

homework: election progress
check that at least one process is elected
› formulate an assertion & check it
› change model if necessary

assert AtLeastOneElected {
 …
 }

